ocaml/otherlibs/systhreads/win32.c

497 lines
14 KiB
C

/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Xavier Leroy and Pascal Cuoq, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* Automatique. Distributed only by permission. */
/* */
/***********************************************************************/
/* $Id$ */
/* Thread interface for Win32 threads */
#include <windows.h>
#include <stdio.h>
#include "alloc.h"
#include "fail.h"
#include "memory.h"
#include "misc.h"
#include "mlvalues.h"
#include "roots.h"
#include "signals.h"
#include "stacks.h"
#include "sys.h"
#include <winsock.h>
/* Assert with systematic evaluation.*/
#ifdef DEBUG
#define AssertEv(x) Assert(x)
#else
#define AssertEv(x) x
#endif
/* Signal used for timer preemption (any unused signal number) */
#define SIGTIMER 1
/* Max computation time before rescheduling, in milliseconds (50ms) */
#define Thread_timeout 50
/* Initial size of stack when a thread is created (4 Ko) */
#define Thread_stack_size (Stack_size / 4)
/* The thread descriptors */
struct win32_thread_struct {
value final_fun; /* Finalization function */
HANDLE thread; /* Win32 thread handle */
HANDLE wakeup_event; /* Win32 event for sleep/wakeup */
};
struct caml_thread_struct {
struct win32_thread_struct * win32;
value ident; /* Unique id */
value * stack_low; /* The execution stack for this thread */
value * stack_high;
value * stack_threshold;
value * sp; /* Saved value of extern_sp for this thread */
value * trapsp; /* Saved value of trapsp for this thread */
struct longjmp_buffer * external_raise; /* Saved value of external_raise */
value * local_roots; /* Saved value of local_roots */
value * local_roots_new; /* Saved value of local_roots_new */
struct caml_thread_struct * next; /* Double linking of threads */
struct caml_thread_struct * prev;
};
typedef struct caml_thread_struct * caml_thread_t;
#define Assign(dst,src) modify((value *)&(dst), (value)(src))
/* The global mutex used to ensure that at most one thread is running
Caml code */
HANDLE caml_mutex;
/* Head of the list of thread descriptors */
caml_thread_t thread_list = NULL;
/* Thread-specific variable holding the thread descriptor for the current
thread. */
__declspec( thread ) caml_thread_t curr_thread;
/* Identifier for next thread creation */
static long thread_next_ident = 0;
/* Hook for scanning the stacks of the other threads */
static void (*prev_scan_roots_hook) P((scanning_action));
static void caml_thread_scan_roots(action)
scanning_action action;
{
caml_thread_t th;
register value * sp;
value * block;
struct caml_roots_block *lr;
long i;
/* Scan all thread descriptors */
(*action)((value) thread_list, (value *) &thread_list);
/* Scan the stacks */
for (th = thread_list; th != NULL; th = th->next) {
/* If this is the current thread, don't scan its stack, this
has already been done */
if (th->stack_low == stack_low) continue;
for (sp = th->sp; sp < th->stack_high; sp++) {
(*action)(*sp, sp);
}
/* Scan local C roots for that thread */
for (lr = th->local_roots_new; lr != NULL; lr = lr->next) {
for (i = 0; i < lr->len; i++){
sp = lr->roots[i];
(*action)(*sp, sp);
}
}
for (block = th->local_roots; block != NULL; block = (value *) block [1]) {
for (sp = block - (long) block [0]; sp < block; sp++) {
(*action)(*sp, sp);
}
}
}
/* Hook */
if (prev_scan_roots_hook != NULL) (*prev_scan_roots_hook)(action);
}
/* Hooks for enter_blocking_section and leave_blocking_section */
static void (*prev_enter_blocking_section_hook) ();
static void (*prev_leave_blocking_section_hook) ();
static void caml_thread_enter_blocking_section()
{
if (prev_enter_blocking_section_hook != NULL)
(*prev_enter_blocking_section_hook)();
/* Save the stack-related global variables in the thread descriptor
of the current thread */
curr_thread->stack_low = stack_low;
curr_thread->stack_high = stack_high;
curr_thread->stack_threshold = stack_threshold;
curr_thread->sp = extern_sp;
curr_thread->trapsp = trapsp;
curr_thread->external_raise = external_raise;
curr_thread->local_roots = local_roots;
curr_thread->local_roots_new = local_roots_new;
/* Release the global mutex */
AssertEv(ReleaseMutex(caml_mutex));
}
static void caml_thread_leave_blocking_section()
{
/* Re-acquire the global mutex */
AssertEv(WaitForSingleObject(caml_mutex, INFINITE) == WAIT_OBJECT_0);
/* Restore the stack-related global variables */
stack_low = curr_thread->stack_low;
stack_high = curr_thread->stack_high;
stack_threshold = curr_thread->stack_threshold;
extern_sp = curr_thread->sp;
trapsp = curr_thread->trapsp;
external_raise = curr_thread->external_raise;
local_roots = curr_thread->local_roots;
local_roots_new = curr_thread->local_roots_new;
if (prev_leave_blocking_section_hook != NULL)
(*prev_leave_blocking_section_hook)();
}
/* The "tick" thread fakes a SIGTIMER signal at regular intervals. */
static void* caml_thread_tick()
{
while(1) {
Sleep(Thread_timeout);
pending_signal = SIGTIMER;
something_to_do = 1;
}
}
/* Thread cleanup: remove the descriptor from the list and
free the stack space and the descriptor itself. */
static void caml_thread_cleanup(th)
caml_thread_t th;
{
/* Remove th from the doubly-linked list of threads */
if (th == thread_list) {
thread_list = th->next;
thread_list->prev = NULL;
} else {
Assign(th->next->prev, th->prev);
Assign(th->prev->next, th->next);
}
/* Free the memory resources */
stat_free((char *) th->stack_low);
/* Don't leave dangling pointers into possibly freed blocks,
this may confuse the GC if thsoe blocks are later added to
the heap. */
th->stack_low = NULL;
th->stack_high = NULL;
th->stack_threshold = NULL;
th->sp = NULL;
th->trapsp = NULL;
th->external_raise = NULL;
th->local_roots = NULL;
th->local_roots_new = NULL;
}
static void caml_thread_finalize(vfin)
value vfin;
{
struct win32_thread_struct * win32 = (struct win32_thread_struct *) vfin;
AssertEv(CloseHandle(win32->thread));
AssertEv(CloseHandle(win32->wakeup_event));
}
/* Allocate a new thread descriptor */
#define Max_thread_number 100
static caml_thread_t caml_alloc_thread()
{
caml_thread_t th;
value w32 =
alloc_final(sizeof(struct win32_thread_struct) / sizeof(value),
caml_thread_finalize, 1, Max_thread_number);
Begin_root (w32);
th = (caml_thread_t)
alloc_shr(sizeof(struct caml_thread_struct) / sizeof(value), 0);
th->win32 = (struct win32_thread_struct *) w32;
th->win32->wakeup_event = CreateEvent(NULL, FALSE, FALSE, NULL);
th->ident = Val_long(thread_next_ident);
thread_next_ident++;
th->next = NULL;
th->prev = NULL;
End_root ();
return th;
}
/* Initialize the thread machinery */
value caml_thread_initialize(unit) /* ML */
value unit;
{
unsigned long th_id;
HANDLE tick_thread;
/* Initialize the master mutex */
caml_mutex = CreateMutex(NULL, TRUE, NULL);
if (caml_mutex == NULL) sys_error("Thread.init");
/* Build a descriptor for the initial thread */
thread_list = caml_alloc_thread();
DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
GetCurrentProcess(), &(thread_list->win32->thread),
0, FALSE, DUPLICATE_SAME_ACCESS);
if (thread_list->win32->thread == NULL ||
thread_list->win32->wakeup_event == NULL) sys_error("Thread.init");
/* Fill the stack-related fields */
thread_list->stack_low = stack_low;
thread_list->stack_high = stack_high;
thread_list->stack_threshold = stack_threshold;
thread_list->sp = extern_sp;
thread_list->trapsp = trapsp;
thread_list->external_raise = external_raise;
thread_list->local_roots = local_roots;
thread_list->local_roots_new = local_roots_new;
/* Associate the thread descriptor with the current thread */
curr_thread = thread_list;
/* Set up the hooks */
prev_scan_roots_hook = scan_roots_hook;
scan_roots_hook = caml_thread_scan_roots;
prev_enter_blocking_section_hook = enter_blocking_section_hook;
enter_blocking_section_hook = caml_thread_enter_blocking_section;
prev_leave_blocking_section_hook = leave_blocking_section_hook;
leave_blocking_section_hook = caml_thread_leave_blocking_section;
/* Fork the tick thread */
tick_thread =
CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)&caml_thread_tick,
NULL, 0, &th_id);
if (tick_thread == NULL) sys_error("Thread.init");
AssertEv(CloseHandle(tick_thread));
Pop_roots();
return Val_unit;
}
/* Create a thread */
static void caml_thread_start(th)
caml_thread_t th;
{
value clos;
/* Associate the thread descriptor with the thread */
curr_thread = th;
/* Acquire the global mutex before running the thread */
AssertEv(WaitForSingleObject(caml_mutex,INFINITE) == WAIT_OBJECT_0);
/* Set up the stack variables */
stack_low = th->stack_low;
stack_high = th->stack_high;
stack_threshold = th->stack_threshold;
extern_sp = th->sp;
trapsp = th->trapsp;
external_raise = th->external_raise;
local_roots = th->local_roots;
local_roots_new = th->local_roots_new;
/* Callback the closure */
clos = *extern_sp++;
callback(clos, Val_unit);
/* Cleanup: free the thread resources */
caml_thread_cleanup(th);
/* Release the mutex and die quietly */
ReleaseMutex(caml_mutex);
}
value caml_thread_new(clos) /* ML */
value clos;
{
caml_thread_t th;
unsigned long th_id;
Begin_root (clos);
/* Allocate the thread and its stack */
th = caml_alloc_thread();
th->stack_low = (value *) stat_alloc(Thread_stack_size);
th->stack_high = th->stack_low + Thread_stack_size / sizeof(value);
th->stack_threshold = th->stack_low + Stack_threshold / sizeof(value);
th->sp = th->stack_high;
th->trapsp = th->stack_high;
th->external_raise = NULL;
th->local_roots = NULL;
th->local_roots_new = NULL;
/* Add it to the list of threads */
th->next = thread_list;
Assign(thread_list->prev, th);
thread_list = th;
/* Pass the closure in the newly created stack, so that it will be
preserved by garbage collection */
*--(th->sp) = clos;
/* Fork the new thread */
th->win32->thread =
CreateThread(NULL,0, (LPTHREAD_START_ROUTINE) caml_thread_start,
(void *) th, 0, &th_id);
if (th->win32->thread == NULL || th->win32->wakeup_event == NULL)
sys_error("Thread.new");
End_roots();
return (value) th;
}
/* Return the current thread */
value caml_thread_self(unit) /* ML */
value unit;
{
return (value) curr_thread;
}
/* Return the identifier of a thread */
value caml_thread_id(th) /* ML */
caml_thread_t th;
{
return th->ident;
}
/* Allow re-scheduling */
value caml_thread_yield(unit) /* ML */
value unit;
{
enter_blocking_section();
Sleep(0);
leave_blocking_section();
return Val_unit;
}
/* Detach a thread */
value caml_thread_detach(th) /* ML */
caml_thread_t th;
{
if (CloseHandle(th->win32->thread) == 0) sys_error("Thread.detach");
return Val_unit;
}
/* Suspend the current thread until another thread terminates */
value caml_thread_join(th) /* ML */
caml_thread_t th;
{
int retcode;
enter_blocking_section();
retcode = WaitForSingleObject(th->win32->thread, INFINITE);
leave_blocking_section();
if (retcode == WAIT_FAILED) sys_error("Thread.join");
return Val_unit;
}
/* Terminate the current thread */
value caml_thread_exit(unit) /* ML */
value unit;
{
caml_thread_cleanup(curr_thread);
enter_blocking_section();
ExitThread(0);
return Val_unit; /* never reached */
}
value caml_thread_kill(th)
caml_thread_t th;
{
caml_thread_cleanup(th);
if (TerminateThread(th->win32->thread, 1) == 0) sys_error("Thread.kill");
return Val_unit;
}
/* Mutex operations */
#define Mutex_val(v) (*((HANDLE *)(&Field(v, 1))))
#define Max_mutex_number 1000
static void caml_mutex_finalize(mut)
value mut;
{
AssertEv(CloseHandle(Mutex_val(mut)));
}
value caml_mutex_new(unit) /* ML */
value unit;
{
value mut;
mut = alloc_final(1 + sizeof(HANDLE) / sizeof(value),
caml_mutex_finalize, 1, Max_mutex_number);
Mutex_val(mut) = CreateMutex(0, FALSE, NULL);
if (Mutex_val(mut) == NULL) sys_error("Mutex.new");
return mut;
}
value caml_mutex_lock(mut) /* ML */
value mut;
{
int retcode;
enter_blocking_section();
retcode = WaitForSingleObject(Mutex_val(mut), INFINITE);
leave_blocking_section();
if (retcode == WAIT_FAILED) sys_error("Mutex.lock");
return Val_unit;
}
value caml_mutex_unlock(mut) /* ML */
value mut;
{
BOOL retcode;
enter_blocking_section();
retcode = ReleaseMutex(Mutex_val(mut));
leave_blocking_section();
if (!retcode) sys_error("Mutex.unlock");
return Val_unit;
}
value caml_mutex_try_lock(mut) /* ML */
value mut;
{
int retcode;
retcode = WaitForSingleObject(Mutex_val(mut), 0);
if (retcode == WAIT_FAILED || retcode == WAIT_ABANDONED)
sys_error("Mutex.try_lock");
return Val_bool(retcode == WAIT_OBJECT_0);
}
/* Delay */
value caml_thread_delay(val) /* ML */
value val;
{
enter_blocking_section();
Sleep((DWORD)(Double_val(val)*1000)); /* milliseconds */
leave_blocking_section();
return Val_unit;
}
/* Sleep and wakeup */
value caml_thread_sleep(value unit) /* ML */
{
enter_blocking_section();
AssertEv(WaitForSingleObject(curr_thread->win32->wakeup_event, INFINITE) ==
WAIT_OBJECT_0);
leave_blocking_section();
return Val_unit;
}
value caml_thread_wakeup(caml_thread_t th) /* ML */
{
AssertEv(SetEvent(th->win32->wakeup_event));
return Val_unit;
}