ocaml/asmcomp/amd64/emit.mlp

795 lines
26 KiB
Plaintext

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Emission of x86-64 (AMD 64) assembly code *)
open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux
let macosx =
match Config.system with
| "macosx" -> true
| _ -> false
(* Tradeoff between code size and code speed *)
let fastcode_flag = ref true
let stack_offset = ref 0
(* Layout of the stack frame *)
let frame_required () =
!contains_calls || num_stack_slots.(0) > 0 || num_stack_slots.(1) > 0
let frame_size () = (* includes return address *)
if frame_required() then begin
let sz =
(!stack_offset + 8 * (num_stack_slots.(0) + num_stack_slots.(1)) + 8)
in Misc.align sz 16
end else
!stack_offset + 8
let slot_offset loc cl =
match loc with
Incoming n -> frame_size() + n
| Local n ->
if cl = 0
then !stack_offset + n * 8
else !stack_offset + (num_stack_slots.(0) + n) * 8
| Outgoing n -> n
(* Symbols *)
let emit_symbol s =
if macosx then emit_string "_";
Emitaux.emit_symbol '$' s
let emit_call s =
if !Clflags.dlcode && not macosx
then `call {emit_symbol s}@PLT`
else `call {emit_symbol s}`
let emit_jump s =
if !Clflags.dlcode && not macosx
then `jmp {emit_symbol s}@PLT`
else `jmp {emit_symbol s}`
let load_symbol_addr s =
if !Clflags.dlcode
then `movq {emit_symbol s}@GOTPCREL(%rip)`
else if !pic_code
then `leaq {emit_symbol s}(%rip)`
else `movq ${emit_symbol s}`
(* Output a label *)
let emit_label lbl =
emit_string ".L"; emit_int lbl
(* Output a .align directive. *)
let emit_align n =
let n = if macosx then Misc.log2 n else n in
` .align {emit_int n}\n`
let emit_Llabel fallthrough lbl =
if not fallthrough && !fastcode_flag then emit_align 4;
emit_label lbl
(* Output a pseudo-register *)
let emit_reg = function
{ loc = Reg r } ->
emit_string (register_name r)
| { loc = Stack s } as r ->
let ofs = slot_offset s (register_class r) in
`{emit_int ofs}(%rsp)`
| { loc = Unknown } ->
assert false
(* Output a reference to the lower 8, 16 or 32 bits of a register *)
let reg_low_8_name =
[| "%al"; "%bl"; "%dil"; "%sil"; "%dl"; "%cl"; "%r8b"; "%r9b";
"%r10b"; "%r11b"; "%bpl"; "%r12b"; "%r13b" |]
let reg_low_16_name =
[| "%ax"; "%bx"; "%di"; "%si"; "%dx"; "%cx"; "%r8w"; "%r9w";
"%r10w"; "%r11w"; "%bp"; "%r12w"; "%r13w" |]
let reg_low_32_name =
[| "%eax"; "%ebx"; "%edi"; "%esi"; "%edx"; "%ecx"; "%r8d"; "%r9d";
"%r10d"; "%r11d"; "%ebp"; "%r12d"; "%r13d" |]
let emit_subreg tbl r =
match r.loc with
Reg r when r < 13 ->
emit_string tbl.(r)
| Stack s ->
let ofs = slot_offset s (register_class r) in
`{emit_int ofs}(%rsp)`
| _ ->
assert false
let emit_reg8 r = emit_subreg reg_low_8_name r
let emit_reg16 r = emit_subreg reg_low_16_name r
let emit_reg32 r = emit_subreg reg_low_32_name r
(* Output an addressing mode *)
let emit_addressing addr r n =
match addr with
| Ibased _ when !Clflags.dlcode -> assert false
| Ibased(s, d) ->
`{emit_symbol s}`;
if d <> 0 then ` + {emit_int d}`;
`(%rip)`
| Iindexed d ->
if d <> 0 then emit_int d;
`({emit_reg r.(n)})`
| Iindexed2 d ->
if d <> 0 then emit_int d;
`({emit_reg r.(n)}, {emit_reg r.(n+1)})`
| Iscaled(2, d) ->
if d <> 0 then emit_int d;
`({emit_reg r.(n)}, {emit_reg r.(n)})`
| Iscaled(scale, d) ->
if d <> 0 then emit_int d;
`(, {emit_reg r.(n)}, {emit_int scale})`
| Iindexed2scaled(scale, d) ->
if d <> 0 then emit_int d;
`({emit_reg r.(n)}, {emit_reg r.(n+1)}, {emit_int scale})`
(* Record live pointers at call points -- see Emitaux *)
let record_frame_label live dbg =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
{typ = Addr; loc = Reg r} ->
live_offset := ((r lsl 1) + 1) :: !live_offset
| {typ = Addr; loc = Stack s} as reg ->
live_offset := slot_offset s (register_class reg) :: !live_offset
| _ -> ())
live;
frame_descriptors :=
{ fd_lbl = lbl;
fd_frame_size = frame_size();
fd_live_offset = !live_offset;
fd_debuginfo = dbg } :: !frame_descriptors;
lbl
let record_frame live dbg =
let lbl = record_frame_label live dbg in `{emit_label lbl}:\n`
(* Record calls to the GC -- we've moved them out of the way *)
type gc_call =
{ gc_lbl: label; (* Entry label *)
gc_return_lbl: label; (* Where to branch after GC *)
gc_frame: label } (* Label of frame descriptor *)
let call_gc_sites = ref ([] : gc_call list)
let emit_call_gc gc =
`{emit_label gc.gc_lbl}: {emit_call "caml_call_gc"}\n`;
`{emit_label gc.gc_frame}: jmp {emit_label gc.gc_return_lbl}\n`
(* Record calls to caml_ml_array_bound_error.
In -g mode, we maintain one call to caml_ml_array_bound_error
per bound check site. Without -g, we can share a single call. *)
type bound_error_call =
{ bd_lbl: label; (* Entry label *)
bd_frame: label } (* Label of frame descriptor *)
let bound_error_sites = ref ([] : bound_error_call list)
let bound_error_call = ref 0
let bound_error_label dbg =
if !Clflags.debug then begin
let lbl_bound_error = new_label() in
let lbl_frame = record_frame_label Reg.Set.empty dbg in
bound_error_sites :=
{ bd_lbl = lbl_bound_error; bd_frame = lbl_frame } :: !bound_error_sites;
lbl_bound_error
end else begin
if !bound_error_call = 0 then bound_error_call := new_label();
!bound_error_call
end
let emit_call_bound_error bd =
`{emit_label bd.bd_lbl}: {emit_call "caml_ml_array_bound_error"}\n`;
`{emit_label bd.bd_frame}:\n`
let emit_call_bound_errors () =
List.iter emit_call_bound_error !bound_error_sites;
if !bound_error_call > 0 then
`{emit_label !bound_error_call}: {emit_call "caml_ml_array_bound_error"}\n`
(* Names for instructions *)
let instr_for_intop = function
Iadd -> "addq"
| Isub -> "subq"
| Imul -> "imulq"
| Iand -> "andq"
| Ior -> "orq"
| Ixor -> "xorq"
| Ilsl -> "salq"
| Ilsr -> "shrq"
| Iasr -> "sarq"
| _ -> assert false
let instr_for_floatop = function
Iaddf -> "addsd"
| Isubf -> "subsd"
| Imulf -> "mulsd"
| Idivf -> "divsd"
| _ -> assert false
let instr_for_floatarithmem = function
Ifloatadd -> "addsd"
| Ifloatsub -> "subsd"
| Ifloatmul -> "mulsd"
| Ifloatdiv -> "divsd"
let name_for_cond_branch = function
Isigned Ceq -> "e" | Isigned Cne -> "ne"
| Isigned Cle -> "le" | Isigned Cgt -> "g"
| Isigned Clt -> "l" | Isigned Cge -> "ge"
| Iunsigned Ceq -> "e" | Iunsigned Cne -> "ne"
| Iunsigned Cle -> "be" | Iunsigned Cgt -> "a"
| Iunsigned Clt -> "b" | Iunsigned Cge -> "ae"
(* Output an = 0 or <> 0 test. *)
let output_test_zero arg =
match arg.loc with
Reg r -> ` testq {emit_reg arg}, {emit_reg arg}\n`
| _ -> ` cmpq $0, {emit_reg arg}\n`
(* Output a floating-point compare and branch *)
let emit_float_test cmp neg arg lbl =
begin match cmp with
| Ceq | Cne -> ` ucomisd `
| _ -> ` comisd `
end;
`{emit_reg arg.(1)}, {emit_reg arg.(0)}\n`;
let (branch_opcode, need_jp) =
match (cmp, neg) with
(Ceq, false) -> ("je", true)
| (Ceq, true) -> ("jne", true)
| (Cne, false) -> ("jne", true)
| (Cne, true) -> ("je", true)
| (Clt, false) -> ("jb", true)
| (Clt, true) -> ("jae", true)
| (Cle, false) -> ("jbe", true)
| (Cle, true) -> ("ja", true)
| (Cgt, false) -> ("ja", false)
| (Cgt, true) -> ("jbe", false)
| (Cge, false) -> ("jae", true)
| (Cge, true) -> ("jb", false) in
let branch_if_not_comparable =
if cmp = Cne then not neg else neg in
if need_jp then
if branch_if_not_comparable then begin
` jp {emit_label lbl}\n`;
` {emit_string branch_opcode} {emit_label lbl}\n`
end else begin
let next = new_label() in
` jp {emit_label next}\n`;
` {emit_string branch_opcode} {emit_label lbl}\n`;
`{emit_label next}:\n`
end
else begin
` {emit_string branch_opcode} {emit_label lbl}\n`
end
(* Deallocate the stack frame before a return or tail call *)
let output_epilogue () =
if frame_required() then begin
let n = frame_size() - 8 in
` addq ${emit_int n}, %rsp\n`
end
(* Output the assembly code for an instruction *)
(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
let float_constants = ref ([] : (int * string) list)
let emit_instr fallthrough i =
match i.desc with
Lend -> ()
| Lop(Imove | Ispill | Ireload) ->
let src = i.arg.(0) and dst = i.res.(0) in
if src.loc <> dst.loc then begin
if src.typ = Float then
` movsd {emit_reg src}, {emit_reg dst}\n`
else
` movq {emit_reg src}, {emit_reg dst}\n`
end
| Lop(Iconst_int n) ->
if n = 0n then begin
match i.res.(0).loc with
Reg n -> ` xorq {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
| _ -> ` movq $0, {emit_reg i.res.(0)}\n`
end else if n <= 0x7FFFFFFFn && n >= -0x80000000n then
` movq ${emit_nativeint n}, {emit_reg i.res.(0)}\n`
else
` movabsq ${emit_nativeint n}, {emit_reg i.res.(0)}\n`
| Lop(Iconst_float s) ->
begin match Int64.bits_of_float (float_of_string s) with
| 0x0000_0000_0000_0000L -> (* +0.0 *)
` xorpd {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
| _ ->
let lbl = new_label() in
float_constants := (lbl, s) :: !float_constants;
` movlpd {emit_label lbl}(%rip), {emit_reg i.res.(0)}\n`
end
| Lop(Iconst_symbol s) ->
` {load_symbol_addr s}, {emit_reg i.res.(0)}\n`
| Lop(Icall_ind) ->
` call *{emit_reg i.arg.(0)}\n`;
record_frame i.live i.dbg
| Lop(Icall_imm(s)) ->
` {emit_call s}\n`;
record_frame i.live i.dbg
| Lop(Itailcall_ind) ->
output_epilogue();
` jmp *{emit_reg i.arg.(0)}\n`
| Lop(Itailcall_imm s) ->
if s = !function_name then
` jmp {emit_label !tailrec_entry_point}\n`
else begin
output_epilogue();
` {emit_jump s}\n`
end
| Lop(Iextcall(s, alloc)) ->
if alloc then begin
` {load_symbol_addr s}, %rax\n`;
` {emit_call "caml_c_call"}\n`;
record_frame i.live i.dbg
end else begin
` {emit_call s}\n`
end
| Lop(Istackoffset n) ->
if n < 0
then ` addq ${emit_int(-n)}, %rsp\n`
else ` subq ${emit_int(n)}, %rsp\n`;
stack_offset := !stack_offset + n
| Lop(Iload(chunk, addr)) ->
let dest = i.res.(0) in
begin match chunk with
| Word ->
` movq {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Byte_unsigned ->
` movzbq {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Byte_signed ->
` movsbq {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Sixteen_unsigned ->
` movzwq {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Sixteen_signed ->
` movswq {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Thirtytwo_unsigned ->
` movl {emit_addressing addr i.arg 0}, {emit_reg32 dest}\n`
| Thirtytwo_signed ->
` movslq {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Single ->
` cvtss2sd {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Double | Double_u ->
` movlpd {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
end
| Lop(Istore(chunk, addr)) ->
begin match chunk with
| Word ->
` movq {emit_reg i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
| Byte_unsigned | Byte_signed ->
` movb {emit_reg8 i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
| Sixteen_unsigned | Sixteen_signed ->
` movw {emit_reg16 i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
| Thirtytwo_signed | Thirtytwo_unsigned ->
` movl {emit_reg32 i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
| Single ->
` cvtsd2ss {emit_reg i.arg.(0)}, %xmm15\n`;
` movss %xmm15, {emit_addressing addr i.arg 1}\n`
| Double | Double_u ->
` movlpd {emit_reg i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
end
| Lop(Ialloc n) ->
if !fastcode_flag then begin
let lbl_redo = new_label() in
`{emit_label lbl_redo}: subq ${emit_int n}, %r15\n`;
if !Clflags.dlcode then begin
` {load_symbol_addr "caml_young_limit"}, %rax\n`;
` cmpq (%rax), %r15\n`;
end else
` cmpq {emit_symbol "caml_young_limit"}(%rip), %r15\n`;
let lbl_call_gc = new_label() in
let lbl_frame = record_frame_label i.live Debuginfo.none in
` jb {emit_label lbl_call_gc}\n`;
` leaq 8(%r15), {emit_reg i.res.(0)}\n`;
call_gc_sites :=
{ gc_lbl = lbl_call_gc;
gc_return_lbl = lbl_redo;
gc_frame = lbl_frame } :: !call_gc_sites
end else begin
begin match n with
16 -> ` {emit_call "caml_alloc1"}\n`
| 24 -> ` {emit_call "caml_alloc2"}\n`
| 32 -> ` {emit_call "caml_alloc3"}\n`
| _ -> ` movq ${emit_int n}, %rax\n`;
` {emit_call "caml_allocN"}\n`
end;
`{record_frame i.live Debuginfo.none} leaq 8(%r15), {emit_reg i.res.(0)}\n`
end
| Lop(Iintop(Icomp cmp)) ->
` cmpq {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` set{emit_string b} %al\n`;
` movzbq %al, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Icomp cmp, n)) ->
` cmpq ${emit_int n}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` set{emit_string b} %al\n`;
` movzbq %al, {emit_reg i.res.(0)}\n`
| Lop(Iintop Icheckbound) ->
let lbl = bound_error_label i.dbg in
` cmpq {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
` jbe {emit_label lbl}\n`
| Lop(Iintop_imm(Icheckbound, n)) ->
let lbl = bound_error_label i.dbg in
` cmpq ${emit_int n}, {emit_reg i.arg.(0)}\n`;
` jbe {emit_label lbl}\n`
| Lop(Iintop(Idiv | Imod)) ->
` cqto\n`;
` idivq {emit_reg i.arg.(1)}\n`
| Lop(Iintop(Ilsl | Ilsr | Iasr as op)) ->
(* We have i.arg.(0) = i.res.(0) and i.arg.(1) = %rcx *)
` {emit_string(instr_for_intop op)} %cl, {emit_reg i.res.(0)}\n`
| Lop(Iintop op) ->
(* We have i.arg.(0) = i.res.(0) *)
` {emit_string(instr_for_intop op)} {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Iadd, n)) when i.arg.(0).loc <> i.res.(0).loc ->
` leaq {emit_int n}({emit_reg i.arg.(0)}), {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Iadd, 1) | Iintop_imm(Isub, -1)) ->
` incq {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Iadd, -1) | Iintop_imm(Isub, 1)) ->
` decq {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Idiv, n)) ->
(* Note: i.arg.(0) = i.res.(0) = rdx (cf. selection.ml) *)
let l = Misc.log2 n in
` movq {emit_reg i.arg.(0)}, %rax\n`;
` addq ${emit_int(n-1)}, {emit_reg i.arg.(0)}\n`;
` testq %rax, %rax\n`;
` cmovns %rax, {emit_reg i.arg.(0)}\n`;
` sarq ${emit_int l}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Imod, n)) ->
(* Note: i.arg.(0) = i.res.(0) = rdx (cf. selection.ml) *)
` movq {emit_reg i.arg.(0)}, %rax\n`;
` testq %rax, %rax\n`;
` leaq {emit_int(n-1)}(%rax), %rax\n`;
` cmovns {emit_reg i.arg.(0)}, %rax\n`;
` andq ${emit_int (-n)}, %rax\n`;
` subq %rax, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(op, n)) ->
(* We have i.arg.(0) = i.res.(0) *)
` {emit_string(instr_for_intop op)} ${emit_int n}, {emit_reg i.res.(0)}\n`
| Lop(Inegf) ->
` xorpd {emit_symbol "caml_negf_mask"}(%rip), {emit_reg i.res.(0)}\n`
| Lop(Iabsf) ->
` andpd {emit_symbol "caml_absf_mask"}(%rip), {emit_reg i.res.(0)}\n`
| Lop(Iaddf | Isubf | Imulf | Idivf as floatop) ->
` {emit_string(instr_for_floatop floatop)} {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`
| Lop(Ifloatofint) ->
` cvtsi2sdq {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Iintoffloat) ->
` cvttsd2siq {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Ispecific(Ilea addr)) ->
` leaq {emit_addressing addr i.arg 0}, {emit_reg i.res.(0)}\n`
| Lop(Ispecific(Istore_int(n, addr))) ->
` movq ${emit_nativeint n}, {emit_addressing addr i.arg 0}\n`
| Lop(Ispecific(Istore_symbol(s, addr))) ->
assert (not !pic_code && not !Clflags.dlcode);
` movq ${emit_symbol s}, {emit_addressing addr i.arg 0}\n`
| Lop(Ispecific(Ioffset_loc(n, addr))) ->
` addq ${emit_int n}, {emit_addressing addr i.arg 0}\n`
| Lop(Ispecific(Ifloatarithmem(op, addr))) ->
` {emit_string(instr_for_floatarithmem op)} {emit_addressing addr i.arg 1}, {emit_reg i.res.(0)}\n`
| Lreloadretaddr ->
()
| Lreturn ->
output_epilogue();
` ret\n`
| Llabel lbl ->
`{emit_Llabel fallthrough lbl}:\n`
| Lbranch lbl ->
` jmp {emit_label lbl}\n`
| Lcondbranch(tst, lbl) ->
begin match tst with
Itruetest ->
output_test_zero i.arg.(0);
` jne {emit_label lbl}\n`
| Ifalsetest ->
output_test_zero i.arg.(0);
` je {emit_label lbl}\n`
| Iinttest cmp ->
` cmpq {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Iinttest_imm((Isigned Ceq | Isigned Cne |
Iunsigned Ceq | Iunsigned Cne) as cmp, 0) ->
output_test_zero i.arg.(0);
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Iinttest_imm(cmp, n) ->
` cmpq ${emit_int n}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Ifloattest(cmp, neg) ->
emit_float_test cmp neg i.arg lbl
| Ioddtest ->
` testb $1, {emit_reg8 i.arg.(0)}\n`;
` jne {emit_label lbl}\n`
| Ieventest ->
` testb $1, {emit_reg8 i.arg.(0)}\n`;
` je {emit_label lbl}\n`
end
| Lcondbranch3(lbl0, lbl1, lbl2) ->
` cmpq $1, {emit_reg i.arg.(0)}\n`;
begin match lbl0 with
None -> ()
| Some lbl -> ` jb {emit_label lbl}\n`
end;
begin match lbl1 with
None -> ()
| Some lbl -> ` je {emit_label lbl}\n`
end;
begin match lbl2 with
None -> ()
| Some lbl -> ` jg {emit_label lbl}\n`
end
| Lswitch jumptbl ->
let lbl = new_label() in
(* rax and rdx are clobbered by the Lswitch,
meaning that no variable that is live across the Lswitch
is assigned to rax or rdx. However, the argument to Lswitch
can still be assigned to one of these two registers, so
we must be careful not to clobber it before use. *)
let (tmp1, tmp2) =
if i.arg.(0).loc = Reg 0 (* rax *)
then (phys_reg 4 (*rdx*), phys_reg 0 (*rax*))
else (phys_reg 0 (*rax*), phys_reg 4 (*rdx*)) in
` leaq {emit_label lbl}(%rip), {emit_reg tmp1}\n`;
` movslq ({emit_reg tmp1}, {emit_reg i.arg.(0)}, 4), {emit_reg tmp2}\n`;
` addq {emit_reg tmp2}, {emit_reg tmp1}\n`;
` jmp *{emit_reg tmp1}\n`;
if macosx
then ` .const\n`
else ` .section .rodata\n`;
emit_align 4;
`{emit_label lbl}:`;
for i = 0 to Array.length jumptbl - 1 do
` .long {emit_label jumptbl.(i)} - {emit_label lbl}\n`
done;
` .text\n`
| Lsetuptrap lbl ->
` call {emit_label lbl}\n`
| Lpushtrap ->
` pushq %r14\n`;
` movq %rsp, %r14\n`;
stack_offset := !stack_offset + 16
| Lpoptrap ->
` popq %r14\n`;
` addq $8, %rsp\n`;
stack_offset := !stack_offset - 16
| Lraise ->
if !Clflags.debug then begin
` {emit_call "caml_raise_exn"}\n`;
record_frame Reg.Set.empty i.dbg
end else begin
` movq %r14, %rsp\n`;
` popq %r14\n`;
` ret\n`
end
let rec emit_all fallthrough i =
match i.desc with
| Lend -> ()
| _ ->
emit_instr fallthrough i;
emit_all (Linearize.has_fallthrough i.desc) i.next
(* Emission of the floating-point constants *)
let emit_float_constant (lbl, cst) =
`{emit_label lbl}:`;
emit_float64_directive ".quad" cst
(* Emission of the profiling prelude *)
let emit_profile () =
match Config.system with
| "linux" | "gnu" ->
(* mcount preserves rax, rcx, rdx, rsi, rdi, r8, r9 explicitly
and rbx, rbp, r12-r15 like all C functions.
We need to preserve r10 and r11 ourselves, since Caml can
use them for argument passing. *)
` pushq %r10\n`;
` movq %rsp, %rbp\n`;
` pushq %r11\n`;
` {emit_call "mcount"}\n`;
` popq %r11\n`;
` popq %r10\n`
| _ ->
() (*unsupported yet*)
(* Emission of a function declaration *)
let fundecl fundecl =
function_name := fundecl.fun_name;
fastcode_flag := fundecl.fun_fast;
tailrec_entry_point := new_label();
stack_offset := 0;
float_constants := [];
call_gc_sites := [];
bound_error_sites := [];
bound_error_call := 0;
` .text\n`;
emit_align 16;
if macosx
&& not !Clflags.output_c_object
&& is_generic_function fundecl.fun_name
then (* PR#4690 *)
` .private_extern {emit_symbol fundecl.fun_name}\n`
else
` .globl {emit_symbol fundecl.fun_name}\n`;
`{emit_symbol fundecl.fun_name}:\n`;
if !Clflags.gprofile then emit_profile();
if frame_required() then begin
let n = frame_size() - 8 in
` subq ${emit_int n}, %rsp\n`
end;
`{emit_label !tailrec_entry_point}:\n`;
emit_all true fundecl.fun_body;
List.iter emit_call_gc !call_gc_sites;
emit_call_bound_errors ();
if !float_constants <> [] then begin
if macosx
then ` .literal8\n`
else ` .section .rodata.cst8,\"a\",@progbits\n`;
List.iter emit_float_constant !float_constants
end;
match Config.system with
"linux" | "gnu" ->
` .type {emit_symbol fundecl.fun_name},@function\n`;
` .size {emit_symbol fundecl.fun_name},.-{emit_symbol fundecl.fun_name}\n`
| _ -> ()
(* Emission of data *)
let emit_item = function
Cglobal_symbol s ->
` .globl {emit_symbol s}\n`;
| Cdefine_symbol s ->
`{emit_symbol s}:\n`
| Cdefine_label lbl ->
`{emit_label (100000 + lbl)}:\n`
| Cint8 n ->
` .byte {emit_int n}\n`
| Cint16 n ->
` .word {emit_int n}\n`
| Cint32 n ->
` .long {emit_nativeint n}\n`
| Cint n ->
` .quad {emit_nativeint n}\n`
| Csingle f ->
emit_float32_directive ".long" f
| Cdouble f ->
emit_float64_directive ".quad" f
| Csymbol_address s ->
` .quad {emit_symbol s}\n`
| Clabel_address lbl ->
` .quad {emit_label (100000 + lbl)}\n`
| Cstring s ->
emit_string_directive " .ascii " s
| Cskip n ->
if n > 0 then ` .space {emit_int n}\n`
| Calign n ->
emit_align n
let data l =
` .data\n`;
List.iter emit_item l
(* Beginning / end of an assembly file *)
let begin_assembly() =
if !Clflags.dlcode then begin
(* from amd64.S; could emit these constants on demand *)
if macosx then begin
` .literal16\n`;
` .align 4\n`;
`caml_negf_mask: .quad 0x8000000000000000, 0\n`;
` .align 4\n`;
`caml_absf_mask: .quad 0x7FFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF\n`;
end else begin
` .section .rodata.cst8,\"a\",@progbits\n`;
` .align 16\n`;
`caml_negf_mask: .quad 0x8000000000000000, 0\n`;
` .align 16\n`;
`caml_absf_mask: .quad 0x7FFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF\n`;
end;
end;
let lbl_begin = Compilenv.make_symbol (Some "data_begin") in
` .data\n`;
` .globl {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin}:\n`;
let lbl_begin = Compilenv.make_symbol (Some "code_begin") in
` .text\n`;
` .globl {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin}:\n`;
if macosx then ` nop\n` (* PR#4690 *)
let end_assembly() =
let lbl_end = Compilenv.make_symbol (Some "code_end") in
` .text\n`;
if macosx then ` nop\n`; (* suppress "ld warning: atom sorting error" *)
` .globl {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end}:\n`;
` .data\n`;
let lbl_end = Compilenv.make_symbol (Some "data_end") in
` .globl {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end}:\n`;
` .long 0\n`;
let lbl = Compilenv.make_symbol (Some "frametable") in
` .globl {emit_symbol lbl}\n`;
`{emit_symbol lbl}:\n`;
emit_frames
{ efa_label = (fun l -> ` .quad {emit_label l}\n`);
efa_16 = (fun n -> ` .word {emit_int n}\n`);
efa_32 = (fun n -> ` .long {emit_int32 n}\n`);
efa_word = (fun n -> ` .quad {emit_int n}\n`);
efa_align = emit_align;
efa_label_rel =
if macosx then begin
let setcnt = ref 0 in
fun lbl ofs ->
incr setcnt;
` .set L$set${emit_int !setcnt}, ({emit_label lbl} - .) + {emit_int32 ofs}\n`;
` .long L$set${emit_int !setcnt}\n`
end else begin
fun lbl ofs ->
` .long ({emit_label lbl} - .) + {emit_int32 ofs}\n`
end;
efa_def_label = (fun l -> `{emit_label l}:\n`);
efa_string = (fun s -> emit_string_directive " .asciz " s) };
if Config.system = "linux" then
(* Mark stack as non-executable, PR#4564 *)
` .section .note.GNU-stack,\"\",%progbits\n`