ocaml/stdlib/int64.mli

135 lines
6.6 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Module [Int64]: 64-bit integers *)
(* This module provides operations on the type [int64] of
signed 64-bit integers. Unlike the built-in [int] type,
the type [int64] is guaranteed to be exactly 64-bit wide on all
platforms. All arithmetic operations over [int64] are taken
modulo $2^{64}$.
The type [int64] is supported on all 64-bit platforms, as well as
on all 32-bit platforms for which the C compiler supports 64-bit
arithmetic. On 32-bit platforms without support for 64-bit arithmetic,
all functions in this module raise an [Invalid_argument] exception.
*)
val zero : int64
val one : int64
val minus_one : int64
(* The 64-bit integers 0, 1, -1. *)
external neg : int64 -> int64 = "%int64_neg"
(* Unary negation. *)
external add : int64 -> int64 -> int64 = "%int64_add"
(* Addition. *)
external sub : int64 -> int64 -> int64 = "%int64_sub"
(* Subtraction. *)
external mul : int64 -> int64 -> int64 = "%int64_mul"
(* Multiplication. *)
external div : int64 -> int64 -> int64 = "%int64_div"
(* Integer division. Raise [Division_by_zero] if the second
argument is zero. *)
external rem : int64 -> int64 -> int64 = "%int64_mod"
(* Integer remainder. If [x >= 0] and [y > 0], the result
of [Int64.rem x y] satisfies the following properties:
[0 <= Int64.rem x y < y] and
[x = Int64.add (Int64.mul (Int64.div x y) y) (Int64.rem x y)].
If [y = 0], [Int64.rem x y] raises [Division_by_zero].
If [x < 0] or [y < 0], the result of [Int64.rem x y] is
not specified and depends on the platform. *)
val succ : int64 -> int64
(* Successor. [Int64.succ x] is [Int64.add x 1i]. *)
val pred : int64 -> int64
(* Predecessor. [Int64.pred x] is [Int64.sub x 1i]. *)
val abs : int64 -> int64
(* Return the absolute value of its argument. *)
val max_int : int64
(* The greatest representable 64-bit integer, $2^{63} - 1$. *)
val min_int : int64
(* The smallest representable 64-bit integer, $-2^{63}$. *)
external logand : int64 -> int64 -> int64 = "%int64_and"
(* Bitwise logical and. *)
external logor : int64 -> int64 -> int64 = "%int64_or"
(* Bitwise logical or. *)
external logxor : int64 -> int64 -> int64 = "%int64_xor"
(* Bitwise logical exclusive or. *)
val lognot : int64 -> int64
(* Bitwise logical negation *)
external shift_left : int64 -> int -> int64 = "%int64_lsl"
(* [Int64.shift_left x y] shifts [x] to the left by [y] bits. *)
external shift_right : int64 -> int -> int64 = "%int64_asr"
(* [Int64.shift_right x y] shifts [x] to the right by [y] bits.
This is an arithmetic shift: the sign bit of [x] is replicated
and inserted in the vacated bits. *)
external shift_right_logical : int64 -> int -> int64 = "%int64_lsr"
(* [Int64.shift_right_logical x y] shifts [x] to the right by [y] bits.
This is a logical shift: zeroes are inserted in the vacated bits
regardless of the sign of [x]. *)
external of_int : int -> int64 = "%int64_of_int"
(* Convert the given integer (type [int]) to a 64-bit integer
(type [int64]). *)
external to_int : int64 -> int = "%int64_to_int"
(* Convert the given 64-bit integer (type [int64]) to an
integer (type [int]). On 64-bit platforms, the 64-bit integer
is taken modulo $2^{63}$, i.e. the high-order bit is lost
during the conversion. On 32-bit platforms, the 64-bit integer
is taken modulo $2^{31}$, i.e. the top 33 bits are lost
during the conversion. *)
external of_float : float -> int64 = "int64_of_float"
(* Convert the given floating-point number to a 64-bit integer,
discarding the fractional part (truncate towards 0).
The result of the conversion is undefined if, after truncation,
the number is outside the range [Int64.min_int, Int64.max_int]. *)
external to_float : int64 -> float = "int64_to_float"
(* Convert the given 64-bit integer to a floating-point number. *)
external of_int32 : int32 -> int64 = "%int64_of_int32"
(* Convert the given 32-bit integer (type [int32])
to a 64-bit integer (type [int64]). *)
external to_int32 : int64 -> int32 = "%int64_to_int32"
(* Convert the given 64-bit integer (type [int64]) to a
32-bit integer (type [int32]). The 64-bit integer
is taken modulo $2^{32}$, i.e. the top 32 bits are lost
during the conversion. *)
external of_nativeint : nativeint -> int64 = "%int64_of_nativeint"
(* Convert the given native integer (type [nativeint])
to a 64-bit integer (type [int64]). *)
external to_nativeint : int64 -> nativeint = "%int64_to_nativeint"
(* Convert the given 64-bit integer (type [int64]) to a
native integer. On 32-bit platforms, the 64-bit integer
is taken modulo $2^{32}$. On 64-bit platforms,
the conversion is exact. *)
external of_string : string -> int64 = "int64_of_string"
(* Convert the given string to a 64-bit integer.
The string is read in decimal (by default) or in hexadecimal,
octal or binary if the string begins with [0x], [0o] or [0b]
respectively.
Raise [Failure "int_of_string"] if the given string is not
a valid representation of an integer. *)
val to_string : int64 -> string
(* Return the string representation of its argument, in decimal. *)
external format : string -> int64 -> string = "int64_format"
(* [Int64.format fmt n] return the string representation of the
64-bit integer [n] in the format specified by [fmt].
[fmt] is a [Printf]-style format containing exactly
one [%d], [%i], [%u], [%x], [%X] or [%o] conversion specification.
See the documentation of the [Printf] module for more information, *)