ocaml/otherlibs/systhreads/win32.c

673 lines
20 KiB
C

/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Xavier Leroy and Pascal Cuoq, INRIA Rocquencourt */
/* */
/* Copyright 1995 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the GNU Library General Public License. */
/* */
/***********************************************************************/
/* $Id$ */
/* Thread interface for Win32 threads */
#include <windows.h>
#include <signal.h>
#include "alloc.h"
#include "callback.h"
#include "custom.h"
#include "fail.h"
#include "io.h"
#include "memory.h"
#include "misc.h"
#include "mlvalues.h"
#include "roots.h"
#include "signals.h"
#ifdef NATIVE_CODE
#include "stack.h"
#else
#include "stacks.h"
#endif
#include "sys.h"
/* Initial size of stack when a thread is created (4 Ko) */
#define Thread_stack_size (Stack_size / 4)
/* Max computation time before rescheduling, in milliseconds (50ms) */
#define Thread_timeout 50
/* Signal used for timer preemption (any unused, legal signal number) */
#define SIGTIMER SIGTERM
/* The ML value describing a thread (heap-allocated) */
struct caml_thread_handle {
value final_fun; /* Finalization function */
HANDLE handle; /* Windows handle */
};
struct caml_thread_descr {
value ident; /* Unique integer ID */
value start_closure; /* The closure to start this thread */
struct caml_thread_handle * thread_handle; /* Finalized object with handle */
};
#define Ident(v) (((struct caml_thread_descr *)(v))->ident)
#define Start_closure(v) (((struct caml_thread_descr *)(v))->start_closure)
#define Threadhandle(v) (((struct caml_thread_descr *)(v))->thread_handle)
/* The infos on threads (allocated via malloc()) */
struct caml_thread_struct {
HANDLE wthread; /* The Windows thread handle */
value descr; /* The heap-allocated descriptor */
struct caml_thread_struct * next; /* Double linking of running threads */
struct caml_thread_struct * prev;
#ifdef NATIVE_CODE
char * bottom_of_stack; /* Saved value of caml_bottom_of_stack */
unsigned long last_retaddr; /* Saved value of caml_last_return_address */
value * gc_regs; /* Saved value of caml_gc_regs */
char * exception_pointer; /* Saved value of caml_exception_pointer */
struct caml__roots_block * local_roots; /* Saved value of local_roots */
#else
value * stack_low; /* The execution stack for this thread */
value * stack_high;
value * stack_threshold;
value * sp; /* Saved value of extern_sp for this thread */
value * trapsp; /* Saved value of trapsp for this thread */
struct caml__roots_block * local_roots; /* Saved value of local_roots */
struct longjmp_buffer * external_raise; /* Saved external_raise */
#endif
};
typedef struct caml_thread_struct * caml_thread_t;
/* The descriptor for the currently executing thread (thread-specific) */
static __declspec( thread ) caml_thread_t curr_thread = NULL;
/* The global mutex used to ensure that at most one thread is running
Caml code */
static HANDLE caml_mutex;
/* The thread-specific variable holding last locked I/O channel */
static __declspec( thread ) struct channel * last_channel_locked = NULL;
/* Identifier for next thread creation */
static long thread_next_ident = 0;
/* Forward declarations */
static void caml_wthread_error (char * msg);
/* Hook for scanning the stacks of the other threads */
static void (*prev_scan_roots_hook) (scanning_action);
static void caml_thread_scan_roots(scanning_action action)
{
caml_thread_t th;
th = curr_thread;
do {
(*action)(th->descr, &th->descr);
/* Don't rescan the stack of the current thread, it was done already */
if (th != curr_thread) {
#ifdef NATIVE_CODE
if (th->bottom_of_stack != NULL)
do_local_roots(action, th->bottom_of_stack, th->last_retaddr,
th->gc_regs, th->local_roots);
#else
do_local_roots(action, th->sp, th->stack_high, th->local_roots);
#endif
}
th = th->next;
} while (th != curr_thread);
/* Hook */
if (prev_scan_roots_hook != NULL) (*prev_scan_roots_hook)(action);
}
/* Hooks for enter_blocking_section and leave_blocking_section */
static void (*prev_enter_blocking_section_hook) () = NULL;
static void (*prev_leave_blocking_section_hook) () = NULL;
static void caml_thread_enter_blocking_section(void)
{
if (prev_enter_blocking_section_hook != NULL)
(*prev_enter_blocking_section_hook)();
/* Save the stack-related global variables in the thread descriptor
of the current thread */
#ifdef NATIVE_CODE
curr_thread->bottom_of_stack = caml_bottom_of_stack;
curr_thread->last_retaddr = caml_last_return_address;
curr_thread->gc_regs = caml_gc_regs;
curr_thread->exception_pointer = caml_exception_pointer;
curr_thread->local_roots = local_roots;
#else
curr_thread->stack_low = stack_low;
curr_thread->stack_high = stack_high;
curr_thread->stack_threshold = stack_threshold;
curr_thread->sp = extern_sp;
curr_thread->trapsp = trapsp;
curr_thread->local_roots = local_roots;
curr_thread->external_raise = external_raise;
#endif
/* Release the global mutex */
ReleaseMutex(caml_mutex);
}
static void caml_thread_leave_blocking_section(void)
{
/* Re-acquire the global mutex */
WaitForSingleObject(caml_mutex, INFINITE);
/* Restore the stack-related global variables */
#ifdef NATIVE_CODE
caml_bottom_of_stack= curr_thread->bottom_of_stack;
caml_last_return_address = curr_thread->last_retaddr;
caml_gc_regs = curr_thread->gc_regs;
caml_exception_pointer = curr_thread->exception_pointer;
local_roots = curr_thread->local_roots;
#else
stack_low = curr_thread->stack_low;
stack_high = curr_thread->stack_high;
stack_threshold = curr_thread->stack_threshold;
extern_sp = curr_thread->sp;
trapsp = curr_thread->trapsp;
local_roots = curr_thread->local_roots;
external_raise = curr_thread->external_raise;
#endif
if (prev_leave_blocking_section_hook != NULL)
(*prev_leave_blocking_section_hook)();
}
/* Hooks for I/O locking */
static void caml_io_mutex_free(struct channel * chan)
{
HANDLE mutex = chan->mutex;
if (mutex != NULL) {
CloseHandle(mutex);
}
}
static void caml_io_mutex_lock(struct channel * chan)
{
if (chan->mutex == NULL) {
HANDLE mutex = CreateMutex(NULL, FALSE, NULL);
if (mutex == NULL) caml_wthread_error("Thread.iolock");
chan->mutex = (void *) mutex;
}
enter_blocking_section();
WaitForSingleObject((HANDLE) chan->mutex, INFINITE);
/* Problem: if a signal occurs at this point,
and the signal handler raises an exception, we will not
unlock the mutex. The alternative (doing the setspecific
before locking the mutex is also incorrect, since we could
then unlock a mutex that is unlocked or locked by someone else. */
last_channel_locked = chan;
leave_blocking_section();
}
static void caml_io_mutex_unlock(struct channel * chan)
{
ReleaseMutex((HANDLE) chan->mutex);
last_channel_locked = NULL;
}
static void caml_io_mutex_unlock_exn(void)
{
if (last_channel_locked != NULL) caml_io_mutex_unlock(last_channel_locked);
}
/* The "tick" thread fakes a signal at regular intervals. */
static void * caml_thread_tick(void)
{
while(1) {
Sleep(Thread_timeout);
pending_signal = SIGTIMER;
#ifdef NATIVE_CODE
young_limit = young_end;
#else
something_to_do = 1;
#endif
}
}
static void caml_thread_finalize(value vthread)
{
CloseHandle(((struct caml_thread_handle *)vthread)->handle);
}
/* Initialize the thread machinery */
value caml_thread_initialize(value unit) /* ML */
{
value vthread = Val_unit;
value descr;
HANDLE tick_thread;
unsigned long tick_id;
Begin_root (vthread);
/* Initialize the main mutex and acquire it */
caml_mutex = CreateMutex(NULL, TRUE, NULL);
if (caml_mutex == NULL) caml_wthread_error("Thread.init");
/* Create a finalized value to hold thread handle */
vthread = alloc_final(sizeof(struct caml_thread_handle) / sizeof(value),
caml_thread_finalize, 1, 1000);
((struct caml_thread_handle *)vthread)->handle = NULL;
/* Create a descriptor for the current thread */
descr = alloc_tuple(sizeof(struct caml_thread_descr) / sizeof(value));
Ident(descr) = Val_long(thread_next_ident);
Start_closure(descr) = Val_unit;
Threadhandle(descr) = (struct caml_thread_handle *) vthread;
thread_next_ident++;
/* Create an info block for the current thread */
curr_thread =
(caml_thread_t) stat_alloc(sizeof(struct caml_thread_struct));
DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
GetCurrentProcess(), &(curr_thread->wthread),
0, FALSE, DUPLICATE_SAME_ACCESS);
if (curr_thread->wthread == NULL) caml_wthread_error("Thread.init");
((struct caml_thread_handle *)vthread)->handle = curr_thread->wthread;
curr_thread->descr = descr;
curr_thread->next = curr_thread;
curr_thread->prev = curr_thread;
/* The stack-related fields will be filled in at the next
enter_blocking_section */
/* Set up the hooks */
prev_scan_roots_hook = scan_roots_hook;
scan_roots_hook = caml_thread_scan_roots;
prev_enter_blocking_section_hook = enter_blocking_section_hook;
enter_blocking_section_hook = caml_thread_enter_blocking_section;
prev_leave_blocking_section_hook = leave_blocking_section_hook;
leave_blocking_section_hook = caml_thread_leave_blocking_section;
channel_mutex_free = caml_io_mutex_free;
channel_mutex_lock = caml_io_mutex_lock;
channel_mutex_unlock = caml_io_mutex_unlock;
channel_mutex_unlock_exn = caml_io_mutex_unlock_exn;
/* Fork the tick thread */
#if 0
tick_thread =
CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)&caml_thread_tick,
NULL, 0, &tick_id);
if (tick_thread == NULL) caml_wthread_error("Thread.init");
#endif
tick_thread = (HANDLE) _beginthread(caml_thread_tick, 0, NULL);
if (tick_thread == (HANDLE)(-1)) caml_wthread_error("Thread.init");
CloseHandle(tick_thread);
End_roots();
return Val_unit;
}
/* Create a thread */
static void caml_thread_start(caml_thread_t th)
{
value clos;
/* Initialize the per-thread variables */
curr_thread = th;
last_channel_locked = NULL;
/* Acquire the global mutex and set up the stack variables */
leave_blocking_section();
/* Callback the closure */
clos = Start_closure(th->descr);
Modify(&(Start_closure(th->descr)), Val_unit);
callback_exn(clos, Val_unit);
/* Remove th from the doubly-linked list of threads */
th->next->prev = th->prev;
th->prev->next = th->next;
/* Release the main mutex (forever) */
ReleaseMutex(caml_mutex);
#ifndef NATIVE_CODE
/* Free the memory resources */
stat_free(th->stack_low);
#endif
/* Free the thread descriptor */
stat_free(th);
/* The thread now stops running */
}
value caml_thread_new(value clos) /* ML */
{
caml_thread_t th;
value vthread = Val_unit;
value descr;
unsigned long th_id;
Begin_roots2 (clos, vthread)
/* Create a finalized value to hold thread handle */
vthread = alloc_final(sizeof(struct caml_thread_handle) / sizeof(value),
caml_thread_finalize, 1, 1000);
((struct caml_thread_handle *)vthread)->handle = NULL;
/* Create a descriptor for the new thread */
descr = alloc_tuple(sizeof(struct caml_thread_descr) / sizeof(value));
Ident(descr) = Val_long(thread_next_ident);
Start_closure(descr) = clos;
Threadhandle(descr) = (struct caml_thread_handle *) vthread;
thread_next_ident++;
/* Create an info block for the current thread */
th = (caml_thread_t) stat_alloc(sizeof(struct caml_thread_struct));
th->descr = descr;
#ifdef NATIVE_CODE
th->bottom_of_stack = NULL;
th->exception_pointer = NULL;
th->local_roots = NULL;
#else
/* Allocate the stacks */
th->stack_low = (value *) stat_alloc(Thread_stack_size);
th->stack_high = th->stack_low + Thread_stack_size / sizeof(value);
th->stack_threshold = th->stack_low + Stack_threshold / sizeof(value);
th->sp = th->stack_high;
th->trapsp = th->stack_high;
th->local_roots = NULL;
th->external_raise = NULL;
#endif
/* Add thread info block to the list of threads */
th->next = curr_thread->next;
th->prev = curr_thread;
curr_thread->next->prev = th;
curr_thread->next = th;
/* Fork the new thread */
#if 0
th->wthread =
CreateThread(NULL,0, (LPTHREAD_START_ROUTINE) caml_thread_start,
(void *) th, 0, &th_id);
if (th->wthread == NULL) {
#endif
th->wthread = (HANDLE) _beginthread(caml_thread_start, 0, (void *) th);
if (th->wthread == (HANDLE)(-1)) {
/* Fork failed, remove thread info block from list of threads */
th->next->prev = curr_thread;
curr_thread->next = th->next;
#ifndef NATIVE_CODE
stat_free(th->stack_low);
#endif
stat_free(th);
caml_wthread_error("Thread.create");
}
((struct caml_thread_handle *)vthread)->handle = th->wthread;
End_roots();
return descr;
}
/* Return the current thread */
value caml_thread_self(value unit) /* ML */
{
if (curr_thread == NULL) invalid_argument("Thread.self: not initialized");
return curr_thread->descr;
}
/* Return the identifier of a thread */
value caml_thread_id(value th) /* ML */
{
return Ident(th);
}
/* Allow re-scheduling */
value caml_thread_yield(value unit) /* ML */
{
enter_blocking_section();
Sleep(0);
leave_blocking_section();
return Val_unit;
}
/* Suspend the current thread until another thread terminates */
value caml_thread_join(value th) /* ML */
{
HANDLE h;
Begin_root(th) /* prevent deallocation of handle */
h = Threadhandle(th)->handle;
enter_blocking_section();
WaitForSingleObject(h, INFINITE);
leave_blocking_section();
End_roots();
return Val_unit;
}
/* Mutex operations */
#define Mutex_val(v) (*((HANDLE *) Data_custom_val(v)))
#define Max_mutex_number 1000
static void caml_mutex_finalize(value mut)
{
CloseHandle(Mutex_val(mut));
}
static int caml_mutex_compare(value wrapper1, value wrapper2)
{
HANDLE h1 = Mutex_val(wrapper1);
HANDLE h2 = Mutex_val(wrapper2);
return h1 == h2 ? 0 : h1 < h2 ? -1 : 1;
}
static struct custom_operations caml_mutex_ops = {
"_mutex",
caml_mutex_finalize,
caml_mutex_compare,
custom_hash_default,
custom_serialize_default,
custom_deserialize_default
};
value caml_mutex_new(value unit) /* ML */
{
value mut;
mut = alloc_custom(&caml_mutex_ops, sizeof(HANDLE), 1, Max_mutex_number);
Mutex_val(mut) = CreateMutex(0, FALSE, NULL);
if (Mutex_val(mut) == NULL) caml_wthread_error("Mutex.create");
return mut;
}
value caml_mutex_lock(value mut) /* ML */
{
int retcode;
Begin_root(mut) /* prevent deallocation of mutex */
enter_blocking_section();
retcode = WaitForSingleObject(Mutex_val(mut), INFINITE);
leave_blocking_section();
End_roots();
if (retcode == WAIT_FAILED) caml_wthread_error("Mutex.lock");
return Val_unit;
}
value caml_mutex_unlock(value mut) /* ML */
{
BOOL retcode;
Begin_root(mut) /* prevent deallocation of mutex */
enter_blocking_section();
retcode = ReleaseMutex(Mutex_val(mut));
leave_blocking_section();
End_roots();
if (!retcode) caml_wthread_error("Mutex.unlock");
return Val_unit;
}
value caml_mutex_try_lock(value mut) /* ML */
{
int retcode;
retcode = WaitForSingleObject(Mutex_val(mut), 0);
if (retcode == WAIT_FAILED || retcode == WAIT_ABANDONED)
caml_wthread_error("Mutex.try_lock");
return Val_bool(retcode == WAIT_OBJECT_0);
}
/* Delay */
value caml_thread_delay(value val) /* ML */
{
enter_blocking_section();
Sleep((DWORD)(Double_val(val)*1000)); /* milliseconds */
leave_blocking_section();
return Val_unit;
}
/* Conditions operations */
struct caml_condvar {
unsigned long count; /* Number of waiting threads */
HANDLE sem; /* Semaphore on which threads are waiting */
};
#define Condition_val(v) ((struct caml_condvar *) Data_custom_val(v))
#define Max_condition_number 1000
static void caml_condition_finalize(value cond)
{
CloseHandle(Condition_val(cond)->sem);
}
static int caml_condition_compare(value wrapper1, value wrapper2)
{
HANDLE h1 = Condition_val(wrapper1)->sem;
HANDLE h2 = Condition_val(wrapper2)->sem;
return h1 == h2 ? 0 : h1 < h2 ? -1 : 1;
}
static struct custom_operations caml_condition_ops = {
"_condition",
caml_condition_finalize,
caml_condition_compare,
custom_hash_default,
custom_serialize_default,
custom_deserialize_default
};
value caml_condition_new(value unit) /* ML */
{
value cond;
cond = alloc_custom(&caml_condition_ops, sizeof(struct caml_condvar),
1, Max_condition_number);
Condition_val(cond)->sem = CreateSemaphore(NULL, 0, 0x7FFFFFFF, NULL);
if (Condition_val(cond)->sem == NULL)
caml_wthread_error("Condition.create");
Condition_val(cond)->count = 0;
return cond;
}
value caml_condition_wait(value cond, value mut) /* ML */
{
int retcode;
HANDLE m = Mutex_val(mut);
HANDLE s = Condition_val(cond)->sem;
HANDLE handles[2];
Condition_val(cond)->count ++;
Begin_roots2(cond, mut) /* prevent deallocation of cond and mutex */
enter_blocking_section();
/* Release mutex */
ReleaseMutex(m);
/* Wait for semaphore to be non-null, and decrement it.
Simultaneously, re-acquire mutex. */
handles[0] = s;
handles[1] = m;
retcode = WaitForMultipleObjects(2, handles, TRUE, INFINITE);
leave_blocking_section();
End_roots();
if (retcode == WAIT_FAILED) caml_wthread_error("Condition.wait");
return Val_unit;
}
value caml_condition_signal(value cond) /* ML */
{
HANDLE s = Condition_val(cond)->sem;
if (Condition_val(cond)->count > 0) {
Condition_val(cond)->count --;
Begin_root(cond) /* prevent deallocation of cond */
enter_blocking_section();
/* Increment semaphore by 1, waking up one waiter */
ReleaseSemaphore(s, 1, NULL);
leave_blocking_section();
End_roots();
}
return Val_unit;
}
value caml_condition_broadcast(value cond) /* ML */
{
HANDLE s = Condition_val(cond)->sem;
unsigned long c = Condition_val(cond)->count;
if (c > 0) {
Condition_val(cond)->count = 0;
Begin_root(cond) /* prevent deallocation of cond */
enter_blocking_section();
/* Increment semaphore by c, waking up all waiters */
ReleaseSemaphore(s, c, NULL);
leave_blocking_section();
End_roots();
}
return Val_unit;
}
/* Synchronous signal wait */
static HANDLE wait_signal_event[NSIG];
static int * wait_signal_received[NSIG];
static void caml_wait_signal_handler(int signo)
{
*(wait_signal_received[signo]) = signo;
SetEvent(wait_signal_event[signo]);
}
typedef void (*sighandler_type)(int);
value caml_wait_signal(value sigs)
{
HANDLE event;
int res, s, retcode;
value l;
sighandler_type oldsignals[NSIG];
Begin_root(sigs);
event = CreateEvent(NULL, FALSE, FALSE, NULL);
if (event == NULL)
caml_wthread_error("Thread.wait_signal (CreateEvent)");
res = 0;
for (l = sigs; l != Val_int(0); l = Field(l, 1)) {
s = convert_signal_number(Int_val(Field(l, 0)));
oldsignals[s] = signal(s, caml_wait_signal_handler);
if (oldsignals[s] == SIG_ERR) {
CloseHandle(event);
caml_wthread_error("Thread.wait_signal (signal)");
}
wait_signal_event[s] = event;
wait_signal_received[s] = &res;
}
enter_blocking_section();
retcode = WaitForSingleObject(event, INFINITE);
leave_blocking_section();
for (l = sigs; l != Val_int(0); l = Field(l, 1)) {
s = convert_signal_number(Int_val(Field(l, 0)));
signal(s, oldsignals[s]);
}
CloseHandle(event);
End_roots();
if (retcode == WAIT_FAILED)
caml_wthread_error("Thread.wait_signal (WaitForSingleObject)");
return Val_int(res);
}
/* Error report */
static void caml_wthread_error(char * msg)
{
char errmsg[1024];
sprintf(errmsg, "%s: error code %x\n", msg, GetLastError());
raise_sys_error(copy_string(errmsg));
}