ocaml/middle_end/simplify_boxed_integer_ops.ml

111 lines
4.5 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Pierre Chambart, OCamlPro *)
(* Mark Shinwell and Leo White, Jane Street Europe *)
(* *)
(* Copyright 2013--2016 OCamlPro SAS *)
(* Copyright 2014--2016 Jane Street Group LLC *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
[@@@ocaml.warning "+a-4-9-30-40-41-42"]
module S = Simplify_common
(* Simplification of operations on boxed integers (nativeint, Int32, Int64). *)
module Simplify_boxed_integer_operator (I : sig
type t
val kind : Lambda.boxed_integer
val zero : t
val add : t -> t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val div : t -> t -> t
val rem : t -> t -> t
val logand : t -> t -> t
val logor : t -> t -> t
val logxor : t -> t -> t
val shift_left : t -> int -> t
val shift_right : t -> int -> t
val shift_right_logical : t -> int -> t
val to_int : t -> int
val to_int32 : t -> Int32.t
val to_int64 : t -> Int64.t
val neg : t -> t
val swap : t -> t
val compare : t -> t -> int
end) : Simplify_boxed_integer_ops_intf.S with type t := I.t = struct
module A = Simple_value_approx
module C = Inlining_cost
let simplify_unop (p : Lambda.primitive) (kind : I.t A.boxed_int)
expr (n : I.t) =
let eval op = S.const_boxed_int_expr expr kind (op n) in
let eval_conv kind op = S.const_boxed_int_expr expr kind (op n) in
let eval_unboxed op = S.const_int_expr expr (op n) in
match p with
| Pintofbint kind when kind = I.kind -> eval_unboxed I.to_int
| Pcvtbint (kind, Pint32) when kind = I.kind ->
eval_conv A.Int32 I.to_int32
| Pcvtbint (kind, Pint64) when kind = I.kind ->
eval_conv A.Int64 I.to_int64
| Pnegbint kind when kind = I.kind -> eval I.neg
| Pbbswap kind when kind = I.kind -> eval I.swap
| _ -> expr, A.value_unknown Other, C.Benefit.zero
let simplify_binop (p : Lambda.primitive) (kind : I.t A.boxed_int)
expr (n1 : I.t) (n2 : I.t) =
let eval op = S.const_boxed_int_expr expr kind (op n1 n2) in
let non_zero n = (I.compare I.zero n) <> 0 in
match p with
| Paddbint kind when kind = I.kind -> eval I.add
| Psubbint kind when kind = I.kind -> eval I.sub
| Pmulbint kind when kind = I.kind -> eval I.mul
| Pdivbint kind when kind = I.kind && non_zero n2 -> eval I.div
| Pmodbint kind when kind = I.kind && non_zero n2 -> eval I.rem
| Pandbint kind when kind = I.kind -> eval I.logand
| Porbint kind when kind = I.kind -> eval I.logor
| Pxorbint kind when kind = I.kind -> eval I.logxor
| Pbintcomp (kind, c) when kind = I.kind ->
S.const_comparison_expr expr c n1 n2
| _ -> expr, A.value_unknown Other, C.Benefit.zero
let simplify_binop_int (p : Lambda.primitive) (kind : I.t A.boxed_int)
expr (n1 : I.t) (n2 : int) ~size_int =
let eval op = S.const_boxed_int_expr expr kind (op n1 n2) in
let precond = 0 <= n2 && n2 < 8 * size_int in
match p with
| Plslbint kind when kind = I.kind && precond -> eval I.shift_left
| Plsrbint kind when kind = I.kind && precond -> eval I.shift_right_logical
| Pasrbint kind when kind = I.kind && precond -> eval I.shift_right
| _ -> expr, A.value_unknown Other, C.Benefit.zero
end
module Simplify_boxed_nativeint = Simplify_boxed_integer_operator (struct
include Nativeint
let to_int64 = Int64.of_nativeint
let swap = S.swapnative
let kind = Lambda.Pnativeint
end)
module Simplify_boxed_int32 = Simplify_boxed_integer_operator (struct
include Int32
let to_int32 i = i
let to_int64 = Int64.of_int32
let swap = S.swap32
let kind = Lambda.Pint32
end)
module Simplify_boxed_int64 = Simplify_boxed_integer_operator (struct
include Int64
let to_int64 i = i
let swap = S.swap64
let kind = Lambda.Pint64
end)