ocaml/otherlibs/num/big_int.ml

879 lines
32 KiB
OCaml

(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Valerie Menissier-Morain, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../../LICENSE. *)
(* *)
(***********************************************************************)
open Int_misc
open Nat
type big_int =
{ sign : int;
abs_value : nat }
let create_big_int sign nat =
if sign = 1 || sign = -1 ||
(sign = 0 &&
is_zero_nat nat 0 (num_digits_nat nat 0 (length_nat nat)))
then { sign = sign;
abs_value = nat }
else invalid_arg "create_big_int"
(* Sign of a big_int *)
let sign_big_int bi = bi.sign
let zero_big_int =
{ sign = 0;
abs_value = make_nat 1 }
let unit_big_int =
{ sign = 1;
abs_value = nat_of_int 1 }
(* Number of digits in a big_int *)
let num_digits_big_int bi =
num_digits_nat (bi.abs_value) 0 (length_nat bi.abs_value)
(* Number of bits in a big_int *)
let num_bits_big_int bi =
let nd = num_digits_nat (bi.abs_value) 0 (length_nat bi.abs_value) in
(* nd = 1 if bi = 0 *)
let lz = num_leading_zero_bits_in_digit bi.abs_value (nd - 1) in
(* lz = length_of_digit if bi = 0 *)
nd * length_of_digit - lz
(* = 0 if bi = 0 *)
(* Opposite of a big_int *)
let minus_big_int bi =
{ sign = - bi.sign;
abs_value = copy_nat (bi.abs_value) 0 (num_digits_big_int bi)}
(* Absolute value of a big_int *)
let abs_big_int bi =
{ sign = if bi.sign = 0 then 0 else 1;
abs_value = copy_nat (bi.abs_value) 0 (num_digits_big_int bi)}
(* Comparison operators on big_int *)
(*
compare_big_int (bi, bi2) = sign of (bi-bi2)
i.e. 1 if bi > bi2
0 if bi = bi2
-1 if bi < bi2
*)
let compare_big_int bi1 bi2 =
if bi1.sign = 0 && bi2.sign = 0 then 0
else if bi1.sign < bi2.sign then -1
else if bi1.sign > bi2.sign then 1
else if bi1.sign = 1 then
compare_nat (bi1.abs_value) 0 (num_digits_big_int bi1)
(bi2.abs_value) 0 (num_digits_big_int bi2)
else
compare_nat (bi2.abs_value) 0 (num_digits_big_int bi2)
(bi1.abs_value) 0 (num_digits_big_int bi1)
let eq_big_int bi1 bi2 = compare_big_int bi1 bi2 = 0
and le_big_int bi1 bi2 = compare_big_int bi1 bi2 <= 0
and ge_big_int bi1 bi2 = compare_big_int bi1 bi2 >= 0
and lt_big_int bi1 bi2 = compare_big_int bi1 bi2 < 0
and gt_big_int bi1 bi2 = compare_big_int bi1 bi2 > 0
let max_big_int bi1 bi2 = if lt_big_int bi1 bi2 then bi2 else bi1
and min_big_int bi1 bi2 = if gt_big_int bi1 bi2 then bi2 else bi1
(* Operations on big_int *)
let pred_big_int bi =
match bi.sign with
0 -> { sign = -1; abs_value = nat_of_int 1}
| 1 -> let size_bi = num_digits_big_int bi in
let copy_bi = copy_nat (bi.abs_value) 0 size_bi in
ignore (decr_nat copy_bi 0 size_bi 0);
{ sign = if is_zero_nat copy_bi 0 size_bi then 0 else 1;
abs_value = copy_bi }
| _ -> let size_bi = num_digits_big_int bi in
let size_res = succ (size_bi) in
let copy_bi = create_nat (size_res) in
blit_nat copy_bi 0 (bi.abs_value) 0 size_bi;
set_digit_nat copy_bi size_bi 0;
ignore (incr_nat copy_bi 0 size_res 1);
{ sign = -1;
abs_value = copy_bi }
let succ_big_int bi =
match bi.sign with
0 -> {sign = 1; abs_value = nat_of_int 1}
| -1 -> let size_bi = num_digits_big_int bi in
let copy_bi = copy_nat (bi.abs_value) 0 size_bi in
ignore (decr_nat copy_bi 0 size_bi 0);
{ sign = if is_zero_nat copy_bi 0 size_bi then 0 else -1;
abs_value = copy_bi }
| _ -> let size_bi = num_digits_big_int bi in
let size_res = succ (size_bi) in
let copy_bi = create_nat (size_res) in
blit_nat copy_bi 0 (bi.abs_value) 0 size_bi;
set_digit_nat copy_bi size_bi 0;
ignore (incr_nat copy_bi 0 size_res 1);
{ sign = 1;
abs_value = copy_bi }
let add_big_int bi1 bi2 =
let size_bi1 = num_digits_big_int bi1
and size_bi2 = num_digits_big_int bi2 in
if bi1.sign = bi2.sign
then (* Add absolute values if signs are the same *)
{ sign = bi1.sign;
abs_value =
match compare_nat (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2 with
-1 -> let res = create_nat (succ size_bi2) in
(blit_nat res 0 (bi2.abs_value) 0 size_bi2;
set_digit_nat res size_bi2 0;
ignore
(add_nat res 0 (succ size_bi2)
(bi1.abs_value) 0 size_bi1 0);
res)
|_ -> let res = create_nat (succ size_bi1) in
(blit_nat res 0 (bi1.abs_value) 0 size_bi1;
set_digit_nat res size_bi1 0;
ignore (add_nat res 0 (succ size_bi1)
(bi2.abs_value) 0 size_bi2 0);
res)}
else (* Subtract absolute values if signs are different *)
match compare_nat (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2 with
0 -> zero_big_int
| 1 -> { sign = bi1.sign;
abs_value =
let res = copy_nat (bi1.abs_value) 0 size_bi1 in
(ignore (sub_nat res 0 size_bi1
(bi2.abs_value) 0 size_bi2 1);
res) }
| _ -> { sign = bi2.sign;
abs_value =
let res = copy_nat (bi2.abs_value) 0 size_bi2 in
(ignore (sub_nat res 0 size_bi2
(bi1.abs_value) 0 size_bi1 1);
res) }
(* Coercion with int type *)
let big_int_of_int i =
{ sign = sign_int i;
abs_value =
let res = (create_nat 1)
in (if i = monster_int
then (set_digit_nat res 0 biggest_int;
ignore (incr_nat res 0 1 1))
else set_digit_nat res 0 (abs i));
res }
let add_int_big_int i bi = add_big_int (big_int_of_int i) bi
let sub_big_int bi1 bi2 = add_big_int bi1 (minus_big_int bi2)
(* Returns i * bi *)
let mult_int_big_int i bi =
let size_bi = num_digits_big_int bi in
let size_res = succ size_bi in
if i = monster_int
then let res = create_nat size_res in
blit_nat res 0 (bi.abs_value) 0 size_bi;
set_digit_nat res size_bi 0;
ignore (mult_digit_nat res 0 size_res (bi.abs_value) 0 size_bi
(nat_of_int biggest_int) 0);
{ sign = - (sign_big_int bi);
abs_value = res }
else let res = make_nat (size_res) in
ignore (mult_digit_nat res 0 size_res (bi.abs_value) 0 size_bi
(nat_of_int (abs i)) 0);
{ sign = (sign_int i) * (sign_big_int bi);
abs_value = res }
let mult_big_int bi1 bi2 =
let size_bi1 = num_digits_big_int bi1
and size_bi2 = num_digits_big_int bi2 in
let size_res = size_bi1 + size_bi2 in
let res = make_nat (size_res) in
{ sign = bi1.sign * bi2.sign;
abs_value =
if size_bi2 > size_bi1
then (ignore (mult_nat res 0 size_res (bi2.abs_value) 0 size_bi2
(bi1.abs_value) 0 size_bi1);res)
else (ignore (mult_nat res 0 size_res (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2);res) }
(* (quotient, remainder ) of the euclidian division of 2 big_int *)
let quomod_big_int bi1 bi2 =
if bi2.sign = 0 then raise Division_by_zero
else
let size_bi1 = num_digits_big_int bi1
and size_bi2 = num_digits_big_int bi2 in
match compare_nat (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2 with
-1 -> (* 1/2 -> 0, remains 1, -1/2 -> -1, remains 1 *)
(* 1/-2 -> 0, remains 1, -1/-2 -> 1, remains 1 *)
if bi1.sign >= 0 then
(big_int_of_int 0, bi1)
else if bi2.sign >= 0 then
(big_int_of_int(-1), add_big_int bi2 bi1)
else
(big_int_of_int 1, sub_big_int bi1 bi2)
| 0 -> (big_int_of_int (bi1.sign * bi2.sign), zero_big_int)
| _ -> let bi1_negatif = bi1.sign = -1 in
let size_q =
if bi1_negatif
then succ (max (succ (size_bi1 - size_bi2)) 1)
else max (succ (size_bi1 - size_bi2)) 1
and size_r = succ (max size_bi1 size_bi2)
(* r is long enough to contain both quotient and remainder *)
(* of the euclidian division *)
in
(* set up quotient, remainder *)
let q = create_nat size_q
and r = create_nat size_r in
blit_nat r 0 (bi1.abs_value) 0 size_bi1;
set_to_zero_nat r size_bi1 (size_r - size_bi1);
(* do the division of |bi1| by |bi2|
- at the beginning, r contains |bi1|
- at the end, r contains
* in the size_bi2 least significant digits, the remainder
* in the size_r-size_bi2 most significant digits, the quotient
note the conditions for application of div_nat are verified here
*)
div_nat r 0 size_r (bi2.abs_value) 0 size_bi2;
(* separate quotient and remainder *)
blit_nat q 0 r size_bi2 (size_r - size_bi2);
let not_null_mod = not (is_zero_nat r 0 size_bi2) in
(* correct the signs, adjusting the quotient and remainder *)
if bi1_negatif && not_null_mod
then
(* bi1<0, r>0, noting r for (r, size_bi2) the remainder, *)
(* we have |bi1|=q * |bi2| + r with 0 < r < |bi2|, *)
(* thus -bi1 = q * |bi2| + r *)
(* and bi1 = (-q) * |bi2| + (-r) with -|bi2| < (-r) < 0 *)
(* thus bi1 = -(q+1) * |bi2| + (|bi2|-r) *)
(* with 0 < (|bi2|-r) < |bi2| *)
(* so the quotient has for sign the opposite of the bi2'one *)
(* and for value q+1 *)
(* and the remainder is strictly positive *)
(* has for value |bi2|-r *)
(let new_r = copy_nat (bi2.abs_value) 0 size_bi2 in
(* new_r contains (r, size_bi2) the remainder *)
{ sign = - bi2.sign;
abs_value = (set_digit_nat q (pred size_q) 0;
ignore (incr_nat q 0 size_q 1); q) },
{ sign = 1;
abs_value =
(ignore (sub_nat new_r 0 size_bi2 r 0 size_bi2 1);
new_r) })
else
(if bi1_negatif then set_digit_nat q (pred size_q) 0;
{ sign = if is_zero_nat q 0 size_q
then 0
else bi1.sign * bi2.sign;
abs_value = q },
{ sign = if not_null_mod then 1 else 0;
abs_value = copy_nat r 0 size_bi2 })
let div_big_int bi1 bi2 = fst (quomod_big_int bi1 bi2)
and mod_big_int bi1 bi2 = snd (quomod_big_int bi1 bi2)
let gcd_big_int bi1 bi2 =
let size_bi1 = num_digits_big_int bi1
and size_bi2 = num_digits_big_int bi2 in
if is_zero_nat (bi1.abs_value) 0 size_bi1 then abs_big_int bi2
else if is_zero_nat (bi2.abs_value) 0 size_bi2 then
{ sign = 1;
abs_value = bi1.abs_value }
else
{ sign = 1;
abs_value =
match compare_nat (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2 with
0 -> bi1.abs_value
| 1 ->
let res = copy_nat (bi1.abs_value) 0 size_bi1 in
let len =
gcd_nat res 0 size_bi1 (bi2.abs_value) 0 size_bi2 in
copy_nat res 0 len
| _ ->
let res = copy_nat (bi2.abs_value) 0 size_bi2 in
let len =
gcd_nat res 0 size_bi2 (bi1.abs_value) 0 size_bi1 in
copy_nat res 0 len
}
(* Coercion operators *)
let monster_big_int = big_int_of_int monster_int;;
let monster_nat = monster_big_int.abs_value;;
let is_int_big_int bi =
num_digits_big_int bi == 1 &&
match compare_nat bi.abs_value 0 1 monster_nat 0 1 with
| 0 -> bi.sign == -1
| -1 -> true
| _ -> false;;
let int_of_big_int bi =
try let n = int_of_nat bi.abs_value in
if bi.sign = -1 then - n else n
with Failure _ ->
if eq_big_int bi monster_big_int then monster_int
else failwith "int_of_big_int";;
let big_int_of_nativeint i =
if i = 0n then
zero_big_int
else if i > 0n then begin
let res = create_nat 1 in
set_digit_nat_native res 0 i;
{ sign = 1; abs_value = res }
end else begin
let res = create_nat 1 in
set_digit_nat_native res 0 (Nativeint.neg i);
{ sign = -1; abs_value = res }
end
let nativeint_of_big_int bi =
if num_digits_big_int bi > 1 then failwith "nativeint_of_big_int";
let i = nth_digit_nat_native bi.abs_value 0 in
if bi.sign >= 0 then
if i >= 0n then i else failwith "nativeint_of_big_int"
else
if i >= 0n || i = Nativeint.min_int
then Nativeint.neg i
else failwith "nativeint_of_big_int"
let big_int_of_int32 i = big_int_of_nativeint (Nativeint.of_int32 i)
let int32_of_big_int bi =
let i = nativeint_of_big_int bi in
if i <= 0x7FFF_FFFFn && i >= -0x8000_0000n
then Nativeint.to_int32 i
else failwith "int32_of_big_int"
let big_int_of_int64 i =
if Sys.word_size = 64 then
big_int_of_nativeint (Int64.to_nativeint i)
else begin
let (sg, absi) =
if i = 0L then (0, 0L)
else if i > 0L then (1, i)
else (-1, Int64.neg i) in
let res = create_nat 2 in
set_digit_nat_native res 0 (Int64.to_nativeint absi);
set_digit_nat_native res 1 (Int64.to_nativeint (Int64.shift_right absi 32));
{ sign = sg; abs_value = res }
end
let int64_of_big_int bi =
if Sys.word_size = 64 then
Int64.of_nativeint (nativeint_of_big_int bi)
else begin
let i =
match num_digits_big_int bi with
| 1 -> Int64.logand
(Int64.of_nativeint (nth_digit_nat_native bi.abs_value 0))
0xFFFFFFFFL
| 2 -> Int64.logor
(Int64.logand
(Int64.of_nativeint (nth_digit_nat_native bi.abs_value 0))
0xFFFFFFFFL)
(Int64.shift_left
(Int64.of_nativeint (nth_digit_nat_native bi.abs_value 1))
32)
| _ -> failwith "int64_of_big_int" in
if bi.sign >= 0 then
if i >= 0L then i else failwith "int64_of_big_int"
else
if i >= 0L || i = Int64.min_int
then Int64.neg i
else failwith "int64_of_big_int"
end
(* Coercion with nat type *)
let nat_of_big_int bi =
if bi.sign = -1
then failwith "nat_of_big_int"
else copy_nat (bi.abs_value) 0 (num_digits_big_int bi)
let sys_big_int_of_nat nat off len =
let length = num_digits_nat nat off len in
{ sign = if is_zero_nat nat off length then 0 else 1;
abs_value = copy_nat nat off length }
let big_int_of_nat nat =
sys_big_int_of_nat nat 0 (length_nat nat)
(* Coercion with string type *)
let string_of_big_int bi =
if bi.sign = -1
then "-" ^ string_of_nat bi.abs_value
else string_of_nat bi.abs_value
let sys_big_int_of_string_aux s ofs len sgn base =
if len < 1 then failwith "sys_big_int_of_string";
let n = sys_nat_of_string base s ofs len in
if is_zero_nat n 0 (length_nat n) then zero_big_int
else {sign = sgn; abs_value = n}
;;
let sys_big_int_of_string_base s ofs len sgn =
if len < 1 then failwith "sys_big_int_of_string";
if len < 2 then sys_big_int_of_string_aux s ofs len sgn 10
else
match (s.[ofs], s.[ofs+1]) with
| ('0', 'x') | ('0', 'X') -> sys_big_int_of_string_aux s (ofs+2) (len-2) sgn 16
| ('0', 'o') | ('0', 'O') -> sys_big_int_of_string_aux s (ofs+2) (len-2) sgn 8
| ('0', 'b') | ('0', 'B') -> sys_big_int_of_string_aux s (ofs+2) (len-2) sgn 2
| _ -> sys_big_int_of_string_aux s ofs len sgn 10
;;
let sys_big_int_of_string s ofs len =
if len < 1 then failwith "sys_big_int_of_string";
match s.[ofs] with
| '-' -> sys_big_int_of_string_base s (ofs+1) (len-1) (-1)
| '+' -> sys_big_int_of_string_base s (ofs+1) (len-1) 1
| _ -> sys_big_int_of_string_base s ofs len 1
;;
let big_int_of_string s =
sys_big_int_of_string s 0 (String.length s)
let power_base_nat base nat off len =
if base = 0 then nat_of_int 0 else
if is_zero_nat nat off len || base = 1 then nat_of_int 1 else
let power_base = make_nat (succ length_of_digit) in
let (pmax, pint) = make_power_base base power_base in
let (n, rem) =
let (x, y) = quomod_big_int (sys_big_int_of_nat nat off len)
(big_int_of_int (succ pmax)) in
(int_of_big_int x, int_of_big_int y) in
if n = 0 then copy_nat power_base (pred rem) 1 else
begin
let res = make_nat n
and res2 = make_nat (succ n)
and l = num_bits_int n - 2 in
blit_nat res 0 power_base pmax 1;
for i = l downto 0 do
let len = num_digits_nat res 0 n in
let len2 = min n (2 * len) in
let succ_len2 = succ len2 in
ignore (square_nat res2 0 len2 res 0 len);
begin
if n land (1 lsl i) > 0
then (set_to_zero_nat res 0 len;
ignore (mult_digit_nat res 0 succ_len2
res2 0 len2 power_base pmax))
else blit_nat res 0 res2 0 len2
end;
set_to_zero_nat res2 0 len2
done;
if rem > 0
then (ignore (mult_digit_nat res2 0 (succ n)
res 0 n power_base (pred rem));
res2)
else res
end
let power_int_positive_int i n =
match sign_int n with
0 -> unit_big_int
| -1 -> invalid_arg "power_int_positive_int"
| _ -> let nat = power_base_int (abs i) n in
{ sign = if i >= 0
then sign_int i
else if n land 1 = 0
then 1
else -1;
abs_value = nat}
let power_big_int_positive_int bi n =
match sign_int n with
0 -> unit_big_int
| -1 -> invalid_arg "power_big_int_positive_int"
| _ -> let bi_len = num_digits_big_int bi in
let res_len = bi_len * n in
let res = make_nat res_len
and res2 = make_nat res_len
and l = num_bits_int n - 2 in
blit_nat res 0 bi.abs_value 0 bi_len;
for i = l downto 0 do
let len = num_digits_nat res 0 res_len in
let len2 = min res_len (2 * len) in
set_to_zero_nat res2 0 len2;
ignore (square_nat res2 0 len2 res 0 len);
if n land (1 lsl i) > 0 then begin
let lenp = min res_len (len2 + bi_len) in
set_to_zero_nat res 0 lenp;
ignore(mult_nat res 0 lenp res2 0 len2 (bi.abs_value) 0 bi_len)
end else begin
blit_nat res 0 res2 0 len2
end
done;
{sign = if bi.sign >= 0 then bi.sign
else if n land 1 = 0 then 1 else -1;
abs_value = res}
let power_int_positive_big_int i bi =
match sign_big_int bi with
0 -> unit_big_int
| -1 -> invalid_arg "power_int_positive_big_int"
| _ -> let nat = power_base_nat
(abs i) (bi.abs_value) 0 (num_digits_big_int bi) in
{ sign = if i >= 0
then sign_int i
else if is_digit_odd (bi.abs_value) 0
then -1
else 1;
abs_value = nat }
let power_big_int_positive_big_int bi1 bi2 =
match sign_big_int bi2 with
0 -> unit_big_int
| -1 -> invalid_arg "power_big_int_positive_big_int"
| _ -> try
power_big_int_positive_int bi1 (int_of_big_int bi2)
with Failure _ ->
try
power_int_positive_big_int (int_of_big_int bi1) bi2
with Failure _ ->
raise Out_of_memory
(* If neither bi1 nor bi2 is a small integer, bi1^bi2 is not
representable. Indeed, on a 32-bit platform,
|bi1| >= 2 and |bi2| >= 2^30, hence bi1^bi2 has at least
2^30 bits = 2^27 bytes, greater than the max size of
allocated blocks. On a 64-bit platform,
|bi1| >= 2 and |bi2| >= 2^62, hence bi1^bi2 has at least
2^62 bits = 2^59 bytes, greater than the max size of
allocated blocks. *)
(* base_power_big_int compute bi*base^n *)
let base_power_big_int base n bi =
match sign_int n with
0 -> bi
| -1 -> let nat = power_base_int base (-n) in
let len_nat = num_digits_nat nat 0 (length_nat nat)
and len_bi = num_digits_big_int bi in
if len_bi < len_nat then
invalid_arg "base_power_big_int"
else if len_bi = len_nat &&
compare_digits_nat (bi.abs_value) len_bi nat len_nat = -1
then invalid_arg "base_power_big_int"
else
let copy = create_nat (succ len_bi) in
blit_nat copy 0 (bi.abs_value) 0 len_bi;
set_digit_nat copy len_bi 0;
div_nat copy 0 (succ len_bi)
nat 0 len_nat;
if not (is_zero_nat copy 0 len_nat)
then invalid_arg "base_power_big_int"
else { sign = bi.sign;
abs_value = copy_nat copy len_nat 1 }
| _ -> let nat = power_base_int base n in
let len_nat = num_digits_nat nat 0 (length_nat nat)
and len_bi = num_digits_big_int bi in
let new_len = len_bi + len_nat in
let res = make_nat new_len in
ignore
(if len_bi > len_nat
then mult_nat res 0 new_len
(bi.abs_value) 0 len_bi
nat 0 len_nat
else mult_nat res 0 new_len
nat 0 len_nat
(bi.abs_value) 0 len_bi)
; if is_zero_nat res 0 new_len
then zero_big_int
else create_big_int (bi.sign) res
(* Other functions needed *)
(* Integer part of the square root of a big_int *)
let sqrt_big_int bi =
match bi.sign with
| 0 -> zero_big_int
| -1 -> invalid_arg "sqrt_big_int"
| _ -> {sign = 1;
abs_value = sqrt_nat (bi.abs_value) 0 (num_digits_big_int bi)}
let square_big_int bi =
if bi.sign == 0 then zero_big_int else
let len_bi = num_digits_big_int bi in
let len_res = 2 * len_bi in
let res = make_nat len_res in
ignore (square_nat res 0 len_res (bi.abs_value) 0 len_bi);
{sign = 1; abs_value = res}
(* round off of the futur last digit (of the integer represented by the string
argument of the function) that is now the previous one.
if s contains an integer of the form (10^n)-1
then s <- only 0 digits and the result_int is true
else s <- the round number and the result_int is false *)
let round_futur_last_digit s off_set length =
let l = pred (length + off_set) in
if Char.code(Bytes.get s l) >= Char.code '5'
then
let rec round_rec l =
if l < off_set then true else begin
let current_char = Bytes.get s l in
if current_char = '9' then
(Bytes.set s l '0'; round_rec (pred l))
else
(Bytes.set s l (Char.chr (succ (Char.code current_char)));
false)
end
in round_rec (pred l)
else false
(* Approximation with floating decimal point a` la approx_ratio_exp *)
let approx_big_int prec bi =
let len_bi = num_digits_big_int bi in
let n =
max 0
(int_of_big_int (
add_int_big_int
(-prec)
(div_big_int (mult_big_int (big_int_of_int (pred len_bi))
(big_int_of_string "963295986"))
(big_int_of_string "100000000")))) in
let s =
Bytes.unsafe_of_string
(string_of_big_int (div_big_int bi (power_int_positive_int 10 n)))
in
let (sign, off, len) =
if Bytes.get s 0 = '-'
then ("-", 1, succ prec)
else ("", 0, prec) in
if (round_futur_last_digit s off (succ prec))
then (sign^"1."^(String.make prec '0')^"e"^
(string_of_int (n + 1 - off + Bytes.length s)))
else (sign^(Bytes.sub_string s off 1)^"."^
(Bytes.sub_string s (succ off) (pred prec))
^"e"^(string_of_int (n - succ off + Bytes.length s)))
(* Logical operations *)
(* Shift left by N bits *)
let shift_left_big_int bi n =
if n < 0 then invalid_arg "shift_left_big_int"
else if n = 0 then bi
else if bi.sign = 0 then bi
else begin
let size_bi = num_digits_big_int bi in
let size_res = size_bi + ((n + length_of_digit - 1) / length_of_digit) in
let res = create_nat size_res in
let ndigits = n / length_of_digit in
set_to_zero_nat res 0 ndigits;
blit_nat res ndigits bi.abs_value 0 size_bi;
let nbits = n mod length_of_digit in
if nbits > 0 then
shift_left_nat res ndigits size_bi res (ndigits + size_bi) nbits;
{ sign = bi.sign; abs_value = res }
end
(* Shift right by N bits (rounds toward zero) *)
let shift_right_towards_zero_big_int bi n =
if n < 0 then invalid_arg "shift_right_towards_zero_big_int"
else if n = 0 then bi
else if bi.sign = 0 then bi
else begin
let size_bi = num_digits_big_int bi in
let ndigits = n / length_of_digit in
let nbits = n mod length_of_digit in
if ndigits >= size_bi then zero_big_int else begin
let size_res = size_bi - ndigits in
let res = create_nat size_res in
blit_nat res 0 bi.abs_value ndigits size_res;
if nbits > 0 then begin
let tmp = create_nat 1 in
shift_right_nat res 0 size_res tmp 0 nbits
end;
if is_zero_nat res 0 size_res
then zero_big_int
else { sign = bi.sign; abs_value = res }
end
end
(* Compute 2^n - 1 *)
let two_power_m1_big_int n =
if n < 0 then invalid_arg "two_power_m1_big_int"
else if n = 0 then zero_big_int
else begin
let idx = n / length_of_digit in
let size_res = idx + 1 in
let res = make_nat size_res in
set_digit_nat_native res idx
(Nativeint.shift_left 1n (n mod length_of_digit));
ignore (decr_nat res 0 size_res 0);
{ sign = 1; abs_value = res }
end
(* Shift right by N bits (rounds toward minus infinity) *)
let shift_right_big_int bi n =
if n < 0 then invalid_arg "shift_right_big_int"
else if bi.sign >= 0 then shift_right_towards_zero_big_int bi n
else shift_right_towards_zero_big_int (sub_big_int bi (two_power_m1_big_int n)) n
(* Extract N bits starting at ofs.
Treats bi in two's complement.
Result is always positive. *)
let extract_big_int bi ofs n =
if ofs < 0 || n < 0 then invalid_arg "extract_big_int"
else if bi.sign = 0 then bi
else begin
let size_bi = num_digits_big_int bi in
let size_res = (n + length_of_digit - 1) / length_of_digit in
let ndigits = ofs / length_of_digit in
let nbits = ofs mod length_of_digit in
let res = make_nat size_res in
if ndigits < size_bi then
blit_nat res 0 bi.abs_value ndigits (min size_res (size_bi - ndigits));
if bi.sign < 0 then begin
(* Two's complement *)
complement_nat res 0 size_res;
(* PR#6010: need to increment res iff digits 0...ndigits-1 of bi are 0.
In this case, digits 0...ndigits-1 of not(bi) are all 0xFF...FF,
and adding 1 to them produces a carry out at ndigits. *)
let rec carry_incr i =
i >= ndigits || i >= size_bi ||
(is_digit_zero bi.abs_value i && carry_incr (i + 1)) in
if carry_incr 0 then ignore (incr_nat res 0 size_res 1)
end;
if nbits > 0 then begin
let tmp = create_nat 1 in
shift_right_nat res 0 size_res tmp 0 nbits
end;
let n' = n mod length_of_digit in
if n' > 0 then begin
let tmp = create_nat 1 in
set_digit_nat_native tmp 0
(Nativeint.shift_right_logical (-1n) (length_of_digit - n'));
land_digit_nat res (size_res - 1) tmp 0
end;
if is_zero_nat res 0 size_res
then zero_big_int
else { sign = 1; abs_value = res }
end
(* Bitwise logical operations. Arguments must be >= 0. *)
let and_big_int a b =
if a.sign < 0 || b.sign < 0 then invalid_arg "and_big_int"
else if a.sign = 0 || b.sign = 0 then zero_big_int
else begin
let size_a = num_digits_big_int a
and size_b = num_digits_big_int b in
let size_res = min size_a size_b in
let res = create_nat size_res in
blit_nat res 0 a.abs_value 0 size_res;
for i = 0 to size_res - 1 do
land_digit_nat res i b.abs_value i
done;
if is_zero_nat res 0 size_res
then zero_big_int
else { sign = 1; abs_value = res }
end
let or_big_int a b =
if a.sign < 0 || b.sign < 0 then invalid_arg "or_big_int"
else if a.sign = 0 then b
else if b.sign = 0 then a
else begin
let size_a = num_digits_big_int a
and size_b = num_digits_big_int b in
let size_res = max size_a size_b in
let res = create_nat size_res in
let or_aux a' b' size_b' =
blit_nat res 0 a'.abs_value 0 size_res;
for i = 0 to size_b' - 1 do
lor_digit_nat res i b'.abs_value i
done in
if size_a >= size_b
then or_aux a b size_b
else or_aux b a size_a;
if is_zero_nat res 0 size_res
then zero_big_int
else { sign = 1; abs_value = res }
end
let xor_big_int a b =
if a.sign < 0 || b.sign < 0 then invalid_arg "xor_big_int"
else if a.sign = 0 then b
else if b.sign = 0 then a
else begin
let size_a = num_digits_big_int a
and size_b = num_digits_big_int b in
let size_res = max size_a size_b in
let res = create_nat size_res in
let xor_aux a' b' size_b' =
blit_nat res 0 a'.abs_value 0 size_res;
for i = 0 to size_b' - 1 do
lxor_digit_nat res i b'.abs_value i
done in
if size_a >= size_b
then xor_aux a b size_b
else xor_aux b a size_a;
if is_zero_nat res 0 size_res
then zero_big_int
else { sign = 1; abs_value = res }
end
(* Coercion with float type *)
(* Consider a real number [r] such that
- the integral part of [r] is the bigint [x]
- 2^54 <= |x| < 2^63
- the fractional part of [r] is 0 if [exact = true],
nonzero if [exact = false].
Then, the following function returns [r] correctly rounded to
the nearest double-precision floating-point number.
This is an instance of the "round to odd" technique formalized in
"When double rounding is odd" by S. Boldo and G. Melquiond.
The claim above is lemma Fappli_IEEE_extra.round_odd_fix
from the CompCert Coq development. *)
let round_big_int_to_float x exact =
assert (let n = num_bits_big_int x in 55 <= n && n <= 63);
let m = int64_of_big_int x in
(* Unless the fractional part is exactly 0, round m to an odd integer *)
let m = if exact then m else Int64.logor m 1L in
(* Then convert m to float, with the normal rounding mode. *)
Int64.to_float m
let float_of_big_int x =
let n = num_bits_big_int x in
if n <= 63 then
Int64.to_float (int64_of_big_int x)
else begin
let n = n - 55 in
(* Extract top 55 bits of x *)
let top = shift_right_big_int x n in
(* Check if the other bits are all zero *)
let exact = eq_big_int x (shift_left_big_int top n) in
(* Round to float and apply exponent *)
ldexp (round_big_int_to_float top exact) n
end