ocaml/test/KB/orderings.ml

99 lines
3.3 KiB
OCaml

(***********************************************************************)
(* *)
(* Caml Special Light *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1995 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(*********************** Recursive Path Ordering ****************************)
open Terms
type ordering =
Greater
| Equal
| NotGE
let ge_ord order pair = match order pair with NotGE -> false | _ -> true
and gt_ord order pair = match order pair with Greater -> true | _ -> false
and eq_ord order pair = match order pair with Equal -> true | _ -> false
let rec rem_eq equiv x = function
[] -> failwith "rem_eq"
| y::l -> if equiv (x,y) then l else y :: rem_eq equiv x l
let diff_eq equiv (x,y) =
let rec diffrec = function
([],_) as p -> p
| (h::t, y) -> try
diffrec (t, rem_eq equiv h y)
with Failure _ ->
let (x',y') = diffrec (t,y) in (h::x',y') in
if List.length x > List.length y then diffrec(y,x) else diffrec(x,y)
(* Multiset extension of order *)
let mult_ext order = function
Term(_,sons1), Term(_,sons2) ->
begin match diff_eq (eq_ord order) (sons1,sons2) with
([],[]) -> Equal
| (l1,l2) ->
if List.for_all
(fun n -> List.exists (fun m -> gt_ord order (m,n)) l1) l2
then Greater else NotGE
end
| _ -> failwith "mult_ext"
(* Lexicographic extension of order *)
let lex_ext order = function
(Term(_,sons1) as m), (Term(_,sons2) as n) ->
let rec lexrec = function
([] , []) -> Equal
| ([] , _ ) -> NotGE
| ( _ , []) -> Greater
| (x1::l1, x2::l2) ->
match order (x1,x2) with
Greater -> if List.for_all (fun n' -> gt_ord order (m,n')) l2
then Greater else NotGE
| Equal -> lexrec (l1,l2)
| NotGE -> if List.exists (fun m' -> ge_ord order (m',n)) l1
then Greater else NotGE in
lexrec (sons1, sons2)
| _ -> failwith "lex_ext"
(* Recursive path ordering *)
let rpo op_order ext =
let rec rporec (m,n) =
if m = n then Equal else
match m with
Var vm -> NotGE
| Term(op1,sons1) ->
match n with
Var vn ->
if occurs vn m then Greater else NotGE
| Term(op2,sons2) ->
match (op_order op1 op2) with
Greater ->
if List.for_all (fun n' -> gt_ord rporec (m,n')) sons2
then Greater else NotGE
| Equal ->
ext rporec (m,n)
| NotGE ->
if List.exists (fun m' -> ge_ord rporec (m',n)) sons1
then Greater else NotGE
in rporec