ocaml/asmcomp/hppa/emit.mlp

1098 lines
37 KiB
Plaintext

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Emission of HP PA-RISC assembly code *)
(* Must come before open Reg... *)
module StringSet =
Set.Make(struct
type t = string
let compare = compare
end)
open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux
(* Adaptation to HPUX and NextStep *)
let hpux =
match Config.system with
"hpux" -> true
| "nextstep" -> false
| _ -> fatal_error "Emit_hppa.hpux"
(* Tradeoff between code size and code speed *)
let fastcode_flag = ref true
(* Layout of the stack *)
(* Always keep the stack 8-aligned. *)
let stack_offset = ref 0
let frame_size () =
let size =
!stack_offset +
4 * num_stack_slots.(0) + 8 * num_stack_slots.(1) +
(if !contains_calls then 4 else 0) in
Misc.align size 8
let slot_offset loc cl =
match loc with
Incoming n -> -frame_size() - n
| Local n ->
if cl = 0
then - !stack_offset - num_stack_slots.(1) * 8 - n * 4 - 4
else - !stack_offset - n * 8 - 8
| Outgoing n -> -n
(* Output a label *)
let label_prefix = if hpux then "L$" else "L"
let emit_label lbl =
emit_string label_prefix; emit_int lbl
(* Output a symbol *)
let symbol_prefix = if hpux then "" else "_"
let emit_symbol s =
emit_string symbol_prefix; Emitaux.emit_symbol '$' s
(* Output a pseudo-register *)
let emit_reg r =
match r.loc with
Reg r -> emit_string (register_name r)
| _ -> fatal_error "Emit.emit_reg"
(* Output low address / high address prefixes *)
let low_prefix = if hpux then "RR'" else "R\`"
let high_prefix = if hpux then "LR'" else "L\`"
let is_immediate n = (n < 16) && (n >= -16) (* 5 bits *)
let emit_int_low n = emit_string low_prefix; emit_int n
let emit_int_high n = emit_string high_prefix; emit_int n
let emit_nativeint_low n = emit_string low_prefix; emit_nativeint n
let emit_nativeint_high n = emit_string high_prefix; emit_nativeint n
let emit_symbol_low s =
if hpux
then `RR'{emit_symbol s}-$global$`
else `R\`{emit_symbol s}`
let load_symbol_high s =
if hpux
then ` addil LR'{emit_symbol s}-$global$, %r27\n`
else ` ldil L\`{emit_symbol s}, %r1\n`
let load_symbol_offset_high s ofs =
if hpux
then ` addil LR'{emit_symbol s}-$global$+{emit_int ofs}, %r27\n`
else ` ldil L\`{emit_symbol s}+{emit_int ofs}, %r1\n`
(* Record imported and defined symbols *)
let used_symbols = ref StringSet.empty
let defined_symbols = ref StringSet.empty
let called_symbols = ref StringSet.empty
let use_symbol s =
if hpux then used_symbols := StringSet.add s !used_symbols
let define_symbol s =
defined_symbols := StringSet.add s !defined_symbols
let call_symbol s =
if hpux then begin
used_symbols := StringSet.add s !used_symbols;
called_symbols := StringSet.add s !called_symbols
end
(* An external symbol is code if either it is branched to, or
it does not start with an uppercase letter (for calls to
runtime functions). We need to special-case "caml_globals_inited"
as a data symbol, though. *)
let emit_import s =
if not(StringSet.mem s !defined_symbols) then begin
` .import {emit_symbol s}`;
if (StringSet.mem s !called_symbols || s.[0] < 'A' or s.[0] > 'Z')
&& s <> "caml_globals_inited"
then `, code\n`
else `, data\n`
end
let emit_imports () =
StringSet.iter emit_import !used_symbols;
used_symbols := StringSet.empty;
defined_symbols := StringSet.empty;
called_symbols := StringSet.empty
(* Output an integer load / store *)
let is_offset n = (n < 8192) && (n >= -8192) (* 14 bits *)
let is_offset_native n =
n < Nativeint.of_int 8192 && n >= Nativeint.of_int (-8192)
let emit_load instr addr arg dst =
match addr with
Ibased(s, 0) ->
use_symbol s;
load_symbol_high s;
` {emit_string instr} {emit_symbol_low s}(%r1), {emit_reg dst}\n`
| Ibased(s, ofs) ->
load_symbol_offset_high s ofs;
use_symbol s;
` {emit_string instr} {emit_symbol_low s}+{emit_int ofs}(%r1), {emit_reg dst}\n`
| Iindexed ofs ->
if is_offset ofs then
` {emit_string instr} {emit_int ofs}({emit_reg arg.(0)}), {emit_reg dst}\n`
else begin
` addil {emit_int_high ofs}, {emit_reg arg.(0)}\n`;
` {emit_string instr} {emit_int_low ofs}(%r1), {emit_reg dst}\n`
end
let emit_store instr addr arg src =
match addr with
Ibased(s, 0) ->
use_symbol s;
load_symbol_high s;
` {emit_string instr} {emit_reg src}, {emit_symbol_low s}(%r1)\n`
| Ibased(s, ofs) ->
use_symbol s;
load_symbol_offset_high s ofs;
` {emit_string instr} {emit_reg src}, {emit_symbol_low s}+{emit_int ofs}(%r1)\n`
| Iindexed ofs ->
if is_offset ofs then
` {emit_string instr} {emit_reg src}, {emit_int ofs}({emit_reg arg.(1)})\n`
else begin
` addil {emit_int_high ofs}, {emit_reg arg.(0)}\n`;
` {emit_string instr} {emit_reg src}, {emit_int_low ofs}(%r1)\n`
end
(* Output a floating-point load / store *)
let emit_float_load addr arg dst doubleword =
match addr with
Ibased(s, 0) ->
use_symbol s;
load_symbol_high s;
` ldo {emit_symbol_low s}(%r1), %r1\n`;
` fldws 0(%r1), {emit_reg dst}L\n`;
if doubleword then
` fldws 4(%r1), {emit_reg dst}R\n`
| Ibased(s, ofs) ->
use_symbol s;
load_symbol_offset_high s ofs;
` ldo {emit_symbol_low s}+{emit_int ofs}(%r1), %r1\n`;
` fldws 0(%r1), {emit_reg dst}L\n`;
if doubleword then
` fldws 4(%r1), {emit_reg dst}R\n`
| Iindexed ofs ->
if is_immediate ofs && (is_immediate (ofs+4) || not doubleword)
then begin
` fldws {emit_int ofs}({emit_reg arg.(0)}), {emit_reg dst}L\n`;
if doubleword then
` fldws {emit_int (ofs+4)}({emit_reg arg.(0)}), {emit_reg dst}R\n`
end else begin
if is_offset ofs then
` ldo {emit_int ofs}({emit_reg arg.(0)}), %r1\n`
else begin
` addil {emit_int_high ofs}, {emit_reg arg.(0)}\n`;
` ldo {emit_int_low ofs}(%r1), %r1\n`
end;
` fldws 0(%r1), {emit_reg dst}L\n`;
if doubleword then
` fldws 4(%r1), {emit_reg dst}R\n`
end
let emit_float_store addr arg src doubleword =
match addr with
Ibased(s, 0) ->
use_symbol s;
load_symbol_high s;
` ldo {emit_symbol_low s}(%r1), %r1\n`;
` fstws {emit_reg src}L, 0(%r1)\n`;
if doubleword then
` fstws {emit_reg src}R, 4(%r1)\n`
| Ibased(s, ofs) ->
use_symbol s;
load_symbol_offset_high s ofs;
` ldo {emit_symbol_low s}+{emit_int ofs}(%r1), %r1\n`;
` fstws {emit_reg src}L, 0(%r1)\n`;
if doubleword then
` fstws {emit_reg src}R, 4(%r1)\n`
| Iindexed ofs ->
if is_immediate ofs && (is_immediate (ofs+4) || not doubleword)
then begin
` fstws {emit_reg src}L, {emit_int ofs}({emit_reg arg.(1)})\n`;
if doubleword then
` fstws {emit_reg src}R, {emit_int(ofs+4)}({emit_reg arg.(1)})\n`
end else begin
if is_offset ofs then
` ldo {emit_int ofs}({emit_reg arg.(1)}), %r1\n`
else begin
` addil {emit_int_high ofs}, {emit_reg arg.(1)}\n`;
` ldo {emit_int_low ofs}(%r1), %r1\n`
end;
` fstws {emit_reg src}L, 0(%r1)\n`;
if doubleword then
` fstws {emit_reg src}R, 4(%r1)\n`
end
(* Output an align directive.
Under HPUX: alignment = number of bytes
Undex NextStep: alignment = log2 of number of bytes *)
let emit_align n =
if hpux
then ` .align {emit_int n}\n`
else ` .align {emit_int(Misc.log2 n)}\n`
(* Record live pointers at call points *)
type frame_descr =
{ fd_lbl: int; (* Return address *)
fd_frame_size: int; (* Size of stack frame *)
fd_live_offset: int list } (* Offsets/regs of live addresses *)
let frame_descriptors = ref([] : frame_descr list)
let record_frame live =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
{typ = Addr; loc = Reg r} ->
live_offset := ((r lsl 1) + 1) :: !live_offset
| {typ = Addr; loc = Stack s} as reg ->
live_offset := slot_offset s (register_class reg) :: !live_offset
| _ -> ())
live;
frame_descriptors :=
{ fd_lbl = lbl;
fd_frame_size = frame_size();
fd_live_offset = !live_offset } :: !frame_descriptors;
`{emit_label lbl}:\n`
let emit_frame fd =
` .long {emit_label fd.fd_lbl} + 3\n`;
` .short {emit_int fd.fd_frame_size}\n`;
` .short {emit_int (List.length fd.fd_live_offset)}\n`;
List.iter
(fun n ->
` .short {emit_int n}\n`)
fd.fd_live_offset;
emit_align 4
(* Record floating-point constants *)
let float_constants = ref ([] : (int * string) list)
let emit_float_constant (lbl, cst) =
if hpux then begin
` .space $TEXT$\n`;
` .subspa $LIT$\n`
end else
` .literal8\n`;
emit_align 8;
`{emit_label lbl}: .double {emit_string cst}\n`
(* Record external calls and generate stub code for these *)
let stub_label_table = (Hashtbl.create 19 : (string, int) Hashtbl.t)
let stub_label symb =
try
Hashtbl.find stub_label_table symb
with Not_found ->
let lbl = new_label() in
Hashtbl.add stub_label_table symb lbl;
lbl
let emit_stub symb lbl =
`{emit_label lbl}: ldil L\`{emit_symbol symb}, %r1\n`;
` ble,n {emit_symbol_low symb}(4, %r1)\n`
let emit_stubs () =
` .text\n`;
emit_align 4;
Hashtbl.iter emit_stub stub_label_table
(* Describe the registers used to pass arguments to a C function *)
let describe_call arg =
` .CALL RTNVAL=NO`;
let pos = ref 0 in
for i = 0 to Array.length arg - 1 do
if !pos < 4 then begin
match arg.(i).typ with
Float -> `, ARGW{emit_int !pos}=FR, ARGW{emit_int(!pos + 1)}=FU`;
pos := !pos + 2
| _ -> `, ARGW{emit_int !pos}=GR`;
pos := !pos + 1
end
done;
`\n`
(* Output a function call *)
let emit_call s retreg =
if hpux then begin
` bl {emit_symbol s}, {emit_string retreg}\n`;
call_symbol s
end else
if StringSet.mem s !defined_symbols then
` bl {emit_symbol s}, {emit_string retreg}\n`
else begin
let lbl = stub_label s in
` jbsr {emit_symbol s}, {emit_string retreg}, {emit_label lbl}\n`
end
(* Names of various instructions *)
let name_for_int_operation = function
Iadd -> "add"
| Isub -> "sub"
| Iand -> "and"
| Ior -> "or"
| Ixor -> "xor"
| _ -> Misc.fatal_error "Emit.name_for_int_operation"
let name_for_float_operation = function
Iaddf -> "fadd,dbl"
| Isubf -> "fsub,dbl"
| Imulf -> "fmpy,dbl"
| Idivf -> "fdiv,dbl"
| _ -> Misc.fatal_error "Emit.name_for_float_operation"
let name_for_specific_operation = function
Ishift1add -> "sh1add"
| Ishift2add -> "sh2add"
| Ishift3add -> "sh3add"
let name_for_int_comparison = function
Isigned Ceq -> "=" | Isigned Cne -> "<>"
| Isigned Cle -> "<=" | Isigned Cgt -> ">"
| Isigned Clt -> "<" | Isigned Cge -> ">="
| Iunsigned Ceq -> "=" | Iunsigned Cne -> "<>"
| Iunsigned Cle -> "<<=" | Iunsigned Cgt -> ">>"
| Iunsigned Clt -> "<<" | Iunsigned Cge -> ">>="
let name_for_float_comparison cmp neg =
match cmp with
Ceq -> if neg then "=" else "!="
| Cne -> if neg then "!=" else "="
| Cle -> if neg then "<=" else "!<="
| Cgt -> if neg then ">" else "!>"
| Clt -> if neg then "<" else "!<"
| Cge -> if neg then ">=" else "!>="
let negate_int_comparison = function
Isigned cmp -> Isigned(Cmm.negate_comparison cmp)
| Iunsigned cmp -> Iunsigned(Cmm.negate_comparison cmp)
let swap_int_comparison = function
Isigned cmp -> Isigned(Cmm.swap_comparison cmp)
| Iunsigned cmp -> Iunsigned(Cmm.swap_comparison cmp)
(* Output the assembly code for an instruction *)
(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
(* Label of trap for out-of-range accesses *)
let range_check_trap = ref 0
let rec emit_instr i dslot =
match i.desc with
Lend -> ()
| Lop(Imove | Ispill | Ireload) ->
let src = i.arg.(0) and dst = i.res.(0) in
begin match (src, dst) with
{loc = Reg rs; typ = (Int | Addr)}, {loc = Reg rd} ->
` copy {emit_reg src}, {emit_reg dst}\n`
| {loc = Reg rs; typ = Float}, {loc = Reg rd; typ = Float} ->
` fcpy,dbl {emit_reg src}, {emit_reg dst}\n`
| {loc = Reg rs; typ = (Int | Addr)}, {loc = Stack sd} ->
let ofs = slot_offset sd 0 in
` stw {emit_reg src}, {emit_int ofs}(%r30)\n`
| {loc = Reg rs; typ = Float}, {loc = Stack sd} ->
let ofs = slot_offset sd 1 in
if is_immediate ofs then
` fstds {emit_reg src}, {emit_int ofs}(%r30)\n`
else begin
` ldo {emit_int ofs}(%r30), %r1\n`;
` fstds {emit_reg src}, 0(%r1)\n`
end
| {loc = Stack ss; typ = (Int | Addr)}, {loc = Reg rd} ->
let ofs = slot_offset ss 0 in
` ldw {emit_int ofs}(%r30), {emit_reg dst}\n`
| {loc = Stack ss; typ = Float}, {loc = Reg rd} ->
let ofs = slot_offset ss 1 in
if is_immediate ofs then
` fldds {emit_int ofs}(%r30), {emit_reg dst}\n`
else begin
` ldo {emit_int ofs}(%r30), %r1\n`;
` fldds 0(%r1), {emit_reg dst}\n`
end
| (_, _) ->
fatal_error "Emit: Imove"
end
| Lop(Iconst_int n) ->
if is_offset_native n then
` ldi {emit_nativeint n}, {emit_reg i.res.(0)}\n`
else begin
` ldil {emit_nativeint_high n}, {emit_reg i.res.(0)}\n`;
` ldo {emit_nativeint_low n}({emit_reg i.res.(0)}), {emit_reg i.res.(0)}\n`
end
| Lop(Iconst_float s) ->
let lbl = new_label() in
float_constants := (lbl, s) :: !float_constants;
` ldil {emit_string high_prefix}{emit_label lbl}, %r1\n`;
` ldo {emit_string low_prefix}{emit_label lbl}(%r1), %r1\n`;
` fldds 0(%r1), {emit_reg i.res.(0)}\n`
| Lop(Iconst_symbol s) ->
use_symbol s;
load_symbol_high s;
` ldo {emit_symbol_low s}(%r1), {emit_reg i.res.(0)}\n`
| Lop(Icall_ind) ->
` ble 0(4, {emit_reg i.arg.(0)})\n`; (* retaddr in %r31 *)
` copy %r31, %r2\n`; (* in delay slot: save retaddr in %r2 *)
record_frame i.live
| Lop(Icall_imm s) ->
emit_call s "%r2";
fill_delay_slot dslot;
record_frame i.live
| Lop(Itailcall_ind) ->
let n = frame_size() in
` bv 0({emit_reg i.arg.(0)})\n`;
if !contains_calls (* in delay slot *)
then ` ldwm {emit_int(-n)}(%r30), %r2\n`
else ` ldo {emit_int(-n)}(%r30), %r30\n`
| Lop(Itailcall_imm s) ->
let n = frame_size() in
if s = !function_name then begin
` b,n {emit_label !tailrec_entry_point}\n`
end else begin
emit_call s "%r0";
if !contains_calls (* in delay slot *)
then ` ldwm {emit_int(-n)}(%r30), %r2\n`
else ` ldo {emit_int(-n)}(%r30), %r30\n`
end
| Lop(Iextcall(s, alloc)) ->
if alloc then begin
call_symbol s;
if hpux then begin
` ldil LP'{emit_symbol s}, %r22\n`;
describe_call i.arg;
emit_call "caml_c_call" "%r2";
` ldo RP'{emit_symbol s}(%r22), %r22\n` (* in delay slot *)
end else begin
` ldil L\`{emit_symbol s}, %r22\n`;
emit_call "caml_c_call" "%r2";
` ldo {emit_symbol_low s}(%r22), %r22\n` (* in delay slot *)
end;
record_frame i.live
end else begin
if hpux then describe_call i.arg;
emit_call s "%r2";
fill_delay_slot dslot
end
| Lop(Istackoffset n) ->
` ldo {emit_int n}(%r30), %r30\n`;
stack_offset := !stack_offset + n
| Lop(Iload(chunk, addr)) ->
let dest = i.res.(0) in
begin match chunk with
Byte_unsigned ->
emit_load "ldb" addr i.arg dest
| Byte_signed ->
emit_load "ldb" addr i.arg dest;
` extrs {emit_reg dest}, 31, 8, {emit_reg dest}\n`
| Sixteen_unsigned ->
emit_load "ldh" addr i.arg dest
| Sixteen_signed ->
emit_load "ldh" addr i.arg dest;
` extrs {emit_reg dest}, 31, 16, {emit_reg dest}\n`
| Single ->
emit_float_load addr i.arg dest false;
` fcnvff,sgl,dbl {emit_reg dest}L, {emit_reg dest}\n`
| Double | Double_u ->
emit_float_load addr i.arg dest true
| _ ->
emit_load "ldw" addr i.arg dest
end
| Lop(Istore(chunk, addr)) ->
let src = i.arg.(0) in
begin match chunk with
Byte_unsigned | Byte_signed ->
emit_store "stb" addr i.arg src
| Sixteen_unsigned | Sixteen_signed ->
emit_store "sth" addr i.arg src
| Single ->
` fcnvff,dbl,sgl {emit_reg src}, %fr31L\n`;
emit_float_store addr i.arg (phys_reg 127) (* %fr31 *) false
| Double | Double_u ->
emit_float_store addr i.arg src true
| _ ->
emit_store "stw" addr i.arg src
end
| Lop(Ialloc n) ->
if !fastcode_flag then begin
let lbl_cont = new_label() in
` ldw 0(%r4), %r1\n`;
` ldo {emit_int (-n)}(%r3), %r3\n`;
` comb,>>= %r3, %r1, {emit_label lbl_cont}\n`;
` addi 4, %r3, {emit_reg i.res.(0)}\n`; (* in delay slot *)
emit_call "caml_call_gc" "%r2";
(* Cannot use %r1 to pass size, since clobbered by glue call code *)
` ldi {emit_int n}, %r29\n`; (* in delay slot *)
record_frame i.live;
` addi 4, %r3, {emit_reg i.res.(0)}\n`;
`{emit_label lbl_cont}:\n`
end else begin
emit_call "caml_alloc" "%r2";
(* Cannot use %r1 either *)
` ldi {emit_int n}, %r29\n`; (* in delay slot *)
record_frame i.live;
` addi 4, %r3, {emit_reg i.res.(0)}\n` (* in delay slot *)
end
| Lop(Iintop Imul) ->
` stws,ma {emit_reg i.arg.(0)}, 8(%r30)\n`;
` stw {emit_reg i.arg.(1)}, -4(%r30)\n`;
` fldws -8(%r30), %fr31L\n`;
` fldws -4(%r30), %fr31R\n`;
` xmpyu %fr31L, %fr31R, %fr31\n`;
` fstws %fr31R, -8(%r30)\n`; (* poor scheduling *)
` ldws,mb -8(%r30), {emit_reg i.res.(0)}\n`
| Lop(Iintop Idiv) ->
(* Arguments are assumed to be in %r26 and %r25, result in %r29 *)
if hpux then
` bl $$divI, %r31\n`
else begin
` ldil L\`$$divI, %r1\n`;
` ble R\`$$divI(4, %r1)\n`
end;
fill_delay_slot dslot
| Lop(Iintop Imod) ->
(* Arguments are assumed to be in %r26 and %r25, result in %r29 *)
if hpux then
` bl $$remI, %r31\n`
else begin
` ldil L\`$$remI, %r1\n`;
` ble R\`$$remI(4, %r1)\n`
end;
fill_delay_slot dslot
| Lop(Iintop Ilsl) ->
` subi 31, {emit_reg i.arg.(1)}, %r1\n`;
` mtsar %r1\n`;
` zvdep {emit_reg i.arg.(0)}, 32, {emit_reg i.res.(0)}\n`
| Lop(Iintop Ilsr) ->
` mtsar {emit_reg i.arg.(1)}\n`;
` vshd %r0, {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop Iasr) ->
` subi 31, {emit_reg i.arg.(1)}, %r1\n`;
` mtsar %r1\n`;
` vextrs {emit_reg i.arg.(0)}, 32, {emit_reg i.res.(0)}\n`
| Lop(Iintop(Icomp cmp)) ->
let comp = name_for_int_comparison(negate_int_comparison cmp) in
` comclr,{emit_string comp} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`;
` ldi 1, {emit_reg i.res.(0)}\n`
| Lop(Iintop Icheckbound) ->
if !range_check_trap = 0 then range_check_trap := new_label();
` comclr,>> {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, %r0\n`;
` b,n {emit_label !range_check_trap}\n`
| Lop(Iintop op) ->
let instr = name_for_int_operation op in
` {emit_string instr} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Iadd, n)) ->
` addi {emit_int n}, {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Isub, n)) ->
` addi {emit_int(-n)}, {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Idiv, n)) ->
let l = Misc.log2 n in
` comclr,>= {emit_reg i.arg.(0)}, %r0, %r1\n`;
` zdepi -1, 31, {emit_int l}, %r1\n`;
` add {emit_reg i.arg.(0)}, %r1, %r1\n`;
` extrs %r1, {emit_int(31-l)}, {emit_int(32-l)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Imod, n)) ->
let l = Misc.log2 n in
` comclr,>= {emit_reg i.arg.(0)}, %r0, %r1\n`;
` zdepi -1, 31, {emit_int l}, %r1\n`;
` add {emit_reg i.arg.(0)}, %r1, %r1\n`;
` depi 0, 31, {emit_int l}, %r1\n`;
` sub {emit_reg i.arg.(0)}, %r1, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Ilsl, n)) ->
let n = n land 31 in
` zdep {emit_reg i.arg.(0)}, {emit_int(31-n)}, {emit_int(32-n)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Ilsr, n)) ->
let n = n land 31 in
` extru {emit_reg i.arg.(0)}, {emit_int(31-n)}, {emit_int(32-n)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Iasr, n)) ->
let n = n land 31 in
` extrs {emit_reg i.arg.(0)}, {emit_int(31-n)}, {emit_int(32-n)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Icomp cmp, n)) ->
let comp = name_for_int_comparison(negate_int_comparison(swap_int_comparison cmp)) in
` comiclr,{emit_string comp} {emit_int n}, {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`;
` ldi 1, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Icheckbound, n)) ->
if !range_check_trap = 0 then range_check_trap := new_label();
` comiclr,<< {emit_int n}, {emit_reg i.arg.(0)}, %r0\n`;
` b,n {emit_label !range_check_trap}\n`
| Lop(Iintop_imm(op, n)) ->
fatal_error "Emit_hppa: Iintop_imm"
| Lop(Iaddf | Isubf | Imulf | Idivf as op) ->
let instr = name_for_float_operation op in
` {emit_string instr} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`
| Lop(Inegf) ->
` fsub,dbl 0, {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Iabsf) ->
` fabs,dbl {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Ifloatofint) ->
` stws,ma {emit_reg i.arg.(0)}, 8(%r30)\n`;
` fldws,mb -8(%r30), %fr31L\n`;
` fcnvxf,sgl,dbl %fr31L, {emit_reg i.res.(0)}\n`
| Lop(Iintoffloat) ->
` fcnvfxt,dbl,sgl {emit_reg i.arg.(0)}, %fr31L\n`;
` fstws,ma %fr31L, 8(%r30)\n`;
` ldws,mb -8(%r30), {emit_reg i.res.(0)}\n`
| Lop(Ispecific sop) ->
let instr = name_for_specific_operation sop in
` {emit_string instr} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`
| Lreloadretaddr ->
let n = frame_size() in
` ldw {emit_int(-n)}(%r30), %r2\n`
| Lreturn ->
let n = frame_size() in
` bv 0(%r2)\n`;
` ldo {emit_int(-n)}(%r30), %r30\n` (* in delay slot *)
| Llabel lbl ->
`{emit_label lbl}:\n`
| Lbranch lbl ->
begin match dslot with
None ->
` b,n {emit_label lbl}\n`
| Some i ->
` b {emit_label lbl}\n`;
emit_instr i None
end
| Lcondbranch(tst, lbl) ->
begin match tst with
Itruetest ->
emit_comib "<>" "=" 0 i.arg lbl dslot
| Ifalsetest ->
emit_comib "=" "<>" 0 i.arg lbl dslot
| Iinttest cmp ->
let comp = name_for_int_comparison cmp
and negcomp =
name_for_int_comparison(negate_int_comparison cmp) in
emit_comb comp negcomp i.arg lbl dslot
| Iinttest_imm(cmp, n) ->
let scmp = swap_int_comparison cmp in
let comp = name_for_int_comparison scmp
and negcomp =
name_for_int_comparison(negate_int_comparison scmp) in
emit_comib comp negcomp n i.arg lbl dslot
| Ifloattest(cmp, neg) ->
let comp = name_for_float_comparison cmp neg in
` fcmp,dbl,{emit_string comp} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` ftest\n`;
` b {emit_label lbl}\n`;
fill_delay_slot dslot
| Ioddtest ->
emit_comib "OD" "EV" 0 i.arg lbl dslot
| Ieventest ->
emit_comib "EV" "OD" 0 i.arg lbl dslot
end
| Lcondbranch3(lbl0, lbl1, lbl2) ->
begin match lbl0 with
None -> ()
| Some lbl -> emit_comib "=" "<>" 0 i.arg lbl None
end;
begin match lbl1 with
None -> ()
| Some lbl -> emit_comib "=" "<>" 1 i.arg lbl None
end;
begin match lbl2 with
None -> ()
| Some lbl -> emit_comib "=" "<>" 2 i.arg lbl None
end
| Lswitch jumptbl ->
` blr {emit_reg i.arg.(0)}, 0\n`;
fill_delay_slot dslot;
for i = 0 to Array.length jumptbl - 1 do
` b {emit_label jumptbl.(i)}\n`;
` nop\n`
done
| Lsetuptrap lbl ->
` bl {emit_label lbl}, %r1\n`;
fill_delay_slot dslot
| Lpushtrap ->
stack_offset := !stack_offset + 8;
` stws,ma %r5, 8(%r30)\n`;
` stw %r1, -4(%r30)\n`;
` copy %r30, %r5\n`
| Lpoptrap ->
` ldws,mb -8(%r30), %r5\n`;
stack_offset := !stack_offset - 8
| Lraise ->
` ldw -4(%r5), %r1\n`;
` copy %r5, %r30\n`;
` bv 0(%r1)\n`;
` ldws,mb -8(%r30), %r5\n` (* in delay slot *)
and fill_delay_slot = function
None -> ` nop\n`
| Some i -> emit_instr i None
and emit_delay_slot = function
None -> ()
| Some i -> emit_instr i None
and emit_comb comp negcomp arg lbl dslot =
if lbl >= 0 then begin
` comb,{emit_string comp} {emit_reg arg.(0)}, {emit_reg arg.(1)}, {emit_label lbl}\n`;
fill_delay_slot dslot
end else begin
emit_delay_slot dslot;
` comclr,{emit_string negcomp} {emit_reg arg.(0)}, {emit_reg arg.(1)}, %r0\n`;
` b,n {emit_label (-lbl)}\n`
end
and emit_comib comp negcomp cst arg lbl dslot =
if lbl >= 0 then begin
` comib,{emit_string comp} {emit_int cst}, {emit_reg arg.(0)}, {emit_label lbl}\n`;
fill_delay_slot dslot
end else begin
emit_delay_slot dslot;
` comiclr,{emit_string negcomp} {emit_int cst}, {emit_reg arg.(0)}, %r0\n`;
` b,n {emit_label (-lbl)}\n`
end
(* Checks if a pseudo-instruction expands to exactly one machine instruction
that does not branch. *)
let is_one_instr i =
match i.desc with
Lop op ->
begin match op with
Imove | Ispill | Ireload ->
begin match (i.arg.(0), i.res.(0)) with
({typ = Float; loc = Stack s}, _) -> is_immediate(slot_offset s 1)
| (_, {typ = Float; loc = Stack s}) -> is_immediate(slot_offset s 1)
| (_, _) -> true
end
| Iconst_int n -> is_offset_native n
| Istackoffset _ -> true
| Iload(_, Iindexed n) -> i.res.(0).typ <> Float & is_offset n
| Istore(_, Iindexed n) -> i.arg.(0).typ <> Float & is_offset n
| Iintop(Iadd | Isub | Iand | Ior | Ixor) -> true
| Iintop_imm((Iadd | Isub | Ilsl | Ilsr | Iasr), _) -> true
| Inegf | Iabsf | Iaddf | Isubf | Imulf | Idivf -> true
| Ispecific _ -> true
| _ -> false
end
| Lreloadretaddr -> true
| _ -> false
let no_interference res arg =
try
for i = 0 to Array.length arg - 1 do
for j = 0 to Array.length res - 1 do
if arg.(i).loc = res.(j).loc then raise Exit
done
done;
true
with Exit ->
false
(* Emit a sequence of instructions, trying to fill delay slots for branches *)
let rec emit_all i =
match i with
{desc = Lend} -> ()
| {next = {desc = Lop(Icall_imm _)
| Lop(Iextcall(_, false))
| Lop(Iintop(Idiv | Imod))
| Lbranch _
| Lsetuptrap _ }}
when is_one_instr i ->
emit_instr i.next (Some i);
emit_all i.next.next
| {next = {desc = Lcondbranch(_, _) | Lswitch _}}
when is_one_instr i & no_interference i.res i.next.arg ->
emit_instr i.next (Some i);
emit_all i.next.next
| _ ->
emit_instr i None;
emit_all i.next
(* Estimate the size of an instruction, in actual HPPA instructions *)
let is_float_stack r =
match r with {loc = Stack _; typ = Float} -> true | _ -> false
let sizeof_instr i =
match i.desc with
Lend -> 0
| Lop op ->
begin match op with
Imove | Ispill | Ireload ->
if is_float_stack i.arg.(0) || is_float_stack i.res.(0)
then 2 (* ldo/fxxx *) else 1
| Iconst_int n ->
if is_offset_native n then 1 else 2 (* ldi or ldil/ldo *)
| Iconst_float _ -> 3 (* ldil/ldo/fldds *)
| Iconst_symbol _ -> 2 (* addil/ldo *)
| Icall_ind -> 2 (* ble/copy *)
| Icall_imm _ -> 2 (* bl/nop *)
| Itailcall_ind -> 2 (* bv/ldwm *)
| Itailcall_imm _ -> 2 (* bl/ldwm *)
| Iextcall(_, alloc) ->
if alloc then 3 (* ldil/bl/ldo *) else 2 (* bl/nop *)
| Istackoffset _ -> 1 (* ldo *)
| Iload(chunk, addr) ->
if i.res.(0).typ = Float
then 4 (* addil/ldo/fldws/fldws *)
else (match addr with Iindexed ofs when is_offset ofs -> 1 | _ -> 2)
+ (match chunk with Byte_signed -> 1 | Sixteen_signed -> 1 | _ -> 0)
| Istore(chunk, addr) ->
if i.arg.(0).typ = Float
then 4 (* addil/ldo/fstws/fstws *)
else (match addr with Iindexed ofs when is_offset ofs -> 1 | _ -> 2)
| Ialloc _ -> if !fastcode_flag then 7 else 3
| Iintop Imul -> 7
| Iintop(Idiv | Imod) -> 3 (* ldil/ble/nop *)
| Iintop Ilsl -> 3 (* subi/mtsar/zvdep *)
| Iintop Ilsr -> 2 (* mtsar/vshd *)
| Iintop Iasr -> 3 (* subi/mtsar/vextrs *)
| Iintop(Icomp _) -> 2 (* comclr/ldi *)
| Iintop Icheckbound -> 2 (* comclr/b,n *)
| Iintop _ -> 1
| Iintop_imm(Idiv, _) -> 4 (* comclr/zdepi/add/extrs *)
| Iintop_imm(Imod, _) -> 5 (* comclr/zdepi/add/extrs/sub *)
| Iintop_imm(Icomp _, _) -> 2 (* comiclr/ldi *)
| Iintop_imm(Icheckbound, _) -> 2 (* comiclr/b,n *)
| Iintop_imm(_, _) -> 1
| Ifloatofint -> 3 (* stws,ma/fldws,mb/fcnvxf *)
| Iintoffloat -> 3 (* fcnfxt/fstws/ldws *)
| _ (* Inegf|Iabsf|Iaddf|Isubf|Imulf|Idivf|Ispecific _ *) -> 1
end
| Lreloadretaddr -> 1
| Lreturn -> 2
| Llabel _ -> 0
| Lbranch _ -> 1 (* b,n *)
| Lcondbranch(Ifloattest(_, _), _) -> 4 (* fcmp/ftest/b/nop *)
| Lcondbranch(_, _) -> 2 (* comb/nop or comclr/b,n *)
| Lcondbranch3(_, _, _) -> 6 (* worst case: three comib/nop or comclr/b,n *)
| Lswitch tbl -> 2 + 2 * Array.length tbl (* blr/nop b/nop *)
| Lsetuptrap _ -> 2 (* bl/nop *)
| Lpushtrap -> 3 (* stws,ma/stw/copy *)
| Lpoptrap -> 1 (* ldws,mb *)
| Lraise -> 4 (* ldw/copy/bv/ldws,mb *)
(* Estimate the position of all labels in function body
and rewrite long conditional branches with a negative label. *)
let fixup_cond_branches funbody =
let label_position =
(Hashtbl.create 87 : (label, int) Hashtbl.t) in
let rec estimate_labels pos i =
match i.desc with
Lend -> ()
| Llabel lbl ->
Hashtbl.add label_position lbl pos; estimate_labels pos i.next
| _ -> estimate_labels (pos + sizeof_instr i) i.next in
let long_branch currpos lbl =
try
let displ = Hashtbl.find label_position lbl - currpos in
(* Branch offset is stored in 12 bits, giving a range of
-2048 to +2047. Here, we allow 10% error in estimating
the code positions. *)
displ < -1843 || displ > 1842
with Not_found ->
fatal_error "Emit_hppa.long_branch" in
let rec fix_branches pos i =
match i.desc with
Lend -> ()
| Lcondbranch(tst, lbl) ->
if long_branch pos lbl then i.desc <- Lcondbranch(tst, -lbl);
fix_branches (pos + sizeof_instr i) i.next
| Lcondbranch3(opt1, opt2, opt3) ->
let fix_opt = function
None -> None
| Some lbl -> Some(if long_branch pos lbl then -lbl else lbl) in
i.desc <- Lcondbranch3(fix_opt opt1, fix_opt opt2, fix_opt opt3);
fix_branches (pos + sizeof_instr i) i.next
| _ ->
fix_branches (pos + sizeof_instr i) i.next in
estimate_labels 0 funbody;
fix_branches 0 funbody
(* Emission of a function declaration *)
let fundecl fundecl =
fixup_cond_branches fundecl.fun_body;
function_name := fundecl.fun_name;
fastcode_flag := fundecl.fun_fast;
tailrec_entry_point := new_label();
stack_offset := 0;
float_constants := [];
define_symbol fundecl.fun_name;
range_check_trap := 0;
let n = frame_size() in
if hpux then begin
` .code\n`;
` .align 4\n`;
` .export {emit_symbol fundecl.fun_name}, entry, priv_lev=3\n`;
`{emit_symbol fundecl.fun_name}:\n`;
` .proc\n`;
if !contains_calls then
` .callinfo frame={emit_int n}, calls, save_rp\n`
else
` .callinfo frame={emit_int n}, no_calls\n`;
` .entry\n`
end else begin
` .text\n`;
` .align 2\n`;
` .globl {emit_symbol fundecl.fun_name}\n`;
`{emit_symbol fundecl.fun_name}:\n`
end;
if !contains_calls then
` stwm %r2, {emit_int n}(%r30)\n`
else if n > 0 then
` ldo {emit_int n}(%r30), %r30\n`;
`{emit_label !tailrec_entry_point}:\n`;
emit_all fundecl.fun_body;
if !range_check_trap > 0 then begin
`{emit_label !range_check_trap}:\n`;
if hpux then begin
emit_call "caml_array_bound_error" "%r31";
` nop\n`
end else begin
` ldil L\`{emit_symbol "caml_array_bound_error"}, %r1\n`;
` ble,n {emit_symbol_low "caml_array_bound_error"}(4, %r1)\n`
end
end;
if hpux then begin
` .exit\n`;
` .procend\n`
end;
List.iter emit_float_constant !float_constants
(* Emission of data *)
let emit_global s =
define_symbol s;
if hpux
then ` .export {emit_symbol s}, data\n`
else ` .globl {emit_symbol s}\n`
let emit_item = function
Cdefine_symbol s ->
emit_global s;
`{emit_symbol s}:\n`
| Cdefine_label lbl ->
`{emit_label (lbl + 100000)}:\n`
| Cint8 n ->
` .byte {emit_int n}\n`
| Cint16 n ->
` .short {emit_int n}\n`
| Cint32 n ->
` .long {emit_nativeint n}\n`
| Cint n ->
` .long {emit_nativeint n}\n`
| Csingle f ->
` .float {emit_string f}\n`
| Cdouble f ->
` .double {emit_string f}\n`
| Csymbol_address s ->
if hpux && String.length s >= 5 && String.sub s 0 5 = "caml_" then
` .import {emit_symbol s}, code\n`;
` .long {emit_symbol s}\n`
| Clabel_address lbl ->
` .long {emit_label(lbl + 100000)}\n`
| Cstring s ->
emit_string_directive " .ascii " s
| Cskip n ->
if n > 0 then
if hpux then ` .block {emit_int n}\n`
else ` .space {emit_int n}\n`
| Calign n ->
emit_align n
let data l =
` .data\n`;
List.iter emit_item l
(* Beginning / end of an assembly file *)
let begin_assembly() =
if hpux then begin
` .space $PRIVATE$\n`;
` .subspa $DATA$,quad=1,align=8,access=31\n`;
` .subspa $BSS$,quad=1,align=8,access=31,zero,sort=82\n`;
` .space $TEXT$\n`;
` .subspa $LIT$,quad=0,align=8,access=44\n`;
` .subspa $CODE$,quad=0,align=8,access=44,code_only\n`;
` .import $global$, data\n`;
` .import $$divI, millicode\n`;
` .import $$remI, millicode\n`
end;
used_symbols := StringSet.empty;
defined_symbols := StringSet.empty;
called_symbols := StringSet.empty;
Hashtbl.clear stub_label_table;
let lbl_begin = Compilenv.current_unit_name() ^ "_data_begin" in
` .data\n`;
emit_global lbl_begin;
`{emit_symbol lbl_begin}:\n`;
let lbl_begin = Compilenv.current_unit_name() ^ "_code_begin" in
` .code\n`;
emit_global lbl_begin;
`{emit_symbol lbl_begin}:\n`
let end_assembly() =
if not hpux then emit_stubs();
` .code\n`;
let lbl_end = Compilenv.current_unit_name() ^ "_code_end" in
emit_global lbl_end;
`{emit_symbol lbl_end}:\n`;
` .data\n`;
let lbl_end = Compilenv.current_unit_name() ^ "_data_end" in
emit_global lbl_end;
`{emit_symbol lbl_end}:\n`;
` .long 0\n`;
let lbl = Compilenv.current_unit_name() ^ "_frametable" in
emit_global lbl;
`{emit_symbol lbl}:\n`;
` .long {emit_int (List.length !frame_descriptors)}\n`;
List.iter emit_frame !frame_descriptors;
frame_descriptors := [];
if hpux then emit_imports()