781 lines
22 KiB
C
781 lines
22 KiB
C
/***********************************************************************/
|
|
/* */
|
|
/* OCaml */
|
|
/* */
|
|
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
|
|
/* */
|
|
/* Copyright 1996 Institut National de Recherche en Informatique et */
|
|
/* en Automatique. All rights reserved. This file is distributed */
|
|
/* under the terms of the GNU Library General Public License, with */
|
|
/* the special exception on linking described in file ../LICENSE. */
|
|
/* */
|
|
/***********************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include "caml/alloc.h"
|
|
#include "caml/custom.h"
|
|
#include "caml/fail.h"
|
|
#include "caml/intext.h"
|
|
#include "caml/memory.h"
|
|
#include "caml/misc.h"
|
|
#include "caml/mlvalues.h"
|
|
|
|
static char * parse_sign_and_base(char * p,
|
|
/*out*/ int * base,
|
|
/*out*/ int * signedness,
|
|
/*out*/ int * sign)
|
|
{
|
|
*sign = 1;
|
|
if (*p == '-') {
|
|
*sign = -1;
|
|
p++;
|
|
} else if (*p == '+')
|
|
p++;
|
|
*base = 10; *signedness = 1;
|
|
if (*p == '0') {
|
|
switch (p[1]) {
|
|
case 'x': case 'X':
|
|
*base = 16; *signedness = 0; p += 2; break;
|
|
case 'o': case 'O':
|
|
*base = 8; *signedness = 0; p += 2; break;
|
|
case 'b': case 'B':
|
|
*base = 2; *signedness = 0; p += 2; break;
|
|
case 'u': case 'U':
|
|
*signedness = 0; p += 2; break;
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
static int parse_digit(char c)
|
|
{
|
|
if (c >= '0' && c <= '9')
|
|
return c - '0';
|
|
else if (c >= 'A' && c <= 'F')
|
|
return c - 'A' + 10;
|
|
else if (c >= 'a' && c <= 'f')
|
|
return c - 'a' + 10;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
#define INT_ERRMSG "int_of_string"
|
|
#define INT32_ERRMSG "Int32.of_string"
|
|
#define INT64_ERRMSG "Int64.of_string"
|
|
#define INTNAT_ERRMSG "Nativeint.of_string"
|
|
|
|
static intnat parse_intnat(value s, int nbits, const char *errmsg)
|
|
{
|
|
char * p;
|
|
uintnat res, threshold;
|
|
int sign, base, signedness, d;
|
|
|
|
p = parse_sign_and_base(String_val(s), &base, &signedness, &sign);
|
|
threshold = ((uintnat) -1) / base;
|
|
d = parse_digit(*p);
|
|
if (d < 0 || d >= base) caml_failwith(errmsg);
|
|
for (p++, res = d; /*nothing*/; p++) {
|
|
char c = *p;
|
|
if (c == '_') continue;
|
|
d = parse_digit(c);
|
|
if (d < 0 || d >= base) break;
|
|
/* Detect overflow in multiplication base * res */
|
|
if (res > threshold) caml_failwith(errmsg);
|
|
res = base * res + d;
|
|
/* Detect overflow in addition (base * res) + d */
|
|
if (res < (uintnat) d) caml_failwith(errmsg);
|
|
}
|
|
if (p != String_val(s) + caml_string_length(s)){
|
|
caml_failwith(errmsg);
|
|
}
|
|
if (signedness) {
|
|
/* Signed representation expected, allow -2^(nbits-1) to 2^(nbits-1) - 1 */
|
|
if (sign >= 0) {
|
|
if (res >= (uintnat)1 << (nbits - 1)) caml_failwith(errmsg);
|
|
} else {
|
|
if (res > (uintnat)1 << (nbits - 1)) caml_failwith(errmsg);
|
|
}
|
|
} else {
|
|
/* Unsigned representation expected, allow 0 to 2^nbits - 1
|
|
and tolerate -(2^nbits - 1) to 0 */
|
|
if (nbits < sizeof(uintnat) * 8 && res >= (uintnat)1 << nbits)
|
|
caml_failwith(errmsg);
|
|
}
|
|
return sign < 0 ? -((intnat) res) : (intnat) res;
|
|
}
|
|
|
|
value caml_bswap16_direct(value x)
|
|
{
|
|
return ((((x & 0x00FF) << 8) |
|
|
((x & 0xFF00) >> 8)));
|
|
}
|
|
|
|
CAMLprim value caml_bswap16(value v)
|
|
{
|
|
intnat x = Int_val(v);
|
|
return (Val_int ((((x & 0x00FF) << 8) |
|
|
((x & 0xFF00) >> 8))));
|
|
}
|
|
|
|
/* Tagged integers */
|
|
|
|
CAMLprim value caml_int_compare(value v1, value v2)
|
|
{
|
|
int res = (v1 > v2) - (v1 < v2);
|
|
return Val_int(res);
|
|
}
|
|
|
|
CAMLprim value caml_int_of_string(value s)
|
|
{
|
|
return Val_long(parse_intnat(s, 8 * sizeof(value) - 1, INT_ERRMSG));
|
|
}
|
|
|
|
#define FORMAT_BUFFER_SIZE 32
|
|
|
|
static char parse_format(value fmt,
|
|
char * suffix,
|
|
char format_string[FORMAT_BUFFER_SIZE])
|
|
{
|
|
char * p;
|
|
char lastletter;
|
|
mlsize_t len, len_suffix;
|
|
|
|
/* Copy OCaml format fmt to format_string,
|
|
adding the suffix before the last letter of the format */
|
|
len = caml_string_length(fmt);
|
|
len_suffix = strlen(suffix);
|
|
if (len + len_suffix + 1 >= FORMAT_BUFFER_SIZE)
|
|
caml_invalid_argument("format_int: format too long");
|
|
memmove(format_string, String_val(fmt), len);
|
|
p = format_string + len - 1;
|
|
lastletter = *p;
|
|
/* Compress two-letter formats, ignoring the [lnL] annotation */
|
|
if (p[-1] == 'l' || p[-1] == 'n' || p[-1] == 'L') p--;
|
|
memmove(p, suffix, len_suffix); p += len_suffix;
|
|
*p++ = lastletter;
|
|
*p = 0;
|
|
/* Return the conversion type (last letter) */
|
|
return lastletter;
|
|
}
|
|
|
|
CAMLprim value caml_format_int(value fmt, value arg)
|
|
{
|
|
char format_string[FORMAT_BUFFER_SIZE];
|
|
char conv;
|
|
value res;
|
|
|
|
conv = parse_format(fmt, ARCH_INTNAT_PRINTF_FORMAT, format_string);
|
|
switch (conv) {
|
|
case 'u': case 'x': case 'X': case 'o':
|
|
res = caml_alloc_sprintf(format_string, Unsigned_long_val(arg));
|
|
break;
|
|
default:
|
|
res = caml_alloc_sprintf(format_string, Long_val(arg));
|
|
break;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* 32-bit integers */
|
|
|
|
static int int32_cmp(value v1, value v2)
|
|
{
|
|
int32_t i1 = Int32_val(v1);
|
|
int32_t i2 = Int32_val(v2);
|
|
return (i1 > i2) - (i1 < i2);
|
|
}
|
|
|
|
static intnat int32_hash(value v)
|
|
{
|
|
return Int32_val(v);
|
|
}
|
|
|
|
static void int32_serialize(value v, uintnat * bsize_32,
|
|
uintnat * bsize_64)
|
|
{
|
|
caml_serialize_int_4(Int32_val(v));
|
|
*bsize_32 = *bsize_64 = 4;
|
|
}
|
|
|
|
static uintnat int32_deserialize(void * dst)
|
|
{
|
|
*((int32_t *) dst) = caml_deserialize_sint_4();
|
|
return 4;
|
|
}
|
|
|
|
CAMLexport struct custom_operations caml_int32_ops = {
|
|
"_i",
|
|
custom_finalize_default,
|
|
int32_cmp,
|
|
int32_hash,
|
|
int32_serialize,
|
|
int32_deserialize,
|
|
custom_compare_ext_default
|
|
};
|
|
|
|
CAMLexport value caml_copy_int32(int32_t i)
|
|
{
|
|
value res = caml_alloc_custom(&caml_int32_ops, 4, 0, 1);
|
|
Int32_val(res) = i;
|
|
return res;
|
|
}
|
|
|
|
CAMLprim value caml_int32_neg(value v)
|
|
{ return caml_copy_int32(- Int32_val(v)); }
|
|
|
|
CAMLprim value caml_int32_add(value v1, value v2)
|
|
{ return caml_copy_int32(Int32_val(v1) + Int32_val(v2)); }
|
|
|
|
CAMLprim value caml_int32_sub(value v1, value v2)
|
|
{ return caml_copy_int32(Int32_val(v1) - Int32_val(v2)); }
|
|
|
|
CAMLprim value caml_int32_mul(value v1, value v2)
|
|
{ return caml_copy_int32(Int32_val(v1) * Int32_val(v2)); }
|
|
|
|
CAMLprim value caml_int32_div(value v1, value v2)
|
|
{
|
|
int32_t dividend = Int32_val(v1);
|
|
int32_t divisor = Int32_val(v2);
|
|
if (divisor == 0) caml_raise_zero_divide();
|
|
/* PR#4740: on some processors, division crashes on overflow.
|
|
Implement the same behavior as for type "int". */
|
|
if (dividend == (1<<31) && divisor == -1) return v1;
|
|
return caml_copy_int32(dividend / divisor);
|
|
}
|
|
|
|
CAMLprim value caml_int32_mod(value v1, value v2)
|
|
{
|
|
int32_t dividend = Int32_val(v1);
|
|
int32_t divisor = Int32_val(v2);
|
|
if (divisor == 0) caml_raise_zero_divide();
|
|
/* PR#4740: on some processors, modulus crashes if division overflows.
|
|
Implement the same behavior as for type "int". */
|
|
if (dividend == (1<<31) && divisor == -1) return caml_copy_int32(0);
|
|
return caml_copy_int32(dividend % divisor);
|
|
}
|
|
|
|
CAMLprim value caml_int32_and(value v1, value v2)
|
|
{ return caml_copy_int32(Int32_val(v1) & Int32_val(v2)); }
|
|
|
|
CAMLprim value caml_int32_or(value v1, value v2)
|
|
{ return caml_copy_int32(Int32_val(v1) | Int32_val(v2)); }
|
|
|
|
CAMLprim value caml_int32_xor(value v1, value v2)
|
|
{ return caml_copy_int32(Int32_val(v1) ^ Int32_val(v2)); }
|
|
|
|
CAMLprim value caml_int32_shift_left(value v1, value v2)
|
|
{ return caml_copy_int32(Int32_val(v1) << Int_val(v2)); }
|
|
|
|
CAMLprim value caml_int32_shift_right(value v1, value v2)
|
|
{ return caml_copy_int32(Int32_val(v1) >> Int_val(v2)); }
|
|
|
|
CAMLprim value caml_int32_shift_right_unsigned(value v1, value v2)
|
|
{ return caml_copy_int32((uint32_t)Int32_val(v1) >> Int_val(v2)); }
|
|
|
|
static int32_t caml_swap32(int32_t x)
|
|
{
|
|
return (((x & 0x000000FF) << 24) |
|
|
((x & 0x0000FF00) << 8) |
|
|
((x & 0x00FF0000) >> 8) |
|
|
((x & 0xFF000000) >> 24));
|
|
}
|
|
|
|
value caml_int32_direct_bswap(value v)
|
|
{ return caml_swap32(v); }
|
|
|
|
CAMLprim value caml_int32_bswap(value v)
|
|
{ return caml_copy_int32(caml_swap32(Int32_val(v))); }
|
|
|
|
CAMLprim value caml_int32_of_int(value v)
|
|
{ return caml_copy_int32(Long_val(v)); }
|
|
|
|
CAMLprim value caml_int32_to_int(value v)
|
|
{ return Val_long(Int32_val(v)); }
|
|
|
|
CAMLprim value caml_int32_of_float(value v)
|
|
{ return caml_copy_int32((int32_t)(Double_val(v))); }
|
|
|
|
CAMLprim value caml_int32_to_float(value v)
|
|
{ return caml_copy_double((double)(Int32_val(v))); }
|
|
|
|
CAMLprim value caml_int32_compare(value v1, value v2)
|
|
{
|
|
int32_t i1 = Int32_val(v1);
|
|
int32_t i2 = Int32_val(v2);
|
|
int res = (i1 > i2) - (i1 < i2);
|
|
return Val_int(res);
|
|
}
|
|
|
|
CAMLprim value caml_int32_format(value fmt, value arg)
|
|
{
|
|
char format_string[FORMAT_BUFFER_SIZE];
|
|
|
|
parse_format(fmt, ARCH_INT32_PRINTF_FORMAT, format_string);
|
|
return caml_alloc_sprintf(format_string, Int32_val(arg));
|
|
}
|
|
|
|
CAMLprim value caml_int32_of_string(value s)
|
|
{
|
|
return caml_copy_int32(parse_intnat(s, 32, INT32_ERRMSG));
|
|
}
|
|
|
|
CAMLprim value caml_int32_bits_of_float(value vd)
|
|
{
|
|
union { float d; int32_t i; } u;
|
|
u.d = Double_val(vd);
|
|
return caml_copy_int32(u.i);
|
|
}
|
|
|
|
CAMLprim value caml_int32_float_of_bits(value vi)
|
|
{
|
|
union { float d; int32_t i; } u;
|
|
u.i = Int32_val(vi);
|
|
return caml_copy_double(u.d);
|
|
}
|
|
|
|
/* 64-bit integers */
|
|
|
|
#ifdef ARCH_ALIGN_INT64
|
|
|
|
CAMLexport int64_t caml_Int64_val(value v)
|
|
{
|
|
union { int32_t i[2]; int64_t j; } buffer;
|
|
buffer.i[0] = ((int32_t *) Data_custom_val(v))[0];
|
|
buffer.i[1] = ((int32_t *) Data_custom_val(v))[1];
|
|
return buffer.j;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int int64_cmp(value v1, value v2)
|
|
{
|
|
int64_t i1 = Int64_val(v1);
|
|
int64_t i2 = Int64_val(v2);
|
|
return (i1 > i2) - (i1 < i2);
|
|
}
|
|
|
|
static intnat int64_hash(value v)
|
|
{
|
|
int64_t x = Int64_val(v);
|
|
uint32_t lo = (uint32_t) x, hi = (uint32_t) (x >> 32);
|
|
return hi ^ lo;
|
|
}
|
|
|
|
static void int64_serialize(value v, uintnat * bsize_32,
|
|
uintnat * bsize_64)
|
|
{
|
|
caml_serialize_int_8(Int64_val(v));
|
|
*bsize_32 = *bsize_64 = 8;
|
|
}
|
|
|
|
static uintnat int64_deserialize(void * dst)
|
|
{
|
|
#ifndef ARCH_ALIGN_INT64
|
|
*((int64_t *) dst) = caml_deserialize_sint_8();
|
|
#else
|
|
union { int32_t i[2]; int64_t j; } buffer;
|
|
buffer.j = caml_deserialize_sint_8();
|
|
((int32_t *) dst)[0] = buffer.i[0];
|
|
((int32_t *) dst)[1] = buffer.i[1];
|
|
#endif
|
|
return 8;
|
|
}
|
|
|
|
CAMLexport struct custom_operations caml_int64_ops = {
|
|
"_j",
|
|
custom_finalize_default,
|
|
int64_cmp,
|
|
int64_hash,
|
|
int64_serialize,
|
|
int64_deserialize,
|
|
custom_compare_ext_default
|
|
};
|
|
|
|
CAMLexport value caml_copy_int64(int64_t i)
|
|
{
|
|
value res = caml_alloc_custom(&caml_int64_ops, 8, 0, 1);
|
|
#ifndef ARCH_ALIGN_INT64
|
|
Int64_val(res) = i;
|
|
#else
|
|
union { int32_t i[2]; int64_t j; } buffer;
|
|
buffer.j = i;
|
|
((int32_t *) Data_custom_val(res))[0] = buffer.i[0];
|
|
((int32_t *) Data_custom_val(res))[1] = buffer.i[1];
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
CAMLprim value caml_int64_neg(value v)
|
|
{ return caml_copy_int64(- Int64_val(v)); }
|
|
|
|
CAMLprim value caml_int64_add(value v1, value v2)
|
|
{ return caml_copy_int64(Int64_val(v1) + Int64_val(v2)); }
|
|
|
|
CAMLprim value caml_int64_sub(value v1, value v2)
|
|
{ return caml_copy_int64(Int64_val(v1) - Int64_val(v2)); }
|
|
|
|
CAMLprim value caml_int64_mul(value v1, value v2)
|
|
{ return caml_copy_int64(Int64_val(v1) * Int64_val(v2)); }
|
|
|
|
#define Int64_min_int ((intnat) 1 << (sizeof(intnat) * 8 - 1))
|
|
|
|
CAMLprim value caml_int64_div(value v1, value v2)
|
|
{
|
|
int64_t dividend = Int64_val(v1);
|
|
int64_t divisor = Int64_val(v2);
|
|
if (divisor == 0) caml_raise_zero_divide();
|
|
/* PR#4740: on some processors, division crashes on overflow.
|
|
Implement the same behavior as for type "int". */
|
|
if (dividend == ((int64_t)1 << 63) && divisor == -1) return v1;
|
|
return caml_copy_int64(Int64_val(v1) / divisor);
|
|
}
|
|
|
|
CAMLprim value caml_int64_mod(value v1, value v2)
|
|
{
|
|
int64_t dividend = Int64_val(v1);
|
|
int64_t divisor = Int64_val(v2);
|
|
if (divisor == 0) caml_raise_zero_divide();
|
|
/* PR#4740: on some processors, division crashes on overflow.
|
|
Implement the same behavior as for type "int". */
|
|
if (dividend == ((int64_t)1 << 63) && divisor == -1){
|
|
return caml_copy_int64(0);
|
|
}
|
|
return caml_copy_int64(Int64_val(v1) % divisor);
|
|
}
|
|
|
|
CAMLprim value caml_int64_and(value v1, value v2)
|
|
{ return caml_copy_int64(Int64_val(v1) & Int64_val(v2)); }
|
|
|
|
CAMLprim value caml_int64_or(value v1, value v2)
|
|
{ return caml_copy_int64(Int64_val(v1) | Int64_val(v2)); }
|
|
|
|
CAMLprim value caml_int64_xor(value v1, value v2)
|
|
{ return caml_copy_int64(Int64_val(v1) ^ Int64_val(v2)); }
|
|
|
|
CAMLprim value caml_int64_shift_left(value v1, value v2)
|
|
{ return caml_copy_int64(Int64_val(v1) << Int_val(v2)); }
|
|
|
|
CAMLprim value caml_int64_shift_right(value v1, value v2)
|
|
{ return caml_copy_int64(Int64_val(v1) >> Int_val(v2)); }
|
|
|
|
CAMLprim value caml_int64_shift_right_unsigned(value v1, value v2)
|
|
{ return caml_copy_int64((uint64_t) (Int64_val(v1)) >> Int_val(v2)); }
|
|
|
|
#ifdef ARCH_SIXTYFOUR
|
|
static value caml_swap64(value x)
|
|
{
|
|
return (((((x) & 0x00000000000000FF) << 56) |
|
|
(((x) & 0x000000000000FF00) << 40) |
|
|
(((x) & 0x0000000000FF0000) << 24) |
|
|
(((x) & 0x00000000FF000000) << 8) |
|
|
(((x) & 0x000000FF00000000) >> 8) |
|
|
(((x) & 0x0000FF0000000000) >> 24) |
|
|
(((x) & 0x00FF000000000000) >> 40) |
|
|
(((x) & 0xFF00000000000000) >> 56)));
|
|
}
|
|
|
|
value caml_int64_direct_bswap(value v)
|
|
{ return caml_swap64(v); }
|
|
#endif
|
|
|
|
CAMLprim value caml_int64_bswap(value v)
|
|
{
|
|
int64_t x = Int64_val(v);
|
|
return caml_copy_int64
|
|
(((x & 0x00000000000000FFULL) << 56) |
|
|
((x & 0x000000000000FF00ULL) << 40) |
|
|
((x & 0x0000000000FF0000ULL) << 24) |
|
|
((x & 0x00000000FF000000ULL) << 8) |
|
|
((x & 0x000000FF00000000ULL) >> 8) |
|
|
((x & 0x0000FF0000000000ULL) >> 24) |
|
|
((x & 0x00FF000000000000ULL) >> 40) |
|
|
((x & 0xFF00000000000000ULL) >> 56));
|
|
}
|
|
|
|
CAMLprim value caml_int64_of_int(value v)
|
|
{ return caml_copy_int64((int64_t) (Long_val(v))); }
|
|
|
|
CAMLprim value caml_int64_to_int(value v)
|
|
{ return Val_long((intnat) (Int64_val(v))); }
|
|
|
|
CAMLprim value caml_int64_of_float(value v)
|
|
{ return caml_copy_int64((int64_t) (Double_val(v))); }
|
|
|
|
CAMLprim value caml_int64_to_float(value v)
|
|
{ return caml_copy_double((double) (Int64_val(v))); }
|
|
|
|
CAMLprim value caml_int64_of_int32(value v)
|
|
{ return caml_copy_int64((int64_t) (Int32_val(v))); }
|
|
|
|
CAMLprim value caml_int64_to_int32(value v)
|
|
{ return caml_copy_int32((int32_t) (Int64_val(v))); }
|
|
|
|
CAMLprim value caml_int64_of_nativeint(value v)
|
|
{ return caml_copy_int64((int64_t) (Nativeint_val(v))); }
|
|
|
|
CAMLprim value caml_int64_to_nativeint(value v)
|
|
{ return caml_copy_nativeint((intnat) (Int64_val(v))); }
|
|
|
|
CAMLprim value caml_int64_compare(value v1, value v2)
|
|
{
|
|
int64_t i1 = Int64_val(v1);
|
|
int64_t i2 = Int64_val(v2);
|
|
return Val_int((i1 > i2) - (i1 < i2));
|
|
}
|
|
|
|
CAMLprim value caml_int64_format(value fmt, value arg)
|
|
{
|
|
char format_string[FORMAT_BUFFER_SIZE];
|
|
|
|
parse_format(fmt, ARCH_INT64_PRINTF_FORMAT, format_string);
|
|
return caml_alloc_sprintf(format_string, Int64_val(arg));
|
|
}
|
|
|
|
CAMLprim value caml_int64_of_string(value s)
|
|
{
|
|
char * p;
|
|
uint64_t res, threshold;
|
|
int sign, base, signedness, d;
|
|
|
|
p = parse_sign_and_base(String_val(s), &base, &signedness, &sign);
|
|
threshold = ((uint64_t) -1) / base;
|
|
d = parse_digit(*p);
|
|
if (d < 0 || d >= base) caml_failwith(INT64_ERRMSG);
|
|
res = d;
|
|
for (p++; /*nothing*/; p++) {
|
|
char c = *p;
|
|
if (c == '_') continue;
|
|
d = parse_digit(c);
|
|
if (d < 0 || d >= base) break;
|
|
/* Detect overflow in multiplication base * res */
|
|
if (res > threshold) caml_failwith(INT64_ERRMSG);
|
|
res = base * res + d;
|
|
/* Detect overflow in addition (base * res) + d */
|
|
if (res < (uint64_t) d) caml_failwith(INT64_ERRMSG);
|
|
}
|
|
if (p != String_val(s) + caml_string_length(s)){
|
|
caml_failwith(INT64_ERRMSG);
|
|
}
|
|
if (signedness) {
|
|
/* Signed representation expected, allow -2^63 to 2^63 - 1 only */
|
|
if (sign >= 0) {
|
|
if (res >= (uint64_t)1 << 63) caml_failwith(INT64_ERRMSG);
|
|
} else {
|
|
if (res > (uint64_t)1 << 63) caml_failwith(INT64_ERRMSG);
|
|
}
|
|
}
|
|
if (sign < 0) res = - res;
|
|
return caml_copy_int64(res);
|
|
}
|
|
|
|
CAMLprim value caml_int64_bits_of_float(value vd)
|
|
{
|
|
union { double d; int64_t i; int32_t h[2]; } u;
|
|
u.d = Double_val(vd);
|
|
#if defined(__arm__) && !defined(__ARM_EABI__)
|
|
{ int32_t t = u.h[0]; u.h[0] = u.h[1]; u.h[1] = t; }
|
|
#endif
|
|
return caml_copy_int64(u.i);
|
|
}
|
|
|
|
CAMLprim value caml_int64_float_of_bits(value vi)
|
|
{
|
|
union { double d; int64_t i; int32_t h[2]; } u;
|
|
u.i = Int64_val(vi);
|
|
#if defined(__arm__) && !defined(__ARM_EABI__)
|
|
{ int32_t t = u.h[0]; u.h[0] = u.h[1]; u.h[1] = t; }
|
|
#endif
|
|
return caml_copy_double(u.d);
|
|
}
|
|
|
|
/* Native integers */
|
|
|
|
static int nativeint_cmp(value v1, value v2)
|
|
{
|
|
intnat i1 = Nativeint_val(v1);
|
|
intnat i2 = Nativeint_val(v2);
|
|
return (i1 > i2) - (i1 < i2);
|
|
}
|
|
|
|
static intnat nativeint_hash(value v)
|
|
{
|
|
intnat n = Nativeint_val(v);
|
|
#ifdef ARCH_SIXTYFOUR
|
|
/* 32/64 bits compatibility trick. See explanations in file "hash.c",
|
|
function caml_hash_mix_intnat. */
|
|
return (n >> 32) ^ (n >> 63) ^ n;
|
|
#else
|
|
return n;
|
|
#endif
|
|
}
|
|
|
|
static void nativeint_serialize(value v, uintnat * bsize_32,
|
|
uintnat * bsize_64)
|
|
{
|
|
intnat l = Nativeint_val(v);
|
|
#ifdef ARCH_SIXTYFOUR
|
|
if (l >= -((intnat)1 << 31) && l < ((intnat)1 << 31)) {
|
|
caml_serialize_int_1(1);
|
|
caml_serialize_int_4((int32_t) l);
|
|
} else {
|
|
caml_serialize_int_1(2);
|
|
caml_serialize_int_8(l);
|
|
}
|
|
#else
|
|
caml_serialize_int_1(1);
|
|
caml_serialize_int_4(l);
|
|
#endif
|
|
*bsize_32 = 4;
|
|
*bsize_64 = 8;
|
|
}
|
|
|
|
static uintnat nativeint_deserialize(void * dst)
|
|
{
|
|
switch (caml_deserialize_uint_1()) {
|
|
case 1:
|
|
*((intnat *) dst) = caml_deserialize_sint_4();
|
|
break;
|
|
case 2:
|
|
#ifdef ARCH_SIXTYFOUR
|
|
*((intnat *) dst) = caml_deserialize_sint_8();
|
|
#else
|
|
caml_deserialize_error("input_value: native integer value too large");
|
|
#endif
|
|
break;
|
|
default:
|
|
caml_deserialize_error("input_value: ill-formed native integer");
|
|
}
|
|
return sizeof(long);
|
|
}
|
|
|
|
CAMLexport struct custom_operations caml_nativeint_ops = {
|
|
"_n",
|
|
custom_finalize_default,
|
|
nativeint_cmp,
|
|
nativeint_hash,
|
|
nativeint_serialize,
|
|
nativeint_deserialize,
|
|
custom_compare_ext_default
|
|
};
|
|
|
|
CAMLexport value caml_copy_nativeint(intnat i)
|
|
{
|
|
value res = caml_alloc_custom(&caml_nativeint_ops, sizeof(intnat), 0, 1);
|
|
Nativeint_val(res) = i;
|
|
return res;
|
|
}
|
|
|
|
CAMLprim value caml_nativeint_neg(value v)
|
|
{ return caml_copy_nativeint(- Nativeint_val(v)); }
|
|
|
|
CAMLprim value caml_nativeint_add(value v1, value v2)
|
|
{ return caml_copy_nativeint(Nativeint_val(v1) + Nativeint_val(v2)); }
|
|
|
|
CAMLprim value caml_nativeint_sub(value v1, value v2)
|
|
{ return caml_copy_nativeint(Nativeint_val(v1) - Nativeint_val(v2)); }
|
|
|
|
CAMLprim value caml_nativeint_mul(value v1, value v2)
|
|
{ return caml_copy_nativeint(Nativeint_val(v1) * Nativeint_val(v2)); }
|
|
|
|
#define Nativeint_min_int ((intnat) 1 << (sizeof(intnat) * 8 - 1))
|
|
|
|
CAMLprim value caml_nativeint_div(value v1, value v2)
|
|
{
|
|
intnat dividend = Nativeint_val(v1);
|
|
intnat divisor = Nativeint_val(v2);
|
|
if (divisor == 0) caml_raise_zero_divide();
|
|
/* PR#4740: on some processors, modulus crashes if division overflows.
|
|
Implement the same behavior as for type "int". */
|
|
if (dividend == Nativeint_min_int && divisor == -1) return v1;
|
|
return caml_copy_nativeint(dividend / divisor);
|
|
}
|
|
|
|
CAMLprim value caml_nativeint_mod(value v1, value v2)
|
|
{
|
|
intnat dividend = Nativeint_val(v1);
|
|
intnat divisor = Nativeint_val(v2);
|
|
if (divisor == 0) caml_raise_zero_divide();
|
|
/* PR#4740: on some processors, modulus crashes if division overflows.
|
|
Implement the same behavior as for type "int". */
|
|
if (dividend == Nativeint_min_int && divisor == -1){
|
|
return caml_copy_nativeint(0);
|
|
}
|
|
return caml_copy_nativeint(dividend % divisor);
|
|
}
|
|
|
|
CAMLprim value caml_nativeint_and(value v1, value v2)
|
|
{ return caml_copy_nativeint(Nativeint_val(v1) & Nativeint_val(v2)); }
|
|
|
|
CAMLprim value caml_nativeint_or(value v1, value v2)
|
|
{ return caml_copy_nativeint(Nativeint_val(v1) | Nativeint_val(v2)); }
|
|
|
|
CAMLprim value caml_nativeint_xor(value v1, value v2)
|
|
{ return caml_copy_nativeint(Nativeint_val(v1) ^ Nativeint_val(v2)); }
|
|
|
|
CAMLprim value caml_nativeint_shift_left(value v1, value v2)
|
|
{ return caml_copy_nativeint(Nativeint_val(v1) << Int_val(v2)); }
|
|
|
|
CAMLprim value caml_nativeint_shift_right(value v1, value v2)
|
|
{ return caml_copy_nativeint(Nativeint_val(v1) >> Int_val(v2)); }
|
|
|
|
CAMLprim value caml_nativeint_shift_right_unsigned(value v1, value v2)
|
|
{ return caml_copy_nativeint((uintnat)Nativeint_val(v1) >> Int_val(v2)); }
|
|
|
|
value caml_nativeint_direct_bswap(value v)
|
|
{
|
|
#ifdef ARCH_SIXTYFOUR
|
|
return caml_swap64(v);
|
|
#else
|
|
return caml_swap32(v);
|
|
#endif
|
|
}
|
|
|
|
CAMLprim value caml_nativeint_bswap(value v)
|
|
{
|
|
#ifdef ARCH_SIXTYFOUR
|
|
return caml_copy_nativeint(caml_swap64(Nativeint_val(v)));
|
|
#else
|
|
return caml_copy_nativeint(caml_swap32(Nativeint_val(v)));
|
|
#endif
|
|
}
|
|
|
|
CAMLprim value caml_nativeint_of_int(value v)
|
|
{ return caml_copy_nativeint(Long_val(v)); }
|
|
|
|
CAMLprim value caml_nativeint_to_int(value v)
|
|
{ return Val_long(Nativeint_val(v)); }
|
|
|
|
CAMLprim value caml_nativeint_of_float(value v)
|
|
{ return caml_copy_nativeint((intnat)(Double_val(v))); }
|
|
|
|
CAMLprim value caml_nativeint_to_float(value v)
|
|
{ return caml_copy_double((double)(Nativeint_val(v))); }
|
|
|
|
CAMLprim value caml_nativeint_of_int32(value v)
|
|
{ return caml_copy_nativeint(Int32_val(v)); }
|
|
|
|
CAMLprim value caml_nativeint_to_int32(value v)
|
|
{ return caml_copy_int32(Nativeint_val(v)); }
|
|
|
|
CAMLprim value caml_nativeint_compare(value v1, value v2)
|
|
{
|
|
intnat i1 = Nativeint_val(v1);
|
|
intnat i2 = Nativeint_val(v2);
|
|
int res = (i1 > i2) - (i1 < i2);
|
|
return Val_int(res);
|
|
}
|
|
|
|
CAMLprim value caml_nativeint_format(value fmt, value arg)
|
|
{
|
|
char format_string[FORMAT_BUFFER_SIZE];
|
|
|
|
parse_format(fmt, ARCH_INTNAT_PRINTF_FORMAT, format_string);
|
|
return caml_alloc_sprintf(format_string, Nativeint_val(arg));
|
|
}
|
|
|
|
CAMLprim value caml_nativeint_of_string(value s)
|
|
{
|
|
return caml_copy_nativeint(parse_intnat(s, 8 * sizeof(value), INTNAT_ERRMSG));
|
|
}
|