ocaml/stdlib/ephemeron.mli

372 lines
13 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Damien Doligez, projet Para, INRIA Rocquencourt *)
(* *)
(* Copyright 1997 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(** Ephemerons and weak hash tables *)
(** Ephemerons and weak hash tables are useful when one wants to cache
or memorize the computation of a function, as long as the
arguments and the function are used, without creating memory leaks
by continuously keeping old computation results that are not
useful anymore because one argument or the function is freed. An
implementation using {!Hashtbl.t} is not suitable because all
associations would keep the arguments and the result in memory.
Ephemerons can also be used for "adding" a field to an arbitrary
boxed OCaml value: you can attach some information to a value
created by an external library without memory leaks.
Ephemerons hold some keys and one or no data. They are all boxed
OCaml values. The keys of an ephemeron have the same behavior
as weak pointers according to the garbage collector. In fact
OCaml weak pointers are implemented as ephemerons without data.
The keys and data of an ephemeron are said to be full if they
point to a value, or empty if the value has never been set, has
been unset, or was erased by the GC. In the function that accesses
the keys or data these two states are represented by the [option]
type.
The data is considered by the garbage collector alive if all the
full keys are alive and if the ephemeron is alive. When one of the
keys is not considered alive anymore by the GC, the data is
emptied from the ephemeron. The data could be alive for another
reason and in that case the GC will not free it, but the ephemeron
will not hold the data anymore.
The ephemerons complicate the notion of liveness of values, because
it is not anymore an equivalence with the reachability from root
value by usual pointers (not weak and not ephemerons). With ephemerons
the notion of liveness is constructed by the least fixpoint of:
A value is alive if:
- it is a root value
- it is reachable from alive value by usual pointers
- it is the data of an alive ephemeron with all its full keys alive
Notes:
- All the types defined in this module cannot be marshaled
using {!Stdlib.output_value} or the functions of the
{!Marshal} module.
Ephemerons are defined in a language agnostic way in this paper:
B. Hayes, Ephemerons: A New Finalization Mechanism, OOPSLA'97
@since 4.03.0
*)
module type S = sig
(** Propose the same interface as usual hash table. However since
the bindings are weak, even if [mem h k] is true, a subsequent
[find h k] may raise [Not_found] because the garbage collector
can run between the two.
Moreover, the table shouldn't be modified during a call to [iter].
Use [filter_map_inplace] in this case.
*)
include Hashtbl.S
val clean: 'a t -> unit
(** remove all dead bindings. Done automatically during automatic resizing. *)
val stats_alive: 'a t -> Hashtbl.statistics
(** same as {!Hashtbl.SeededS.stats} but only count the alive bindings *)
end
(** The output signature of the functor {!K1.Make} and {!K2.Make}.
These hash tables are weak in the keys. If all the keys of a binding are
alive the binding is kept, but if one of the keys of the binding
is dead then the binding is removed.
*)
module type SeededS = sig
include Hashtbl.SeededS
val clean: 'a t -> unit
(** remove all dead bindings. Done automatically during automatic resizing. *)
val stats_alive: 'a t -> Hashtbl.statistics
(** same as {!Hashtbl.SeededS.stats} but only count the alive bindings *)
end
(** The output signature of the functor {!K1.MakeSeeded} and {!K2.MakeSeeded}.
*)
module K1 : sig
type ('k,'d) t (** an ephemeron with one key *)
val create: unit -> ('k,'d) t
(** [Ephemeron.K1.create ()] creates an ephemeron with one key. The
data and the key are empty *)
val get_key: ('k,'d) t -> 'k option
(** [Ephemeron.K1.get_key eph] returns [None] if the key of [eph] is
empty, [Some x] (where [x] is the key) if it is full. *)
val get_key_copy: ('k,'d) t -> 'k option
(** [Ephemeron.K1.get_key_copy eph] returns [None] if the key of [eph] is
empty, [Some x] (where [x] is a (shallow) copy of the key) if
it is full. This function has the same GC friendliness as {!Weak.get_copy}
If the element is a custom block it is not copied.
*)
val set_key: ('k,'d) t -> 'k -> unit
(** [Ephemeron.K1.set_key eph el] sets the key of [eph] to be a
(full) key to [el]
*)
val unset_key: ('k,'d) t -> unit
(** [Ephemeron.K1.unset_key eph el] sets the key of [eph] to be an
empty key. Since there is only one key, the ephemeron starts
behaving like a reference on the data. *)
val check_key: ('k,'d) t -> bool
(** [Ephemeron.K1.check_key eph] returns [true] if the key of the [eph]
is full, [false] if it is empty. Note that even if
[Ephemeron.K1.check_key eph] returns [true], a subsequent
{!Ephemeron.K1.get_key}[eph] can return [None].
*)
val blit_key : ('k,_) t -> ('k,_) t -> unit
(** [Ephemeron.K1.blit_key eph1 eph2] sets the key of [eph2] with
the key of [eph1]. Contrary to using {!Ephemeron.K1.get_key}
followed by {!Ephemeron.K1.set_key} or {!Ephemeron.K1.unset_key}
this function does not prevent the incremental GC from erasing
the value in its current cycle. *)
val get_data: ('k,'d) t -> 'd option
(** [Ephemeron.K1.get_data eph] returns [None] if the data of [eph] is
empty, [Some x] (where [x] is the data) if it is full. *)
val get_data_copy: ('k,'d) t -> 'd option
(** [Ephemeron.K1.get_data_copy eph] returns [None] if the data of [eph] is
empty, [Some x] (where [x] is a (shallow) copy of the data) if
it is full. This function has the same GC friendliness as {!Weak.get_copy}
If the element is a custom block it is not copied.
*)
val set_data: ('k,'d) t -> 'd -> unit
(** [Ephemeron.K1.set_data eph el] sets the data of [eph] to be a
(full) data to [el]
*)
val unset_data: ('k,'d) t -> unit
(** [Ephemeron.K1.unset_data eph el] sets the key of [eph] to be an
empty key. The ephemeron starts behaving like a weak pointer.
*)
val check_data: ('k,'d) t -> bool
(** [Ephemeron.K1.check_data eph] returns [true] if the data of the [eph]
is full, [false] if it is empty. Note that even if
[Ephemeron.K1.check_data eph] returns [true], a subsequent
{!Ephemeron.K1.get_data}[eph] can return [None].
*)
val blit_data : (_,'d) t -> (_,'d) t -> unit
(** [Ephemeron.K1.blit_data eph1 eph2] sets the data of [eph2] with
the data of [eph1]. Contrary to using {!Ephemeron.K1.get_data}
followed by {!Ephemeron.K1.set_data} or {!Ephemeron.K1.unset_data}
this function does not prevent the incremental GC from erasing
the value in its current cycle. *)
module Make (H:Hashtbl.HashedType) : S with type key = H.t
(** Functor building an implementation of a weak hash table *)
module MakeSeeded (H:Hashtbl.SeededHashedType) : SeededS with type key = H.t
(** Functor building an implementation of a weak hash table.
The seed is similar to the one of {!Hashtbl.MakeSeeded}. *)
end
module K2 : sig
type ('k1,'k2,'d) t (** an ephemeron with two keys *)
val create: unit -> ('k1,'k2,'d) t
(** Same as {!Ephemeron.K1.create} *)
val get_key1: ('k1,'k2,'d) t -> 'k1 option
(** Same as {!Ephemeron.K1.get_key} *)
val get_key1_copy: ('k1,'k2,'d) t -> 'k1 option
(** Same as {!Ephemeron.K1.get_key_copy} *)
val set_key1: ('k1,'k2,'d) t -> 'k1 -> unit
(** Same as {!Ephemeron.K1.set_key} *)
val unset_key1: ('k1,'k2,'d) t -> unit
(** Same as {!Ephemeron.K1.unset_key} *)
val check_key1: ('k1,'k2,'d) t -> bool
(** Same as {!Ephemeron.K1.check_key} *)
val get_key2: ('k1,'k2,'d) t -> 'k2 option
(** Same as {!Ephemeron.K1.get_key} *)
val get_key2_copy: ('k1,'k2,'d) t -> 'k2 option
(** Same as {!Ephemeron.K1.get_key_copy} *)
val set_key2: ('k1,'k2,'d) t -> 'k2 -> unit
(** Same as {!Ephemeron.K1.set_key} *)
val unset_key2: ('k1,'k2,'d) t -> unit
(** Same as {!Ephemeron.K1.unset_key} *)
val check_key2: ('k1,'k2,'d) t -> bool
(** Same as {!Ephemeron.K1.check_key} *)
val blit_key1: ('k1,_,_) t -> ('k1,_,_) t -> unit
(** Same as {!Ephemeron.K1.blit_key} *)
val blit_key2: (_,'k2,_) t -> (_,'k2,_) t -> unit
(** Same as {!Ephemeron.K1.blit_key} *)
val blit_key12: ('k1,'k2,_) t -> ('k1,'k2,_) t -> unit
(** Same as {!Ephemeron.K1.blit_key} *)
val get_data: ('k1,'k2,'d) t -> 'd option
(** Same as {!Ephemeron.K1.get_data} *)
val get_data_copy: ('k1,'k2,'d) t -> 'd option
(** Same as {!Ephemeron.K1.get_data_copy} *)
val set_data: ('k1,'k2,'d) t -> 'd -> unit
(** Same as {!Ephemeron.K1.set_data} *)
val unset_data: ('k1,'k2,'d) t -> unit
(** Same as {!Ephemeron.K1.unset_data} *)
val check_data: ('k1,'k2,'d) t -> bool
(** Same as {!Ephemeron.K1.check_data} *)
val blit_data: ('k1,'k2,'d) t -> ('k1,'k2,'d) t -> unit
(** Same as {!Ephemeron.K1.blit_data} *)
module Make
(H1:Hashtbl.HashedType)
(H2:Hashtbl.HashedType) :
S with type key = H1.t * H2.t
(** Functor building an implementation of a weak hash table *)
module MakeSeeded
(H1:Hashtbl.SeededHashedType)
(H2:Hashtbl.SeededHashedType) :
SeededS with type key = H1.t * H2.t
(** Functor building an implementation of a weak hash table.
The seed is similar to the one of {!Hashtbl.MakeSeeded}. *)
end
module Kn : sig
type ('k,'d) t (** an ephemeron with an arbitrary number of keys
of the same type *)
val create: int -> ('k,'d) t
(** Same as {!Ephemeron.K1.create} *)
val get_key: ('k,'d) t -> int -> 'k option
(** Same as {!Ephemeron.K1.get_key} *)
val get_key_copy: ('k,'d) t -> int -> 'k option
(** Same as {!Ephemeron.K1.get_key_copy} *)
val set_key: ('k,'d) t -> int -> 'k -> unit
(** Same as {!Ephemeron.K1.set_key} *)
val unset_key: ('k,'d) t -> int -> unit
(** Same as {!Ephemeron.K1.unset_key} *)
val check_key: ('k,'d) t -> int -> bool
(** Same as {!Ephemeron.K1.check_key} *)
val blit_key: ('k,_) t -> int -> ('k,_) t -> int -> int -> unit
(** Same as {!Ephemeron.K1.blit_key} *)
val get_data: ('k,'d) t -> 'd option
(** Same as {!Ephemeron.K1.get_data} *)
val get_data_copy: ('k,'d) t -> 'd option
(** Same as {!Ephemeron.K1.get_data_copy} *)
val set_data: ('k,'d) t -> 'd -> unit
(** Same as {!Ephemeron.K1.set_data} *)
val unset_data: ('k,'d) t -> unit
(** Same as {!Ephemeron.K1.unset_data} *)
val check_data: ('k,'d) t -> bool
(** Same as {!Ephemeron.K1.check_data} *)
val blit_data: ('k,'d) t -> ('k,'d) t -> unit
(** Same as {!Ephemeron.K1.blit_data} *)
module Make
(H:Hashtbl.HashedType) :
S with type key = H.t array
(** Functor building an implementation of a weak hash table *)
module MakeSeeded
(H:Hashtbl.SeededHashedType) :
SeededS with type key = H.t array
(** Functor building an implementation of a weak hash table.
The seed is similar to the one of {!Hashtbl.MakeSeeded}. *)
end
module GenHashTable: sig
(** Define a hash table on generic containers which have a notion of
"death" and aliveness. If a binding is dead the hash table can
automatically remove it. *)
type equal =
| ETrue | EFalse
| EDead (** the container is dead *)
module MakeSeeded(H:
sig
type t
(** keys *)
type 'a container
(** contains keys and the associated data *)
val hash: int -> t -> int
(** same as {!Hashtbl.SeededHashedType} *)
val equal: 'a container -> t -> equal
(** equality predicate used to compare a key with the one in a
container. Can return [EDead] if the keys in the container are
dead *)
val create: t -> 'a -> 'a container
(** [create key data] creates a container from
some initials keys and one data *)
val get_key: 'a container -> t option
(** [get_key cont] returns the keys if they are all alive *)
val get_data: 'a container -> 'a option
(** [get_data cont] returns the data if it is alive *)
val set_key_data: 'a container -> t -> 'a -> unit
(** [set_key_data cont] modifies the key and data *)
val check_key: 'a container -> bool
(** [check_key cont] checks if all the keys contained in the data
are alive *)
end) : SeededS with type key = H.t
(** Functor building an implementation of an hash table that use the container
for keeping the information given *)
end