ocaml/typing/typedecl.ml

244 lines
8.3 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Typing of type definitions *)
open Parsetree
open Types
open Typedtree
open Typetexp
type error =
Repeated_parameter
| Duplicate_constructor of string
| Too_many_constructors
| Duplicate_label of string
| Recursive_abbrev of string
| Definition_mismatch of type_expr
| Illdefined_abbrev of string
exception Error of Location.t * error
(* Enter all declared types in the environment as abstract types *)
let rec enter_types env = function
[] ->
([], env)
| (name, sdecl) :: srem ->
let decl =
{ type_params = []; (*this field is unused when kind = Type_abstract*)
type_arity = List.length sdecl.ptype_params;
type_kind = Type_abstract;
type_manifest = None } in
let (id, extenv) = Env.enter_type name decl env in
let (rem_id, final_env) = enter_types extenv srem in
(id :: rem_id, final_env)
(* Translate one type declaration *)
module StringSet =
Set.Make(struct
type t = string
let compare = compare
end)
let transl_declaration env (name, sdecl) id =
reset_type_variables();
Ctype.begin_def();
let params =
try
List.map (enter_type_variable true) sdecl.ptype_params
with Already_bound ->
raise(Error(sdecl.ptype_loc, Repeated_parameter)) in
let decl =
{ type_params = params;
type_arity = List.length params;
type_kind =
begin match sdecl.ptype_kind with
Ptype_abstract ->
Type_abstract
| Ptype_variant cstrs ->
let all_constrs = ref StringSet.empty in
List.iter
(fun (name, args) ->
if StringSet.mem name !all_constrs then
raise(Error(sdecl.ptype_loc, Duplicate_constructor name));
all_constrs := StringSet.add name !all_constrs)
cstrs;
if List.length cstrs > Config.max_tag then
raise(Error(sdecl.ptype_loc, Too_many_constructors));
Type_variant(List.map
(fun (name, args) ->
(name, List.map (transl_simple_type env true) args))
cstrs)
| Ptype_record lbls ->
let all_labels = ref StringSet.empty in
List.iter
(fun (name, mut, arg) ->
if StringSet.mem name !all_labels then
raise(Error(sdecl.ptype_loc, Duplicate_label name));
all_labels := StringSet.add name !all_labels)
lbls;
Type_record(List.map
(fun (name, mut, arg) ->
(name, mut, transl_simple_type env true arg))
lbls)
end;
type_manifest =
begin match sdecl.ptype_manifest with
None -> None
| Some sty ->
Some (Ctype.unroll_abbrev id params
(transl_simple_type env true sty))
end } in
Ctype.end_def();
List.iter Ctype.generalize params;
begin match decl.type_kind with
Type_abstract ->
()
| Type_variant v ->
List.iter (fun (_, tyl) -> List.iter Ctype.generalize tyl) v
| Type_record r ->
List.iter (fun (_, _, ty) -> Ctype.generalize ty) r
end;
begin match decl.type_manifest with
None -> ()
| Some ty -> Ctype.generalize ty
end;
(* If both a variant/record definition and a type equation are given,
need to check that the equation refers to a type of the same kind
with the same constructors and labels *)
begin match decl with
{type_kind = (Type_variant _ | Type_record _); type_manifest = Some ty} ->
begin match ty.desc with
Tconstr(path, args, _) ->
begin try
let decl' = Env.find_type path env in
if List.length args = List.length params
&& List.for_all2 (fun v1 v2 -> Ctype.repr v1 == Ctype.repr v2)
args params
&& Includecore.type_declarations env id
(Subst.type_declaration (Subst.add_type id path Subst.identity)
decl)
decl'
then ()
else raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
with Not_found ->
raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
end
| _ -> raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
end
| _ -> ()
end;
(id, decl)
(* Check for ill-defined abbrevs *)
let check_recursive_abbrev env (name, sdecl) (id, decl) =
match decl.type_manifest with
Some ty ->
begin try Ctype.correct_abbrev env id decl.type_params ty with
Ctype.Recursive_abbrev ->
raise(Error(sdecl.ptype_loc, Recursive_abbrev name))
| Ctype.Nonlinear_abbrev ->
raise(Error(sdecl.ptype_loc, Illdefined_abbrev name))
end
| _ ->
()
(* Translate a set of mutually recursive type declarations *)
let transl_type_decl env name_sdecl_list =
(* Enter the types as abstract *)
let (id_list, temp_env) = enter_types env name_sdecl_list in
(* Since we've introduced fresh idents, make sure the definition level
is at least the binding time of these events. Otherwise, passing
one of the recursively-defined type constrs as argument to an
abbreviation may fail. *)
Ctype.init_def(Ident.current_time());
(* Translate each declaration *)
let decls =
List.map2 (transl_declaration temp_env) name_sdecl_list id_list in
(* Build the final env *)
let newenv =
List.fold_right
(fun (id, decl) env -> Env.add_type id decl env)
decls env in
(* Check for recursive abbrevs *)
List.iter2 (check_recursive_abbrev newenv) name_sdecl_list decls;
(* Done *)
(decls, newenv)
(* Translate an exception declaration *)
let transl_exception env excdecl =
reset_type_variables();
List.map (transl_simple_type env true) excdecl
(* Translate a value declaration *)
let transl_value_decl env valdecl =
let ty = Typetexp.transl_type_scheme env valdecl.pval_type in
let prim = Primitive.parse_declaration (Ctype.arity ty) valdecl.pval_prim in
{ val_type = ty;
val_kind = match prim with Some p -> Val_prim p | None -> Val_reg }
(* Translate a "with" constraint -- much simplified version of
transl_type_decl. *)
let transl_with_constraint env sdecl =
reset_type_variables();
Ctype.begin_def();
let params =
try
List.map (enter_type_variable true) sdecl.ptype_params
with Already_bound ->
raise(Error(sdecl.ptype_loc, Repeated_parameter)) in
Ctype.end_def();
List.iter Ctype.generalize params;
{ type_params = params;
type_arity = List.length params;
type_kind = Type_abstract;
type_manifest =
begin match sdecl.ptype_manifest with
None -> None
| Some sty -> Some(transl_simple_type env true sty)
end }
(* Error report *)
open Format
let report_error = function
Repeated_parameter ->
print_string "A type parameter occurs several times"
| Duplicate_constructor s ->
print_string "Two constructors are named "; print_string s
| Too_many_constructors ->
print_string "Too many constructors -- maximum is ";
print_int Config.max_tag; print_string " constructors"
| Duplicate_label s ->
print_string "Two labels are named "; print_string s
| Recursive_abbrev s ->
print_string "The type abbreviation "; print_string s;
print_string " is cyclic"
| Definition_mismatch ty ->
print_string
"The variant or record definition does not match that of type";
print_space(); Printtyp.type_expr ty
| Illdefined_abbrev s ->
print_string "The type abbreviation "; print_string s;
print_string " is ill-defined"