ocaml/stdlib/random.ml

276 lines
8.8 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Damien Doligez, projet Para, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Pseudo-random number generator
This is a lagged-Fibonacci F(55, 24, +) with a modified addition
function to enhance the mixing of bits.
If we use normal addition, the low-order bit fails tests 1 and 7
of the Diehard test suite, and bits 1 and 2 also fail test 7.
If we use multiplication as suggested by Marsaglia, it doesn't fare
much better.
By mixing the bits of one of the numbers before addition (XOR the
5 high-order bits into the low-order bits), we get a generator that
passes all the Diehard tests.
*)
external random_seed: unit -> int = "caml_sys_random_seed";;
module State = struct
type t = { st : int array; mutable idx : int };;
let new_state () = { st = Array.make 55 0; idx = 0 };;
let assign st1 st2 =
Array.blit st2.st 0 st1.st 0 55;
st1.idx <- st2.idx;
;;
let full_init s seed =
let combine accu x = Digest.string (accu ^ string_of_int x) in
let extract d =
Char.code d.[0] + (Char.code d.[1] lsl 8) + (Char.code d.[2] lsl 16)
+ (Char.code d.[3] lsl 24)
in
let seed = if seed = [| |] then [| 0 |] else seed in
let l = Array.length seed in
for i = 0 to 54 do
s.st.(i) <- i;
done;
let accu = ref "x" in
for i = 0 to 54 + max 55 l do
let j = i mod 55 in
let k = i mod l in
accu := combine !accu seed.(k);
s.st.(j) <- s.st.(j) lxor extract !accu;
done;
s.idx <- 0;
;;
let make seed =
let result = new_state () in
full_init result seed;
result
;;
let make_self_init () = make [| random_seed () |];;
let copy s =
let result = new_state () in
assign result s;
result
;;
(* Returns 30 random bits as an integer 0 <= x < 1073741824 *)
let bits s =
s.idx <- (s.idx + 1) mod 55;
let newval = s.st.((s.idx + 24) mod 55)
+ (s.st.(s.idx) lxor ((s.st.(s.idx) lsr 25) land 31)) in
s.st.(s.idx) <- newval;
newval land 0x3FFFFFFF (* land is needed for 64-bit arch *)
;;
let rec intaux s n =
let r = bits s in
let v = r mod n in
if r - v > 0x3FFFFFFF - n + 1 then intaux s n else v
;;
let int s bound =
if bound > 0x3FFFFFFF || bound <= 0
then invalid_arg "Random.int"
else intaux s bound
;;
let rec int32aux s n =
let b1 = Int32.of_int (bits s) in
let b2 = Int32.shift_left (Int32.of_int (bits s land 1)) 30 in
let r = Int32.logor b1 b2 in
let v = Int32.rem r n in
if Int32.sub r v > Int32.add (Int32.sub Int32.max_int n) 1l
then int32aux s n
else v
;;
let int32 s bound =
if bound <= 0l
then invalid_arg "Random.int32"
else int32aux s bound
;;
let rec int64aux s n =
let b1 = Int64.of_int (bits s) in
let b2 = Int64.shift_left (Int64.of_int (bits s)) 30 in
let b3 = Int64.shift_left (Int64.of_int (bits s land 7)) 60 in
let r = Int64.logor b1 (Int64.logor b2 b3) in
let v = Int64.rem r n in
if Int64.sub r v > Int64.add (Int64.sub Int64.max_int n) 1L
then int64aux s n
else v
;;
let int64 s bound =
if bound <= 0L
then invalid_arg "Random.int64"
else int64aux s bound
;;
let nativeint =
if Nativeint.size = 32
then fun s bound -> Nativeint.of_int32 (int32 s (Nativeint.to_int32 bound))
else fun s bound -> Int64.to_nativeint (int64 s (Int64.of_nativeint bound))
;;
(* Returns a float 0 <= x < 1 with at most 90 bits of precision. *)
let rawfloat s =
let scale = 1073741824.0
and r0 = Pervasives.float (bits s)
and r1 = Pervasives.float (bits s)
and r2 = Pervasives.float (bits s)
in ((r0 /. scale +. r1) /. scale +. r2) /. scale
;;
let float s bound = rawfloat s *. bound;;
let bool s = (bits s land 1 = 0);;
end;;
(* This is the state you get with [init 27182818]. *)
let default = {
State.st = [|
0x7ae2522b; 0x5d8d4634; 0x15b4fad0; 0x18b14ace; 0x12f8a3c4; 0x7b086c47;
0x16d467d6; 0x501d91c7; 0x321df177; 0x4176c193; 0x1ff72bf1; 0x5e889109;
0x0b464b18; 0x6b86b97c; 0x4891da48; 0x03137463; 0x485ac5a1; 0x15d61f2f;
0x7bced359; 0x69c1c132; 0x7a86766e; 0x366d8c86; 0x1f5b6222; 0x7ce1b59f;
0x2ebf78e1; 0x67cd1b86; 0x658f3dc3; 0x789a8194; 0x42e4c44c; 0x58c43f7d;
0x0f6e534f; 0x1e7df359; 0x455d0b7e; 0x10e84e7e; 0x126198e4; 0x4e7722cb;
0x5cbede28; 0x7391b964; 0x7d40e92a; 0x4c59933d; 0x0b8cd0b7; 0x64efff1c;
0x2803fdaa; 0x08ebc72e; 0x4f522e32; 0x45398edc; 0x2144a04c; 0x4aef3cbd;
0x41ad4719; 0x75b93cd6; 0x2a559d4f; 0x5e6fd768; 0x66e27f36; 0x186f18c3;
0x2fbf967a;
|];
State.idx = 0;
};;
let bits () = State.bits default;;
let int bound = State.int default bound;;
let int32 bound = State.int32 default bound;;
let nativeint bound = State.nativeint default bound;;
let int64 bound = State.int64 default bound;;
let float scale = State.float default scale;;
let bool () = State.bool default;;
let full_init seed = State.full_init default seed;;
let init seed = State.full_init default [| seed |];;
let self_init () = init (random_seed());;
(* Manipulating the current state. *)
let get_state () = State.copy default;;
let set_state s = State.assign default s;;
(********************
(* Test functions. Not included in the library.
The [chisquare] function should be called with n > 10r.
It returns a triple (low, actual, high).
If low <= actual <= high, the [g] function passed the test,
otherwise it failed.
Some results:
init 27182818; chisquare int 100000 1000;;
init 27182818; chisquare int 100000 100;;
init 27182818; chisquare int 100000 5000;;
init 27182818; chisquare int 1000000 1000;;
init 27182818; chisquare int 100000 1024;;
init 299792643; chisquare int 100000 1024;;
init 14142136; chisquare int 100000 1024;;
init 27182818; init_diff 1024; chisquare diff 100000 1024;;
init 27182818; init_diff 100; chisquare diff 100000 100;;
init 27182818; init_diff2 1024; chisquare diff2 100000 1024;;
init 27182818; init_diff2 100; chisquare diff2 100000 100;;
init 14142136; init_diff2 100; chisquare diff2 100000 100;;
init 299792643; init_diff2 100; chisquare diff2 100000 100;;
- : float * float * float = (936.754446796632465, 997.5, 1063.24555320336754)
# - : float * float * float = (80., 89.7400000000052387, 120.)
# - : float * float * float = (4858.57864376269, 5045.5, 5141.42135623731)
# - : float * float * float =
(936.754446796632465, 944.805999999982305, 1063.24555320336754)
# - : float * float * float = (960., 1019.19744000000355, 1088.)
# - : float * float * float = (960., 1059.31776000000536, 1088.)
# - : float * float * float = (960., 1039.98463999999512, 1088.)
# - : float * float * float = (960., 1054.38207999999577, 1088.)
# - : float * float * float = (80., 90.096000000005, 120.)
# - : float * float * float = (960., 1076.78720000000612, 1088.)
# - : float * float * float = (80., 85.1760000000067521, 120.)
# - : float * float * float = (80., 85.2160000000003492, 120.)
# - : float * float * float = (80., 80.6220000000030268, 120.)
*)
(* Return the sum of the squares of v[i0,i1[ *)
let rec sumsq v i0 i1 =
if i0 >= i1 then 0.0
else if i1 = i0 + 1 then Pervasives.float v.(i0) *. Pervasives.float v.(i0)
else sumsq v i0 ((i0+i1)/2) +. sumsq v ((i0+i1)/2) i1
;;
let chisquare g n r =
if n <= 10 * r then invalid_arg "chisquare";
let f = Array.make r 0 in
for i = 1 to n do
let t = g r in
f.(t) <- f.(t) + 1
done;
let t = sumsq f 0 r
and r = Pervasives.float r
and n = Pervasives.float n in
let sr = 2.0 *. sqrt r in
(r -. sr, (r *. t /. n) -. n, r +. sr)
;;
(* This is to test for linear dependencies between successive random numbers.
*)
let st = ref 0;;
let init_diff r = st := int r;;
let diff r =
let x1 = !st
and x2 = int r
in
st := x2;
if x1 >= x2 then
x1 - x2
else
r + x1 - x2
;;
let st1 = ref 0
and st2 = ref 0
;;
(* This is to test for quadratic dependencies between successive random
numbers.
*)
let init_diff2 r = st1 := int r; st2 := int r;;
let diff2 r =
let x1 = !st1
and x2 = !st2
and x3 = int r
in
st1 := x2;
st2 := x3;
(x3 - x2 - x2 + x1 + 2*r) mod r
;;
********************)