ocaml/lex/compact.ml

129 lines
3.9 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Compaction of an automata *)
open Lexgen
(* Determine the integer occurring most frequently in an array *)
let most_frequent_elt v =
let frequencies = Hashtbl.create 17 in
let max_freq = ref 0 in
let most_freq = ref (v.(0)) in
for i = 0 to Array.length v - 1 do
let e = v.(i) in
let r =
try
Hashtbl.find frequencies e
with Not_found ->
let r = ref 1 in Hashtbl.add frequencies e r; r in
incr r;
if !r > !max_freq then begin max_freq := !r; most_freq := e end
done;
!most_freq
(* Transform an array into a list of (position, non-default element) *)
let non_default_elements def v =
let rec nondef i =
if i >= Array.length v then [] else begin
let e = v.(i) in
if e = def then nondef(i+1) else (i, e) :: nondef(i+1)
end in
nondef 0
(* Compact the transition and check arrays *)
let trans = ref(Array.create 1024 0)
and check = ref(Array.create 1024 (-1))
and last_used = ref 0
let grow_transitions () =
let old_trans = !trans
and old_check = !check in
let n = Array.length old_trans in
trans := Array.create (2*n) 0;
Array.blit old_trans 0 !trans 0 !last_used;
check := Array.create (2*n) (-1);
Array.blit old_check 0 !check 0 !last_used
let pack_moves state_num move_t =
let move_v = Array.create 257 0 in
for i = 0 to 256 do
move_v.(i) <-
(match move_t.(i) with
Backtrack -> -1
| Goto n -> n)
done;
let default = most_frequent_elt move_v in
let nondef = non_default_elements default move_v in
let rec pack_from b =
while b + 257 > Array.length !trans do grow_transitions() done;
let rec try_pack = function
[] -> b
| (pos, v) :: rem ->
if !check.(b + pos) = -1 then try_pack rem else pack_from (b+1) in
try_pack nondef in
let base = pack_from 0 in
List.iter
(fun (pos, v) ->
!trans.(base + pos) <- v;
!check.(base + pos) <- state_num)
nondef;
if base + 257 > !last_used then last_used := base + 257;
(base, default)
(* Build the tables *)
type lex_tables =
{ tbl_base: int array; (* Perform / Shift *)
tbl_backtrk: int array; (* No_remember / Remember *)
tbl_default: int array; (* Default transition *)
tbl_trans: int array; (* Transitions (compacted) *)
tbl_check: int array } (* Check (compacted) *)
let compact_tables state_v =
let n = Array.length state_v in
let base = Array.create n 0
and backtrk = Array.create n (-1)
and default = Array.create n 0 in
for i = 0 to n - 1 do
match state_v.(i) with
Perform n ->
base.(i) <- -(n+1)
| Shift(trans, move) ->
begin match trans with
No_remember -> ()
| Remember n -> backtrk.(i) <- n
end;
let (b, d) = pack_moves i move in
base.(i) <- b;
default.(i) <- d
done;
let tables =
{ tbl_base = base;
tbl_backtrk = backtrk;
tbl_default = default;
tbl_trans = Array.sub !trans 0 !last_used;
tbl_check = Array.sub !check 0 !last_used }
in
trans := Array.create 1024 0;
check := Array.create 1024 (-1);
last_used := 0;
tables