ocaml/ocamldoc/odoc_dep.ml

221 lines
6.3 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Maxence Guesdon, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 2001 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(** Top modules dependencies. *)
module StrS = Depend.StringSet
module StrM = Depend.StringMap
module Module = Odoc_module
module Type = Odoc_type
let set_to_list s =
let l = ref [] in
StrS.iter (fun e -> l := e :: !l) s;
!l
let impl_dependencies ast =
Depend.free_structure_names := StrS.empty;
Depend.add_use_file StrM.empty [Parsetree.Ptop_def ast];
set_to_list !Depend.free_structure_names
let intf_dependencies ast =
Depend.free_structure_names := StrS.empty;
Depend.add_signature StrM.empty ast;
set_to_list !Depend.free_structure_names
module Dep =
struct
type id = string
module S = Set.Make (struct
type t = string
let compare (x:t) y = compare x y
end)
let set_to_list s =
let l = ref [] in
S.iter (fun e -> l := e :: !l) s;
!l
type node = {
id : id ;
mutable near : S.t ; (** direct children *)
mutable far : (id * S.t) list ; (** indirect children, from which children path *)
reflex : bool ; (** reflexive or not, we keep
information here to remove the node itself from its direct children *)
}
type graph = node list
let make_node s children =
let set = List.fold_right
S.add
children
S.empty
in
{ id = s;
near = S.remove s set ;
far = [] ;
reflex = List.mem s children ;
}
let get_node graph s =
try List.find (fun n -> n.id = s) graph
with Not_found ->
make_node s []
let rec trans_closure graph acc n =
if S.mem n.id acc then
acc
else
(* potential optimisation: use far field if nonempty? *)
S.fold
(fun child -> fun acc2 ->
trans_closure graph acc2 (get_node graph child))
n.near
(S.add n.id acc)
let node_trans_closure graph n =
let far = List.map
(fun child ->
let set = trans_closure graph S.empty (get_node graph child) in
(child, set)
)
(set_to_list n.near)
in
n.far <- far
let compute_trans_closure graph =
List.iter (node_trans_closure graph) graph
let prune_node graph node =
S.iter
(fun child ->
let set_reachables = List.fold_left
(fun acc -> fun (ch, reachables) ->
if child = ch then
acc
else
S.union acc reachables
)
S.empty
node.far
in
let set = S.remove node.id set_reachables in
if S.exists (fun n2 -> S.mem child (get_node graph n2).near) set then
(
node.near <- S.remove child node.near ;
node.far <- List.filter (fun (ch,_) -> ch <> child) node.far
)
else
()
)
node.near;
if node.reflex then
node.near <- S.add node.id node.near
else
()
let kernel graph =
(* compute transitive closure *)
compute_trans_closure graph ;
(* remove edges to keep a transitive kernel *)
List.iter (prune_node graph) graph;
graph
end
(** [type_deps t] returns the list of fully qualified type names
[t] depends on. *)
let type_deps t =
let module T = Odoc_type in
let l = ref [] in
let re = Str.regexp "\\([A-Z]\\([a-zA-Z_'0-9]\\)*\\.\\)+\\([a-z][a-zA-Z_'0-9]*\\)" in
let f s =
let s2 = Str.matched_string s in
l := s2 :: !l ;
s2
in
let ty t =
let s = Odoc_print.string_of_type_expr t in
ignore (Str.global_substitute re f s)
in
(match t.T.ty_kind with
T.Type_abstract -> ()
| T.Type_variant cl ->
List.iter
(fun c ->
match c.T.vc_args with
| T.Cstr_tuple l -> List.iter ty l
| T.Cstr_record l -> List.iter (fun r -> ty r.T.rf_type) l
)
cl
| T.Type_record rl ->
List.iter (fun r -> ty r.T.rf_type) rl
| T.Type_open -> ()
);
(match t.T.ty_manifest with
None -> ()
| Some (T.Object_type fields) ->
List.iter (fun r -> ty r.T.of_type) fields
| Some (T.Other e) ->
ty e
);
!l
(** Modify the modules depencies of the given list of modules,
to get the minimum transitivity kernel. *)
let kernel_deps_of_modules modules =
let graph = List.map
(fun m -> Dep.make_node m.Module.m_name m.Module.m_top_deps)
modules
in
let k = Dep.kernel graph in
List.iter
(fun m ->
let node = Dep.get_node k m.Module.m_name in
m.Module.m_top_deps <-
List.filter (fun m2 -> Dep.S.mem m2 node.Dep.near) m.Module.m_top_deps)
modules
(** Return the list of dependencies between the given types,
in the form of a list [(type, names of types it depends on)].
@param kernel indicates if we must keep only the transitivity kernel
of the dependencies. Default is [false].
*)
let deps_of_types ?(kernel=false) types =
let deps_pre = List.map (fun t -> (t, type_deps t)) types in
if kernel then
(
let graph = List.map
(fun (t, names) -> Dep.make_node t.Type.ty_name names)
deps_pre
in
let k = Dep.kernel graph in
List.map
(fun t ->
let node = Dep.get_node k t.Type.ty_name in
(t, Dep.set_to_list node.Dep.near)
)
types
)
else
deps_pre