ocaml/typing/typedecl.ml

1711 lines
59 KiB
OCaml

(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt*)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(**** Typing of type definitions ****)
open Misc
open Asttypes
open Parsetree
open Primitive
open Types
open Typetexp
type error =
Repeated_parameter
| Duplicate_constructor of string
| Too_many_constructors
| Duplicate_label of string
| Recursive_abbrev of string
| Cycle_in_def of string * type_expr
| Definition_mismatch of type_expr * Includecore.type_mismatch list
| Constraint_failed of type_expr * type_expr
| Inconsistent_constraint of Env.t * (type_expr * type_expr) list
| Type_clash of Env.t * (type_expr * type_expr) list
| Parameters_differ of Path.t * type_expr * type_expr
| Null_arity_external
| Missing_native_external
| Unbound_type_var of type_expr * type_declaration
| Not_open_type of Path.t
| Not_extensible_type of Path.t
| Extension_mismatch of Path.t * Includecore.type_mismatch list
| Rebind_wrong_type of Longident.t * Env.t * (type_expr * type_expr) list
| Rebind_mismatch of Longident.t * Path.t * Path.t
| Rebind_private of Longident.t
| Bad_variance of int * (bool * bool * bool) * (bool * bool * bool)
| Unavailable_type_constructor of Path.t
| Bad_fixed_type of string
| Unbound_type_var_ext of type_expr * extension_constructor
| Varying_anonymous
open Typedtree
exception Error of Location.t * error
(* Enter all declared types in the environment as abstract types *)
let enter_type env sdecl id =
let decl =
{ type_params =
List.map (fun _ -> Btype.newgenvar ()) sdecl.ptype_params;
type_arity = List.length sdecl.ptype_params;
type_kind = Type_abstract;
type_private = sdecl.ptype_private;
type_manifest =
begin match sdecl.ptype_manifest with None -> None
| Some _ -> Some(Ctype.newvar ()) end;
type_variance = List.map (fun _ -> Variance.full) sdecl.ptype_params;
type_newtype_level = None;
type_loc = sdecl.ptype_loc;
type_attributes = sdecl.ptype_attributes;
}
in
Env.add_type ~check:true id decl env
let update_type temp_env env id loc =
let path = Path.Pident id in
let decl = Env.find_type path temp_env in
match decl.type_manifest with None -> ()
| Some ty ->
let params = List.map (fun _ -> Ctype.newvar ()) decl.type_params in
try Ctype.unify env (Ctype.newconstr path params) ty
with Ctype.Unify trace ->
raise (Error(loc, Type_clash (env, trace)))
(* Determine if a type is (an abbreviation for) the type "float" *)
(* We use the Ctype.expand_head_opt version of expand_head to get access
to the manifest type of private abbreviations. *)
let is_float env ty =
match Ctype.repr (Ctype.expand_head_opt env ty) with
{desc = Tconstr(p, _, _)} -> Path.same p Predef.path_float
| _ -> false
(* Determine if a type definition defines a fixed type. (PW) *)
let is_fixed_type sd =
let rec has_row_var sty =
match sty.ptyp_desc with
Ptyp_alias (sty, _) -> has_row_var sty
| Ptyp_class _
| Ptyp_object (_, Open)
| Ptyp_variant (_, Open, _)
| Ptyp_variant (_, Closed, Some _) -> true
| _ -> false
in
match sd.ptype_manifest with
None -> false
| Some sty ->
sd.ptype_kind = Ptype_abstract &&
sd.ptype_private = Private &&
has_row_var sty
(* Set the row variable in a fixed type *)
let set_fixed_row env loc p decl =
let tm =
match decl.type_manifest with
None -> assert false
| Some t -> Ctype.expand_head env t
in
let rv =
match tm.desc with
Tvariant row ->
let row = Btype.row_repr row in
tm.desc <- Tvariant {row with row_fixed = true};
if Btype.static_row row then Btype.newgenty Tnil
else row.row_more
| Tobject (ty, _) ->
snd (Ctype.flatten_fields ty)
| _ ->
raise (Error (loc, Bad_fixed_type "is not an object or variant"))
in
if not (Btype.is_Tvar rv) then
raise (Error (loc, Bad_fixed_type "has no row variable"));
rv.desc <- Tconstr (p, decl.type_params, ref Mnil)
(* Translate one type declaration *)
module StringSet =
Set.Make(struct
type t = string
let compare (x:t) y = compare x y
end)
let make_params env params =
let make_param (sty, v) =
try
(transl_type_param env sty, v)
with Already_bound ->
raise(Error(sty.ptyp_loc, Repeated_parameter))
in
List.map make_param params
let transl_labels loc env closed lbls =
if lbls = [] then
Syntaxerr.ill_formed_ast loc "Records cannot be empty.";
let all_labels = ref StringSet.empty in
List.iter
(fun {pld_name = {txt=name; loc}} ->
if StringSet.mem name !all_labels then
raise(Error(loc, Duplicate_label name));
all_labels := StringSet.add name !all_labels)
lbls;
let mk {pld_name=name;pld_mutable=mut;pld_type=arg;pld_loc=loc;pld_attributes=attrs} =
let arg = Ast_helper.Typ.force_poly arg in
let cty = transl_simple_type env closed arg in
{ld_id = Ident.create name.txt; ld_name = name; ld_mutable = mut; ld_type = cty;
ld_loc = loc; ld_attributes = attrs}
in
let lbls = List.map mk lbls in
let lbls' =
List.map
(fun ld ->
let ty = ld.ld_type.ctyp_type in
let ty = match ty.desc with Tpoly(t,[]) -> t | _ -> ty in
{Types.ld_id = ld.ld_id;
ld_mutable = ld.ld_mutable;
ld_type = ty;
ld_loc = ld.ld_loc;
ld_attributes = ld.ld_attributes
}
)
lbls in
lbls, lbls'
let transl_constructor_arguments loc env closed = function
| Pcstr_tuple l ->
let l = List.map (transl_simple_type env closed) l in
Types.Cstr_tuple (List.map (fun t -> t.ctyp_type) l),
Cstr_tuple l
| Pcstr_record l ->
let lbls, lbls' = transl_labels loc env closed l in
Types.Cstr_record lbls',
Cstr_record lbls
let make_constructor loc env type_path type_params sargs sret_type =
match sret_type with
| None ->
let args, targs =
transl_constructor_arguments loc env true sargs
in
targs, None, args, None
| Some sret_type ->
(* if it's a generalized constructor we must first narrow and
then widen so as to not introduce any new constraints *)
let z = narrow () in
reset_type_variables ();
let args, targs =
transl_constructor_arguments loc env false sargs
in
let tret_type = transl_simple_type env false sret_type in
let ret_type = tret_type.ctyp_type in
begin
match (Ctype.repr ret_type).desc with
Tconstr (p', _, _) when Path.same type_path p' -> ()
| _ ->
raise (Error (sret_type.ptyp_loc, Constraint_failed
(ret_type, Ctype.newconstr type_path type_params)))
end;
widen z;
targs, Some tret_type, args, Some ret_type
let transl_declaration env sdecl id =
(* Bind type parameters *)
reset_type_variables();
Ctype.begin_def ();
let tparams = make_params env sdecl.ptype_params in
let params = List.map (fun (cty, _) -> cty.ctyp_type) tparams in
let cstrs = List.map
(fun (sty, sty', loc) ->
transl_simple_type env false sty,
transl_simple_type env false sty', loc)
sdecl.ptype_cstrs
in
let (tkind, kind) =
match sdecl.ptype_kind with
Ptype_abstract -> Ttype_abstract, Type_abstract
| Ptype_variant scstrs ->
if scstrs = [] then
Syntaxerr.ill_formed_ast sdecl.ptype_loc
"Variant types cannot be empty.";
let all_constrs = ref StringSet.empty in
List.iter
(fun {pcd_name = {txt = name}} ->
if StringSet.mem name !all_constrs then
raise(Error(sdecl.ptype_loc, Duplicate_constructor name));
all_constrs := StringSet.add name !all_constrs)
scstrs;
if List.length
(List.filter (fun cd -> cd.pcd_args <> Pcstr_tuple []) scstrs)
> (Config.max_tag + 1) then
raise(Error(sdecl.ptype_loc, Too_many_constructors));
let make_cstr scstr =
let name = Ident.create scstr.pcd_name.txt in
let targs, tret_type, args, ret_type =
make_constructor scstr.pcd_loc env (Path.Pident id) params
scstr.pcd_args scstr.pcd_res
in
let tcstr =
{ cd_id = name;
cd_name = scstr.pcd_name;
cd_args = targs;
cd_res = tret_type;
cd_loc = scstr.pcd_loc;
cd_attributes = scstr.pcd_attributes }
in
let cstr =
{ Types.cd_id = name;
cd_args = args;
cd_res = ret_type;
cd_loc = scstr.pcd_loc;
cd_attributes = scstr.pcd_attributes }
in
tcstr, cstr
in
let tcstrs, cstrs = List.split (List.map make_cstr scstrs) in
Ttype_variant tcstrs, Type_variant cstrs
| Ptype_record lbls ->
let lbls, lbls' = transl_labels sdecl.ptype_loc env true lbls in
let rep =
if List.for_all (fun l -> is_float env l.Types.ld_type) lbls'
then Record_float
else Record_regular
in
Ttype_record lbls, Type_record(lbls', rep)
| Ptype_open -> Ttype_open, Type_open
in
let (tman, man) = match sdecl.ptype_manifest with
None -> None, None
| Some sty ->
let no_row = not (is_fixed_type sdecl) in
let cty = transl_simple_type env no_row sty in
Some cty, Some cty.ctyp_type
in
let decl =
{ type_params = params;
type_arity = List.length params;
type_kind = kind;
type_private = sdecl.ptype_private;
type_manifest = man;
type_variance = List.map (fun _ -> Variance.full) params;
type_newtype_level = None;
type_loc = sdecl.ptype_loc;
type_attributes = sdecl.ptype_attributes;
} in
(* Check constraints *)
List.iter
(fun (cty, cty', loc) ->
let ty = cty.ctyp_type in
let ty' = cty'.ctyp_type in
try Ctype.unify env ty ty' with Ctype.Unify tr ->
raise(Error(loc, Inconsistent_constraint (env, tr))))
cstrs;
Ctype.end_def ();
(* Add abstract row *)
if is_fixed_type sdecl then begin
let (p, _) =
try Env.lookup_type (Longident.Lident(Ident.name id ^ "#row")) env
with Not_found -> assert false in
set_fixed_row env sdecl.ptype_loc p decl
end;
(* Check for cyclic abbreviations *)
begin match decl.type_manifest with None -> ()
| Some ty ->
if Ctype.cyclic_abbrev env id ty then
raise(Error(sdecl.ptype_loc, Recursive_abbrev sdecl.ptype_name.txt));
end;
{
typ_id = id;
typ_name = sdecl.ptype_name;
typ_params = tparams;
typ_type = decl;
typ_cstrs = cstrs;
typ_loc = sdecl.ptype_loc;
typ_manifest = tman;
typ_kind = tkind;
typ_private = sdecl.ptype_private;
typ_attributes = sdecl.ptype_attributes;
}
(* Generalize a type declaration *)
let generalize_decl decl =
List.iter Ctype.generalize decl.type_params;
Btype.iter_type_expr_kind Ctype.generalize decl.type_kind;
begin match decl.type_manifest with
| None -> ()
| Some ty -> Ctype.generalize ty
end
(* Check that all constraints are enforced *)
module TypeSet = Btype.TypeSet
module TypeMap = Btype.TypeMap
let rec check_constraints_rec env loc visited ty =
let ty = Ctype.repr ty in
if TypeSet.mem ty !visited then () else begin
visited := TypeSet.add ty !visited;
match ty.desc with
| Tconstr (path, args, _) ->
let args' = List.map (fun _ -> Ctype.newvar ()) args in
let ty' = Ctype.newconstr path args' in
begin try Ctype.enforce_constraints env ty'
with Ctype.Unify _ -> assert false
| Not_found -> raise (Error(loc, Unavailable_type_constructor path))
end;
if not (Ctype.matches env ty ty') then
raise (Error(loc, Constraint_failed (ty, ty')));
List.iter (check_constraints_rec env loc visited) args
| Tpoly (ty, tl) ->
let _, ty = Ctype.instance_poly false tl ty in
check_constraints_rec env loc visited ty
| _ ->
Btype.iter_type_expr (check_constraints_rec env loc visited) ty
end
module SMap = Map.Make(String)
let check_constraints_labels env visited l pl =
let rec get_loc name = function
[] -> assert false
| pld :: tl ->
if name = pld.pld_name.txt then pld.pld_type.ptyp_loc
else get_loc name tl
in
List.iter
(fun {Types.ld_id=name; ld_type=ty} ->
check_constraints_rec env (get_loc (Ident.name name) pl) visited ty)
l
let check_constraints env sdecl (_, decl) =
let visited = ref TypeSet.empty in
begin match decl.type_kind with
| Type_abstract -> ()
| Type_variant l ->
let find_pl = function
Ptype_variant pl -> pl
| Ptype_record _ | Ptype_abstract | Ptype_open -> assert false
in
let pl = find_pl sdecl.ptype_kind in
let pl_index =
let foldf acc x =
SMap.add x.pcd_name.txt x acc
in
List.fold_left foldf SMap.empty pl
in
List.iter
(fun {Types.cd_id=name; cd_args; cd_res} ->
let {pcd_args; pcd_res; _} =
try SMap.find (Ident.name name) pl_index
with Not_found -> assert false in
begin match cd_args, pcd_args with
| Cstr_tuple tyl, Pcstr_tuple styl ->
List.iter2
(fun sty ty ->
check_constraints_rec env sty.ptyp_loc visited ty)
styl tyl
| Cstr_record tyl, Pcstr_record styl ->
check_constraints_labels env visited tyl styl
| _ -> assert false
end;
match pcd_res, cd_res with
| Some sr, Some r ->
check_constraints_rec env sr.ptyp_loc visited r
| _ ->
() )
l
| Type_record (l, _) ->
let find_pl = function
Ptype_record pl -> pl
| Ptype_variant _ | Ptype_abstract | Ptype_open -> assert false
in
let pl = find_pl sdecl.ptype_kind in
check_constraints_labels env visited l pl
| Type_open -> ()
end;
begin match decl.type_manifest with
| None -> ()
| Some ty ->
let sty =
match sdecl.ptype_manifest with Some sty -> sty | _ -> assert false
in
check_constraints_rec env sty.ptyp_loc visited ty
end
(*
If both a variant/record definition and a type equation are given,
need to check that the equation refers to a type of the same kind
with the same constructors and labels.
*)
let check_coherence env loc id decl =
match decl with
{ type_kind = (Type_variant _ | Type_record _| Type_open);
type_manifest = Some ty } ->
begin match (Ctype.repr ty).desc with
Tconstr(path, args, _) ->
begin try
let decl' = Env.find_type path env in
let err =
if List.length args <> List.length decl.type_params
then [Includecore.Arity]
else if not (Ctype.equal env false args decl.type_params)
then [Includecore.Constraint]
else
Includecore.type_declarations ~equality:true env
(Path.last path)
decl'
id
(Subst.type_declaration
(Subst.add_type id path Subst.identity) decl)
in
if err <> [] then
raise(Error(loc, Definition_mismatch (ty, err)))
with Not_found ->
raise(Error(loc, Unavailable_type_constructor path))
end
| _ -> raise(Error(loc, Definition_mismatch (ty, [])))
end
| _ -> ()
let check_abbrev env sdecl (id, decl) =
check_coherence env sdecl.ptype_loc id decl
(* Check that recursion is well-founded *)
let check_well_founded env loc path to_check ty =
let visited = ref TypeMap.empty in
let rec check ty0 exp_nodes ty =
let ty = Btype.repr ty in
if TypeSet.mem ty exp_nodes then begin
(*Format.eprintf "@[%a@]@." Printtyp.raw_type_expr ty;*)
if match ty0.desc with
| Tconstr (p, _, _) -> Path.same p path
| _ -> false
then raise (Error (loc, Recursive_abbrev (Path.name path)))
else raise (Error (loc, Cycle_in_def (Path.name path, ty0)))
end;
let (fini, exp_nodes) =
try
let prev = TypeMap.find ty !visited in
if TypeSet.subset exp_nodes prev then (true, exp_nodes) else
(false, TypeSet.union exp_nodes prev)
with Not_found ->
(false, exp_nodes)
in
let snap = Btype.snapshot () in
if fini then () else try
visited := TypeMap.add ty exp_nodes !visited;
match ty.desc with
| Tconstr(p, args, _)
when not (TypeSet.is_empty exp_nodes) || to_check p ->
let ty' = Ctype.try_expand_once_opt env ty in
let ty0 = if TypeSet.is_empty exp_nodes then ty else ty0 in
check ty0 (TypeSet.add ty exp_nodes) ty'
| _ -> raise Ctype.Cannot_expand
with
| Ctype.Cannot_expand ->
let nodes =
if !Clflags.recursive_types && Ctype.is_contractive env ty
|| match ty.desc with Tobject _ | Tvariant _ -> true | _ -> false
then TypeSet.empty
else exp_nodes in
Btype.iter_type_expr (check ty0 nodes) ty
| Ctype.Unify _ ->
(* Will be detected by check_recursion *)
Btype.backtrack snap
in
check ty TypeSet.empty ty
let check_well_founded_manifest env loc path decl =
if decl.type_manifest = None then () else
let args = List.map (fun _ -> Ctype.newvar()) decl.type_params in
check_well_founded env loc path (Path.same path) (Ctype.newconstr path args)
let check_well_founded_decl env loc path decl to_check =
let open Btype in
let it =
{type_iterators with
it_type_expr = (fun _ -> check_well_founded env loc path to_check)} in
it.it_type_declaration it (Ctype.instance_declaration decl)
(* Check for ill-defined abbrevs *)
let check_recursion env loc path decl to_check =
(* to_check is true for potentially mutually recursive paths.
(path, decl) is the type declaration to be checked. *)
if decl.type_params = [] then () else
let visited = ref [] in
let rec check_regular cpath args prev_exp ty =
let ty = Ctype.repr ty in
if not (List.memq ty !visited) then begin
visited := ty :: !visited;
match ty.desc with
| Tconstr(path', args', _) ->
if Path.same path path' then begin
if not (Ctype.equal env false args args') then
raise (Error(loc,
Parameters_differ(cpath, ty, Ctype.newconstr path args)))
end
(* Attempt to expand a type abbreviation if:
1- [to_check path'] holds
(otherwise the expansion cannot involve [path]);
2- we haven't expanded this type constructor before
(otherwise we could loop if [path'] is itself
a non-regular abbreviation). *)
else if to_check path' && not (List.mem path' prev_exp) then begin
try
(* Attempt expansion *)
let (params0, body0, _) = Env.find_type_expansion path' env in
let (params, body) =
Ctype.instance_parameterized_type params0 body0 in
begin
try List.iter2 (Ctype.unify env) params args'
with Ctype.Unify _ ->
raise (Error(loc, Constraint_failed
(ty, Ctype.newconstr path' params0)));
end;
check_regular path' args (path' :: prev_exp) body
with Not_found -> ()
end;
List.iter (check_regular cpath args prev_exp) args'
| Tpoly (ty, tl) ->
let (_, ty) = Ctype.instance_poly ~keep_names:true false tl ty in
check_regular cpath args prev_exp ty
| _ ->
Btype.iter_type_expr (check_regular cpath args prev_exp) ty
end in
Misc.may
(fun body ->
let (args, body) =
Ctype.instance_parameterized_type
~keep_names:true decl.type_params body in
check_regular path args [] body)
decl.type_manifest
let check_abbrev_recursion env id_loc_list to_check tdecl =
let decl = tdecl.typ_type in
let id = tdecl.typ_id in
check_recursion env (List.assoc id id_loc_list) (Path.Pident id) decl to_check
(* Compute variance *)
let get_variance ty visited =
try TypeMap.find ty !visited with Not_found -> Variance.null
let compute_variance env visited vari ty =
let rec compute_variance_rec vari ty =
(* Format.eprintf "%a: %x@." Printtyp.type_expr ty (Obj.magic vari); *)
let ty = Ctype.repr ty in
let vari' = get_variance ty visited in
if Variance.subset vari vari' then () else
let vari = Variance.union vari vari' in
visited := TypeMap.add ty vari !visited;
let compute_same = compute_variance_rec vari in
match ty.desc with
Tarrow (_, ty1, ty2, _) ->
let open Variance in
let v = conjugate vari in
let v1 =
if mem May_pos v || mem May_neg v
then set May_weak true v else v
in
compute_variance_rec v1 ty1;
compute_same ty2
| Ttuple tl ->
List.iter compute_same tl
| Tconstr (path, tl, _) ->
let open Variance in
if tl = [] then () else begin
try
let decl = Env.find_type path env in
let cvari f = mem f vari in
List.iter2
(fun ty v ->
let cv f = mem f v in
let strict =
cvari Inv && cv Inj || (cvari Pos || cvari Neg) && cv Inv
in
if strict then compute_variance_rec full ty else
let p1 = inter v vari
and n1 = inter v (conjugate vari) in
let v1 =
union (inter covariant (union p1 (conjugate p1)))
(inter (conjugate covariant) (union n1 (conjugate n1)))
and weak =
cvari May_weak && (cv May_pos || cv May_neg) ||
(cvari May_pos || cvari May_neg) && cv May_weak
in
let v2 = set May_weak weak v1 in
compute_variance_rec v2 ty)
tl decl.type_variance
with Not_found ->
List.iter (compute_variance_rec may_inv) tl
end
| Tobject (ty, _) ->
compute_same ty
| Tfield (_, _, ty1, ty2) ->
compute_same ty1;
compute_same ty2
| Tsubst ty ->
compute_same ty
| Tvariant row ->
let row = Btype.row_repr row in
List.iter
(fun (_,f) ->
match Btype.row_field_repr f with
Rpresent (Some ty) ->
compute_same ty
| Reither (_, tyl, _, _) ->
let open Variance in
let upper =
List.fold_left (fun s f -> set f true s)
null [May_pos; May_neg; May_weak]
in
let v = inter vari upper in
List.iter (compute_variance_rec v) tyl
| _ -> ())
row.row_fields;
compute_same row.row_more
| Tpoly (ty, _) ->
compute_same ty
| Tvar _ | Tnil | Tlink _ | Tunivar _ -> ()
| Tpackage (_, _, tyl) ->
let v =
Variance.(if mem Pos vari || mem Neg vari then full else may_inv)
in
List.iter (compute_variance_rec v) tyl
in
compute_variance_rec vari ty
let make p n i =
let open Variance in
set May_pos p (set May_neg n (set May_weak n (set Inj i null)))
let compute_variance_type env check (required, loc) decl tyl =
(* Requirements *)
let required =
List.map (fun (c,n,i) -> if c || n then (c,n,i) else (true,true,i))
required
in
(* Prepare *)
let params = List.map Btype.repr decl.type_params in
let tvl = ref TypeMap.empty in
(* Compute occurences in body *)
let open Variance in
List.iter
(fun (cn,ty) ->
compute_variance env tvl (if cn then full else covariant) ty)
tyl;
if check then begin
(* Check variance of parameters *)
let pos = ref 0 in
List.iter2
(fun ty (c, n, i) ->
incr pos;
let var = get_variance ty tvl in
let (co,cn) = get_upper var and ij = mem Inj var in
if Btype.is_Tvar ty && (co && not c || cn && not n || not ij && i)
then raise (Error(loc, Bad_variance (!pos, (co,cn,ij), (c,n,i)))))
params required;
(* Check propagation from constrained parameters *)
let args = Btype.newgenty (Ttuple params) in
let fvl = Ctype.free_variables args in
let fvl = List.filter (fun v -> not (List.memq v params)) fvl in
(* If there are no extra variables there is nothing to do *)
if fvl = [] then () else
let tvl2 = ref TypeMap.empty in
List.iter2
(fun ty (p,n,i) ->
if Btype.is_Tvar ty then () else
let v =
if p then if n then full else covariant else conjugate covariant in
compute_variance env tvl2 v ty)
params required;
let visited = ref TypeSet.empty in
let rec check ty =
let ty = Ctype.repr ty in
if TypeSet.mem ty !visited then () else
let visited' = TypeSet.add ty !visited in
visited := visited';
let v1 = get_variance ty tvl in
let snap = Btype.snapshot () in
let v2 =
TypeMap.fold
(fun t vt v ->
if Ctype.equal env false [ty] [t] then union vt v else v)
!tvl2 null in
Btype.backtrack snap;
let (c1,n1) = get_upper v1 and (c2,n2,_,i2) = get_lower v2 in
if c1 && not c2 || n1 && not n2 then
if List.memq ty fvl then
let code = if not i2 then -2 else if c2 || n2 then -1 else -3 in
raise (Error (loc, Bad_variance (code, (c1,n1,false), (c2,n2,false))))
else
Btype.iter_type_expr check ty
in
List.iter (fun (_,ty) -> check ty) tyl;
end;
List.map2
(fun ty (p, n, i) ->
let v = get_variance ty tvl in
let tr = decl.type_private in
(* Use required variance where relevant *)
let concr = decl.type_kind <> Type_abstract (*|| tr = Type_new*) in
let (p, n) =
if tr = Private || not (Btype.is_Tvar ty) then (p, n) (* set *)
else (false, false) (* only check *)
and i = concr || i && tr = Private in
let v = union v (make p n i) in
let v =
if not concr then v else
if mem Pos v && mem Neg v then full else
if Btype.is_Tvar ty then v else
union v
(if p then if n then full else covariant else conjugate covariant)
in
if decl.type_kind = Type_abstract && tr = Public then v else
set May_weak (mem May_neg v) v)
params required
let add_false = List.map (fun ty -> false, ty)
(* A parameter is constrained if either is is instantiated,
or it is a variable appearing in another parameter *)
let constrained vars ty =
match ty.desc with
| Tvar _ -> List.exists (fun tl -> List.memq ty tl) vars
| _ -> true
let for_constr = function
| Types.Cstr_tuple l -> add_false l
| Types.Cstr_record l ->
List.map
(fun {Types.ld_mutable; ld_type} -> (ld_mutable = Mutable, ld_type))
l
let compute_variance_gadt env check (required, loc as rloc) decl
(tl, ret_type_opt) =
match ret_type_opt with
| None ->
compute_variance_type env check rloc {decl with type_private = Private}
(for_constr tl)
| Some ret_type ->
match Ctype.repr ret_type with
| {desc=Tconstr (_, tyl, _)} ->
(* let tyl = List.map (Ctype.expand_head env) tyl in *)
let tyl = List.map Ctype.repr tyl in
let fvl = List.map (Ctype.free_variables ?env:None) tyl in
let _ =
List.fold_left2
(fun (fv1,fv2) ty (c,n,i) ->
match fv2 with [] -> assert false
| fv :: fv2 ->
(* fv1 @ fv2 = free_variables of other parameters *)
if (c||n) && constrained (fv1 @ fv2) ty then
raise (Error(loc, Varying_anonymous));
(fv :: fv1, fv2))
([], fvl) tyl required
in
compute_variance_type env check rloc
{decl with type_params = tyl; type_private = Private}
(for_constr tl)
| _ -> assert false
let compute_variance_extension env check decl ext rloc =
compute_variance_gadt env check rloc
{decl with type_params = ext.ext_type_params}
(ext.ext_args, ext.ext_ret_type)
let compute_variance_decl env check decl (required, _ as rloc) =
if (decl.type_kind = Type_abstract || decl.type_kind = Type_open)
&& decl.type_manifest = None then
List.map
(fun (c, n, i) ->
make (not n) (not c) (decl.type_kind <> Type_abstract || i))
required
else
let mn =
match decl.type_manifest with
None -> []
| Some ty -> [false, ty]
in
match decl.type_kind with
Type_abstract | Type_open ->
compute_variance_type env check rloc decl mn
| Type_variant tll ->
if List.for_all (fun c -> c.Types.cd_res = None) tll then
compute_variance_type env check rloc decl
(mn @ List.flatten (List.map (fun c -> for_constr c.Types.cd_args)
tll))
else begin
let mn =
List.map (fun (_,ty) -> (Types.Cstr_tuple [ty],None)) mn in
let tll =
mn @ List.map (fun c -> c.Types.cd_args, c.Types.cd_res) tll in
match List.map (compute_variance_gadt env check rloc decl) tll with
| vari :: rem ->
let varl = List.fold_left (List.map2 Variance.union) vari rem in
List.map
Variance.(fun v -> if mem Pos v && mem Neg v then full else v)
varl
| _ -> assert false
end
| Type_record (ftl, _) ->
compute_variance_type env check rloc decl
(mn @ List.map (fun {Types.ld_mutable; ld_type} ->
(ld_mutable = Mutable, ld_type)) ftl)
let is_sharp id =
let s = Ident.name id in
String.length s > 0 && s.[0] = '#'
let rec compute_variance_fixpoint env decls required variances =
let new_decls =
List.map2
(fun (id, decl) variance -> id, {decl with type_variance = variance})
decls variances
in
let new_env =
List.fold_right
(fun (id, decl) env -> Env.add_type ~check:true id decl env)
new_decls env
in
let new_variances =
List.map2
(fun (id, decl) -> compute_variance_decl new_env false decl)
new_decls required
in
let new_variances =
List.map2 (List.map2 Variance.union) new_variances variances in
if new_variances <> variances then
compute_variance_fixpoint env decls required new_variances
else begin
(* List.iter (fun (id, decl) ->
Printf.eprintf "%s:" (Ident.name id);
List.iter (fun (v : Variance.t) ->
Printf.eprintf " %x" (Obj.magic v : int))
decl.type_variance;
prerr_endline "")
new_decls; *)
List.iter2
(fun (id, decl) req -> if not (is_sharp id) then
ignore (compute_variance_decl new_env true decl req))
new_decls required;
new_decls, new_env
end
let init_variance (id, decl) =
List.map (fun _ -> Variance.null) decl.type_params
let add_injectivity =
List.map
(function
| Covariant -> (true, false, false)
| Contravariant -> (false, true, false)
| Invariant -> (false, false, false)
)
(* for typeclass.ml *)
let compute_variance_decls env cldecls =
let decls, required =
List.fold_right
(fun (obj_id, obj_abbr, cl_abbr, clty, cltydef, ci) (decls, req) ->
let variance = List.map snd ci.ci_params in
(obj_id, obj_abbr) :: decls,
(add_injectivity variance, ci.ci_loc) :: req)
cldecls ([],[])
in
let variances = List.map init_variance decls in
let (decls, _) = compute_variance_fixpoint env decls required variances in
List.map2
(fun (_,decl) (_, _, cl_abbr, clty, cltydef, _) ->
let variance = decl.type_variance in
(decl, {cl_abbr with type_variance = variance},
{clty with cty_variance = variance},
{cltydef with clty_variance = variance}))
decls cldecls
(* Check multiple declarations of labels/constructors *)
let check_duplicates sdecl_list =
let labels = Hashtbl.create 7 and constrs = Hashtbl.create 7 in
List.iter
(fun sdecl -> match sdecl.ptype_kind with
Ptype_variant cl ->
List.iter
(fun pcd ->
try
let name' = Hashtbl.find constrs pcd.pcd_name.txt in
Location.prerr_warning pcd.pcd_loc
(Warnings.Duplicate_definitions
("constructor", pcd.pcd_name.txt, name',
sdecl.ptype_name.txt))
with Not_found ->
Hashtbl.add constrs pcd.pcd_name.txt sdecl.ptype_name.txt)
cl
| Ptype_record fl ->
List.iter
(fun {pld_name=cname;pld_loc=loc} ->
try
let name' = Hashtbl.find labels cname.txt in
Location.prerr_warning loc
(Warnings.Duplicate_definitions
("label", cname.txt, name', sdecl.ptype_name.txt))
with Not_found -> Hashtbl.add labels cname.txt sdecl.ptype_name.txt)
fl
| Ptype_abstract -> ()
| Ptype_open -> ())
sdecl_list
(* Force recursion to go through id for private types*)
let name_recursion sdecl id decl =
match decl with
| { type_kind = Type_abstract;
type_manifest = Some ty;
type_private = Private; } when is_fixed_type sdecl ->
let ty = Ctype.repr ty in
let ty' = Btype.newty2 ty.level ty.desc in
if Ctype.deep_occur ty ty' then
let td = Tconstr(Path.Pident id, decl.type_params, ref Mnil) in
Btype.link_type ty (Btype.newty2 ty.level td);
{decl with type_manifest = Some ty'}
else decl
| _ -> decl
(* Translate a set of mutually recursive type declarations *)
let transl_type_decl env sdecl_list =
(* Add dummy types for fixed rows *)
let fixed_types = List.filter is_fixed_type sdecl_list in
let sdecl_list =
List.map
(fun sdecl ->
let ptype_name =
mkloc (sdecl.ptype_name.txt ^"#row") sdecl.ptype_name.loc in
{sdecl with
ptype_name; ptype_kind = Ptype_abstract; ptype_manifest = None})
fixed_types
@ sdecl_list
in
(* Create identifiers. *)
let id_list =
List.map (fun sdecl -> Ident.create sdecl.ptype_name.txt) sdecl_list
in
(*
Since we've introduced fresh idents, make sure the definition
level is at least the binding time of these events. Otherwise,
passing one of the recursively-defined type constrs as argument
to an abbreviation may fail.
*)
Ctype.init_def(Ident.current_time());
Ctype.begin_def();
(* Enter types. *)
let temp_env = List.fold_left2 enter_type env sdecl_list id_list in
(* Translate each declaration. *)
let current_slot = ref None in
let warn_unused = Warnings.is_active (Warnings.Unused_type_declaration "") in
let id_slots id =
if not warn_unused then id, None
else
(* See typecore.ml for a description of the algorithm used
to detect unused declarations in a set of recursive definitions. *)
let slot = ref [] in
let td = Env.find_type (Path.Pident id) temp_env in
let name = Ident.name id in
Env.set_type_used_callback
name td
(fun old_callback ->
match !current_slot with
| Some slot -> slot := (name, td) :: !slot
| None ->
List.iter (fun (name, d) -> Env.mark_type_used env name d)
(get_ref slot);
old_callback ()
);
id, Some slot
in
let transl_declaration name_sdecl (id, slot) =
current_slot := slot; transl_declaration temp_env name_sdecl id in
let tdecls =
List.map2 transl_declaration sdecl_list (List.map id_slots id_list) in
let decls =
List.map (fun tdecl -> (tdecl.typ_id, tdecl.typ_type)) tdecls in
current_slot := None;
(* Check for duplicates *)
check_duplicates sdecl_list;
(* Build the final env. *)
let newenv =
List.fold_right
(fun (id, decl) env -> Env.add_type ~check:true id decl env)
decls env
in
(* Update stubs *)
List.iter2
(fun id sdecl -> update_type temp_env newenv id sdecl.ptype_loc)
id_list sdecl_list;
(* Generalize type declarations. *)
Ctype.end_def();
List.iter (fun (_, decl) -> generalize_decl decl) decls;
(* Check for ill-formed abbrevs *)
let id_loc_list =
List.map2 (fun id sdecl -> (id, sdecl.ptype_loc))
id_list sdecl_list
in
List.iter (fun (id, decl) ->
check_well_founded_manifest newenv (List.assoc id id_loc_list)
(Path.Pident id) decl)
decls;
let to_check =
function Path.Pident id -> List.mem_assoc id id_loc_list | _ -> false in
List.iter (fun (id, decl) ->
check_well_founded_decl newenv (List.assoc id id_loc_list) (Path.Pident id)
decl to_check)
decls;
List.iter (check_abbrev_recursion newenv id_loc_list to_check) tdecls;
(* Check that all type variable are closed *)
List.iter2
(fun sdecl tdecl ->
let decl = tdecl.typ_type in
match Ctype.closed_type_decl decl with
Some ty -> raise(Error(sdecl.ptype_loc, Unbound_type_var(ty,decl)))
| None -> ())
sdecl_list tdecls;
(* Check that constraints are enforced *)
List.iter2 (check_constraints newenv) sdecl_list decls;
(* Name recursion *)
let decls =
List.map2 (fun sdecl (id, decl) -> id, name_recursion sdecl id decl)
sdecl_list decls
in
(* Add variances to the environment *)
let required =
List.map
(fun sdecl ->
add_injectivity (List.map snd sdecl.ptype_params),
sdecl.ptype_loc
)
sdecl_list
in
let final_decls, final_env =
compute_variance_fixpoint env decls required (List.map init_variance decls)
in
(* Check re-exportation *)
List.iter2 (check_abbrev final_env) sdecl_list final_decls;
(* Keep original declaration *)
let final_decls =
List.map2
(fun tdecl (id2, decl) ->
{ tdecl with typ_type = decl }
) tdecls final_decls
in
(* Done *)
(final_decls, final_env)
(* Translating type extensions *)
let transl_extension_constructor env type_path type_params
typext_params priv sext =
let id = Ident.create sext.pext_name.txt in
let args, ret_type, kind =
match sext.pext_kind with
Pext_decl(sargs, sret_type) ->
let targs, tret_type, args, ret_type =
make_constructor sext.pext_loc env type_path typext_params
sargs sret_type
in
args, ret_type, Text_decl(targs, tret_type)
| Pext_rebind lid ->
let cdescr = Typetexp.find_constructor env sext.pext_loc lid.txt in
let usage =
if cdescr.cstr_private = Private || priv = Public
then Env.Positive else Env.Privatize
in
Env.mark_constructor usage env (Longident.last lid.txt) cdescr;
let (args, cstr_res) = Ctype.instance_constructor cdescr in
let res, ret_type =
if cdescr.cstr_generalized then
let params = Ctype.instance_list env type_params in
let res = Ctype.newconstr type_path params in
let ret_type = Some (Ctype.newconstr type_path params) in
res, ret_type
else (Ctype.newconstr type_path typext_params), None
in
begin
try
Ctype.unify env cstr_res res
with Ctype.Unify trace ->
raise (Error(lid.loc,
Rebind_wrong_type(lid.txt, env, trace)))
end;
(* Remove "_" names from parameters used in the constructor *)
if not cdescr.cstr_generalized then begin
let vars =
Ctype.free_variables (Btype.newgenty (Ttuple args))
in
List.iter
(function {desc = Tvar (Some "_")} as ty ->
if List.memq ty vars then ty.desc <- Tvar None
| _ -> ())
typext_params
end;
(* Ensure that constructor's type matches the type being extended *)
let cstr_type_path, cstr_type_params =
match cdescr.cstr_res.desc with
Tconstr (p, _, _) ->
let decl = Env.find_type p env in
p, decl.type_params
| _ -> assert false
in
let cstr_types =
(Btype.newgenty
(Tconstr(cstr_type_path, cstr_type_params, ref Mnil)))
:: cstr_type_params
in
let ext_types =
(Btype.newgenty
(Tconstr(type_path, type_params, ref Mnil)))
:: type_params
in
if not (Ctype.equal env true cstr_types ext_types) then
raise (Error(lid.loc,
Rebind_mismatch(lid.txt, cstr_type_path, type_path)));
(* Disallow rebinding private constructors to non-private *)
begin
match cdescr.cstr_private, priv with
Private, Public ->
raise (Error(lid.loc, Rebind_private lid.txt))
| _ -> ()
end;
let path =
match cdescr.cstr_tag with
Cstr_extension(path, _) -> path
| _ -> assert false
in
let args =
match cdescr.cstr_inlined with
| None ->
Types.Cstr_tuple args
| Some decl ->
let tl =
match args with
| [ {desc=Tconstr(_, tl, _)} ] -> tl
| _ -> assert false
in
let decl = Ctype.instance_declaration decl in
assert (List.length decl.type_params = List.length tl);
List.iter2 (Ctype.unify env) decl.type_params tl;
let lbls =
match decl.type_kind with
| Type_record (lbls, Record_extension) -> lbls
| _ -> assert false
in
Types.Cstr_record lbls
in
args, ret_type, Text_rebind(path, lid)
in
let ext =
{ ext_type_path = type_path;
ext_type_params = typext_params;
ext_args = args;
ext_ret_type = ret_type;
ext_private = priv;
Types.ext_loc = sext.pext_loc;
Types.ext_attributes = sext.pext_attributes; }
in
{ ext_id = id;
ext_name = sext.pext_name;
ext_type = ext;
ext_kind = kind;
Typedtree.ext_loc = sext.pext_loc;
Typedtree.ext_attributes = sext.pext_attributes; }
let transl_type_extension check_open env loc styext =
reset_type_variables();
Ctype.begin_def();
let (type_path, type_decl) =
Typetexp.find_type env loc styext.ptyext_path.txt
in
begin
match type_decl.type_kind with
Type_open -> ()
| Type_abstract ->
if check_open then begin
try
let {pext_loc} =
List.find (function {pext_kind = Pext_decl _} -> true
| {pext_kind = Pext_rebind _} -> false)
styext.ptyext_constructors
in
raise (Error(pext_loc, Not_open_type type_path))
with Not_found -> ()
end
| _ -> raise (Error(loc, Not_extensible_type type_path))
end;
let type_variance =
List.map (fun v ->
let (co, cn) = Variance.get_upper v in
(not cn, not co, false))
type_decl.type_variance
in
let err =
if type_decl.type_arity <> List.length styext.ptyext_params then
[Includecore.Arity]
else
if List.for_all2
(fun (c1, n1, _) (c2, n2, _) -> (not c2 || c1) && (not n2 || n1))
type_variance
(add_injectivity (List.map snd styext.ptyext_params))
then [] else [Includecore.Variance]
in
if err <> [] then
raise (Error(loc, Extension_mismatch (type_path, err)));
let ttype_params = make_params env styext.ptyext_params in
let type_params = List.map (fun (cty, _) -> cty.ctyp_type) ttype_params in
List.iter2 (Ctype.unify_var env)
(Ctype.instance_list env type_decl.type_params)
type_params;
let constructors =
List.map (transl_extension_constructor env type_path
type_decl.type_params type_params styext.ptyext_private)
styext.ptyext_constructors
in
Ctype.end_def();
(* Generalize types *)
List.iter Ctype.generalize type_params;
List.iter
(fun ext ->
Btype.iter_type_expr_cstr_args Ctype.generalize ext.ext_type.ext_args;
may Ctype.generalize ext.ext_type.ext_ret_type)
constructors;
(* Check that all type variable are closed *)
List.iter
(fun ext ->
match Ctype.closed_extension_constructor ext.ext_type with
Some ty ->
raise(Error(ext.ext_loc, Unbound_type_var_ext(ty, ext.ext_type)))
| None -> ())
constructors;
(* Check variances are correct *)
List.iter
(fun ext->
ignore (compute_variance_extension env true type_decl
ext.ext_type (type_variance, loc)))
constructors;
(* Add extension constructors to the environment *)
let newenv =
List.fold_left
(fun env ext ->
Env.add_extension ~check:true ext.ext_id ext.ext_type env)
env constructors
in
let tyext =
{ tyext_path = type_path;
tyext_txt = styext.ptyext_path;
tyext_params = ttype_params;
tyext_constructors = constructors;
tyext_private = styext.ptyext_private;
tyext_attributes = styext.ptyext_attributes; }
in
(tyext, newenv)
let transl_exception env sext =
reset_type_variables();
Ctype.begin_def();
let ext =
transl_extension_constructor env
Predef.path_exn [] [] Asttypes.Public sext
in
Ctype.end_def();
(* Generalize types *)
Btype.iter_type_expr_cstr_args Ctype.generalize ext.ext_type.ext_args;
may Ctype.generalize ext.ext_type.ext_ret_type;
(* Check that all type variable are closed *)
begin match Ctype.closed_extension_constructor ext.ext_type with
Some ty ->
raise (Error(ext.ext_loc, Unbound_type_var_ext(ty, ext.ext_type)))
| None -> ()
end;
let newenv = Env.add_extension ~check:true ext.ext_id ext.ext_type env in
ext, newenv
(* Translate a value declaration *)
let transl_value_decl env loc valdecl =
let cty = Typetexp.transl_type_scheme env valdecl.pval_type in
let ty = cty.ctyp_type in
let v =
match valdecl.pval_prim with
[] ->
{ val_type = ty; val_kind = Val_reg; Types.val_loc = loc;
val_attributes = valdecl.pval_attributes }
| decl ->
let arity = Ctype.arity ty in
let prim = Primitive.parse_declaration arity decl in
if arity = 0 && prim.prim_name.[0] <> '%' then
raise(Error(valdecl.pval_type.ptyp_loc, Null_arity_external));
if !Clflags.native_code
&& prim.prim_arity > 5
&& prim.prim_native_name = ""
then raise(Error(valdecl.pval_type.ptyp_loc, Missing_native_external));
{ val_type = ty; val_kind = Val_prim prim; Types.val_loc = loc;
val_attributes = valdecl.pval_attributes }
in
let (id, newenv) =
Env.enter_value valdecl.pval_name.txt v env
~check:(fun s -> Warnings.Unused_value_declaration s)
in
let desc =
{
val_id = id;
val_name = valdecl.pval_name;
val_desc = cty; val_val = v;
val_prim = valdecl.pval_prim;
val_loc = valdecl.pval_loc;
val_attributes = valdecl.pval_attributes;
}
in
desc, newenv
(* Translate a "with" constraint -- much simplified version of
transl_type_decl. *)
let transl_with_constraint env id row_path orig_decl sdecl =
Env.mark_type_used env (Ident.name id) orig_decl;
reset_type_variables();
Ctype.begin_def();
let tparams = make_params env sdecl.ptype_params in
let params = List.map (fun (cty, _) -> cty.ctyp_type) tparams in
let orig_decl = Ctype.instance_declaration orig_decl in
let arity_ok = List.length params = orig_decl.type_arity in
if arity_ok then
List.iter2 (Ctype.unify_var env) params orig_decl.type_params;
let constraints = List.map
(function (ty, ty', loc) ->
try
let cty = transl_simple_type env false ty in
let cty' = transl_simple_type env false ty' in
let ty = cty.ctyp_type in
let ty' = cty'.ctyp_type in
Ctype.unify env ty ty';
(cty, cty', loc)
with Ctype.Unify tr ->
raise(Error(loc, Inconsistent_constraint (env, tr))))
sdecl.ptype_cstrs
in
let no_row = not (is_fixed_type sdecl) in
let (tman, man) = match sdecl.ptype_manifest with
None -> None, None
| Some sty ->
let cty = transl_simple_type env no_row sty in
Some cty, Some cty.ctyp_type
in
let priv =
if sdecl.ptype_private = Private then Private else
if arity_ok && orig_decl.type_kind <> Type_abstract
then orig_decl.type_private else sdecl.ptype_private
in
if arity_ok && orig_decl.type_kind <> Type_abstract
&& sdecl.ptype_private = Private then
Location.prerr_warning sdecl.ptype_loc
(Warnings.Deprecated "spurious use of private");
let decl =
{ type_params = params;
type_arity = List.length params;
type_kind =
if arity_ok && man <> None then orig_decl.type_kind else Type_abstract;
type_private = priv;
type_manifest = man;
type_variance = [];
type_newtype_level = None;
type_loc = sdecl.ptype_loc;
type_attributes = sdecl.ptype_attributes;
}
in
begin match row_path with None -> ()
| Some p -> set_fixed_row env sdecl.ptype_loc p decl
end;
begin match Ctype.closed_type_decl decl with None -> ()
| Some ty -> raise(Error(sdecl.ptype_loc, Unbound_type_var(ty,decl)))
end;
let decl = name_recursion sdecl id decl in
let decl =
{decl with type_variance =
compute_variance_decl env false decl
(add_injectivity (List.map snd sdecl.ptype_params), sdecl.ptype_loc)} in
Ctype.end_def();
generalize_decl decl;
{
typ_id = id;
typ_name = sdecl.ptype_name;
typ_params = tparams;
typ_type = decl;
typ_cstrs = constraints;
typ_loc = sdecl.ptype_loc;
typ_manifest = tman;
typ_kind = Ttype_abstract;
typ_private = sdecl.ptype_private;
typ_attributes = sdecl.ptype_attributes;
}
(* Approximate a type declaration: just make all types abstract *)
let abstract_type_decl arity =
let rec make_params n =
if n <= 0 then [] else Ctype.newvar() :: make_params (n-1) in
Ctype.begin_def();
let decl =
{ type_params = make_params arity;
type_arity = arity;
type_kind = Type_abstract;
type_private = Public;
type_manifest = None;
type_variance = replicate_list Variance.full arity;
type_newtype_level = None;
type_loc = Location.none;
type_attributes = [];
} in
Ctype.end_def();
generalize_decl decl;
decl
let approx_type_decl env sdecl_list =
List.map
(fun sdecl ->
(Ident.create sdecl.ptype_name.txt,
abstract_type_decl (List.length sdecl.ptype_params)))
sdecl_list
(* Variant of check_abbrev_recursion to check the well-formedness
conditions on type abbreviations defined within recursive modules. *)
let check_recmod_typedecl env loc recmod_ids path decl =
(* recmod_ids is the list of recursively-defined module idents.
(path, decl) is the type declaration to be checked. *)
let to_check path =
List.exists (fun id -> Path.isfree id path) recmod_ids in
check_well_founded_decl env loc path decl to_check;
check_recursion env loc path decl to_check
(**** Error report ****)
open Format
let explain_unbound_gen ppf tv tl typ kwd pr =
try
let ti = List.find (fun ti -> Ctype.deep_occur tv (typ ti)) tl in
let ty0 = (* Hack to force aliasing when needed *)
Btype.newgenty (Tobject(tv, ref None)) in
Printtyp.reset_and_mark_loops_list [typ ti; ty0];
fprintf ppf
".@.@[<hov2>In %s@ %a@;<1 -2>the variable %a is unbound@]"
kwd pr ti Printtyp.type_expr tv
with Not_found -> ()
let explain_unbound ppf tv tl typ kwd lab =
explain_unbound_gen ppf tv tl typ kwd
(fun ppf ti -> fprintf ppf "%s%a" (lab ti) Printtyp.type_expr (typ ti))
let explain_unbound_single ppf tv ty =
let trivial ty =
explain_unbound ppf tv [ty] (fun t -> t) "type" (fun _ -> "") in
match (Ctype.repr ty).desc with
Tobject(fi,_) ->
let (tl, rv) = Ctype.flatten_fields fi in
if rv == tv then trivial ty else
explain_unbound ppf tv tl (fun (_,_,t) -> t)
"method" (fun (lab,_,_) -> lab ^ ": ")
| Tvariant row ->
let row = Btype.row_repr row in
if row.row_more == tv then trivial ty else
explain_unbound ppf tv row.row_fields
(fun (l,f) -> match Btype.row_field_repr f with
Rpresent (Some t) -> t
| Reither (_,[t],_,_) -> t
| Reither (_,tl,_,_) -> Btype.newgenty (Ttuple tl)
| _ -> Btype.newgenty (Ttuple[]))
"case" (fun (lab,_) -> "`" ^ lab ^ " of ")
| _ -> trivial ty
let tys_of_constr_args = function
| Types.Cstr_tuple tl -> tl
| Types.Cstr_record lbls -> List.map (fun l -> l.Types.ld_type) lbls
let report_error ppf = function
| Repeated_parameter ->
fprintf ppf "A type parameter occurs several times"
| Duplicate_constructor s ->
fprintf ppf "Two constructors are named %s" s
| Too_many_constructors ->
fprintf ppf
"@[Too many non-constant constructors@ -- maximum is %i %s@]"
(Config.max_tag + 1) "non-constant constructors"
| Duplicate_label s ->
fprintf ppf "Two labels are named %s" s
| Recursive_abbrev s ->
fprintf ppf "The type abbreviation %s is cyclic" s
| Cycle_in_def (s, ty) ->
Printtyp.reset_and_mark_loops ty;
fprintf ppf "@[<v>The definition of %s contains a cycle:@ %a@]"
s Printtyp.type_expr ty
| Definition_mismatch (ty, errs) ->
Printtyp.reset_and_mark_loops ty;
fprintf ppf "@[<v>@[<hov>%s@ %s@;<1 2>%a@]%a@]"
"This variant or record definition" "does not match that of type"
Printtyp.type_expr ty
(Includecore.report_type_mismatch "the original" "this" "definition")
errs
| Constraint_failed (ty, ty') ->
Printtyp.reset_and_mark_loops ty;
Printtyp.mark_loops ty';
fprintf ppf "@[%s@ @[<hv>Type@ %a@ should be an instance of@ %a@]@]"
"Constraints are not satisfied in this type."
Printtyp.type_expr ty Printtyp.type_expr ty'
| Parameters_differ (path, ty, ty') ->
Printtyp.reset_and_mark_loops ty;
Printtyp.mark_loops ty';
fprintf ppf
"@[<hv>In the definition of %s, type@ %a@ should be@ %a@]"
(Path.name path) Printtyp.type_expr ty Printtyp.type_expr ty'
| Inconsistent_constraint (env, trace) ->
fprintf ppf "The type constraints are not consistent.@.";
Printtyp.report_unification_error ppf env trace
(fun ppf -> fprintf ppf "Type")
(fun ppf -> fprintf ppf "is not compatible with type")
| Type_clash (env, trace) ->
Printtyp.report_unification_error ppf env trace
(function ppf ->
fprintf ppf "This type constructor expands to type")
(function ppf ->
fprintf ppf "but is used here with type")
| Null_arity_external ->
fprintf ppf "External identifiers must be functions"
| Missing_native_external ->
fprintf ppf "@[<hv>An external function with more than 5 arguments \
requires a second stub function@ \
for native-code compilation@]"
| Unbound_type_var (ty, decl) ->
fprintf ppf "A type variable is unbound in this type declaration";
let ty = Ctype.repr ty in
begin match decl.type_kind, decl.type_manifest with
| Type_variant tl, _ ->
explain_unbound_gen ppf ty tl (fun c ->
let tl = tys_of_constr_args c.cd_args in
Btype.newgenty (Ttuple tl)
)
"case" (fun ppf c ->
fprintf ppf
"%s of %a" (Ident.name c.Types.cd_id)
Printtyp.constructor_arguments c.cd_args)
| Type_record (tl, _), _ ->
explain_unbound ppf ty tl (fun l -> l.Types.ld_type)
"field" (fun l -> Ident.name l.Types.ld_id ^ ": ")
| Type_abstract, Some ty' ->
explain_unbound_single ppf ty ty'
| _ -> ()
end
| Unbound_type_var_ext (ty, ext) ->
fprintf ppf "A type variable is unbound in this extension constructor";
let args = tys_of_constr_args ext.ext_args in
explain_unbound ppf ty args (fun c -> c) "type" (fun _ -> "")
| Not_open_type path ->
fprintf ppf "@[%s@ %a@]"
"Cannot extend type definition"
Printtyp.path path
| Not_extensible_type path ->
fprintf ppf "@[%s@ %a@ %s@]"
"Type"
Printtyp.path path
"is not extensible"
| Extension_mismatch (path, errs) ->
fprintf ppf "@[<v>@[<hov>%s@ %s@;<1 2>%s@]%a@]"
"This extension" "does not match the definition of type"
(Path.name path)
(Includecore.report_type_mismatch
"the type" "this extension" "definition")
errs
| Rebind_wrong_type (lid, env, trace) ->
Printtyp.report_unification_error ppf env trace
(function ppf ->
fprintf ppf "The constructor %a@ has type"
Printtyp.longident lid)
(function ppf ->
fprintf ppf "but was expected to be of type")
| Rebind_mismatch (lid, p, p') ->
fprintf ppf
"@[%s@ %a@ %s@ %s@ %s@ %s@ %s@]"
"The constructor" Printtyp.longident lid
"extends type" (Path.name p)
"whose declaration does not match"
"the declaration of type" (Path.name p')
| Rebind_private lid ->
fprintf ppf "@[%s@ %a@ %s@]"
"The constructor"
Printtyp.longident lid
"is private"
| Bad_variance (n, v1, v2) ->
let variance (p,n,i) =
let inj = if i then "injective " else "" in
match p, n with
true, true -> inj ^ "invariant"
| true, false -> inj ^ "covariant"
| false, true -> inj ^ "contravariant"
| false, false -> if inj = "" then "unrestricted" else inj
in
let suffix n =
let teen = (n mod 100)/10 = 1 in
match n mod 10 with
| 1 when not teen -> "st"
| 2 when not teen -> "nd"
| 3 when not teen -> "rd"
| _ -> "th"
in
if n = -1 then
fprintf ppf "@[%s@ %s@ It"
"In this definition, a type variable has a variance that"
"is not reflected by its occurrence in type parameters."
else if n = -2 then
fprintf ppf "@[%s@ %s@]"
"In this definition, a type variable cannot be deduced"
"from the type parameters."
else if n = -3 then
fprintf ppf "@[%s@ %s@ It"
"In this definition, a type variable has a variance that"
"cannot be deduced from the type parameters."
else
fprintf ppf "@[%s@ %s@ The %d%s type parameter"
"In this definition, expected parameter"
"variances are not satisfied."
n (suffix n);
if n <> -2 then
fprintf ppf " was expected to be %s,@ but it is %s.@]"
(variance v2) (variance v1)
| Unavailable_type_constructor p ->
fprintf ppf "The definition of type %a@ is unavailable" Printtyp.path p
| Bad_fixed_type r ->
fprintf ppf "This fixed type %s" r
| Varying_anonymous ->
fprintf ppf "@[%s@ %s@ %s@]"
"In this GADT definition," "the variance of some parameter"
"cannot be checked"
let () =
Location.register_error_of_exn
(function
| Error (loc, err) ->
Some (Location.error_of_printer loc report_error err)
| _ ->
None
)