ocaml/byterun/minor_gc.c

203 lines
6.3 KiB
C

/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Damien Doligez, projet Para, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the GNU Library General Public License. */
/* */
/***********************************************************************/
/* $Id$ */
#include <string.h>
#include "config.h"
#include "fail.h"
#include "finalise.h"
#include "gc.h"
#include "gc_ctrl.h"
#include "major_gc.h"
#include "memory.h"
#include "minor_gc.h"
#include "misc.h"
#include "mlvalues.h"
#include "roots.h"
#include "signals.h"
asize_t minor_heap_size;
char *young_start = NULL, *young_end = NULL;
char *young_ptr = NULL, *young_limit = NULL;
static value **ref_table = NULL, **ref_table_end, **ref_table_threshold;
value **ref_table_ptr = NULL, **ref_table_limit;
static asize_t ref_table_size, ref_table_reserve;
int in_minor_collection = 0;
void set_minor_heap_size (asize_t size)
{
char *new_heap;
value **new_table;
Assert (size >= Minor_heap_min);
Assert (size <= Minor_heap_max);
Assert (size % sizeof (value) == 0);
if (young_ptr != young_end) minor_collection ();
Assert (young_ptr == young_end);
new_heap = (char *) stat_alloc (size);
if (young_start != NULL){
stat_free (young_start);
}
young_start = new_heap;
young_end = new_heap + size;
young_limit = young_start;
young_ptr = young_end;
minor_heap_size = size;
ref_table_size = minor_heap_size / sizeof (value) / 8;
ref_table_reserve = 256;
new_table = (value **) stat_alloc ((ref_table_size + ref_table_reserve)
* sizeof (value *));
if (ref_table != NULL) stat_free (ref_table);
ref_table = new_table;
ref_table_ptr = ref_table;
ref_table_threshold = ref_table + ref_table_size;
ref_table_limit = ref_table_threshold;
ref_table_end = ref_table + ref_table_size + ref_table_reserve;
}
void oldify (value v, value *p)
{
value result, field0;
header_t hd;
mlsize_t sz, i;
tag_t tag;
tail_call:
if (Is_block (v) && Is_young (v)){
Assert (Hp_val (v) >= young_ptr);
hd = Hd_val (v);
if (hd == 0){ /* Already forwarded ? */
*p = Field (v, 0); /* Then the forward pointer is the first field. */
}else if ((tag = Tag_hd (hd)), (tag == Infix_tag)) {
mlsize_t offset = Infix_offset_hd (hd);
oldify(v - offset, p);
*p += offset;
}else if (tag >= No_scan_tag){
sz = Wosize_hd (hd);
result = alloc_shr (sz, tag);
for (i = 0; i < sz; i++) Field(result, i) = Field(v, i);
Hd_val (v) = 0; /* Put the forward flag. */
Field (v, 0) = result; /* And the forward pointer. */
*p = result;
}else{
/* We can do recursive calls before all the fields are filled, because
we will not be calling the major GC. */
sz = Wosize_hd (hd);
result = alloc_shr (sz, tag);
*p = result;
field0 = Field (v, 0);
Hd_val (v) = 0; /* Put the forward flag. */
Field (v, 0) = result; /* And the forward pointer. */
if (sz == 1) {
p = &Field (result, 0);
v = field0;
goto tail_call;
} else {
oldify (field0, &Field (result, 0));
for (i = 1; i < sz - 1; i++){
oldify (Field(v, i), &Field (result, i));
}
p = &Field (result, i);
v = Field (v, i);
goto tail_call;
}
}
}else{
*p = v;
}
}
/* Make sure the minor heap is empty by performing a minor collection
if needed.
*/
void empty_minor_heap (void)
{
value **r;
if (young_ptr != young_end){
in_minor_collection = 1;
gc_message (0x02, "<", 0);
oldify_local_roots();
for (r = ref_table; r < ref_table_ptr; r++) oldify (**r, *r);
stat_minor_words += Wsize_bsize (young_end - young_ptr);
young_ptr = young_end;
ref_table_ptr = ref_table;
ref_table_limit = ref_table_threshold;
gc_message (0x02, ">", 0);
in_minor_collection = 0;
}
final_empty_young ();
#ifdef DEBUG
{
value *p;
for (p = (value *) young_start; p < (value *) young_end; ++p){
*p = Debug_free_minor;
}
}
#endif
}
/* Do a minor collection and a slice of major collection, call finalisation
functions, etc.
Leave the minor heap empty.
*/
void minor_collection (void)
{
long prev_alloc_words = allocated_words;
empty_minor_heap ();
stat_promoted_words += allocated_words - prev_alloc_words;
++ stat_minor_collections;
major_collection_slice ();
force_major_slice = 0;
final_do_calls ();
empty_minor_heap ();
}
value check_urgent_gc (value extra_root)
{
CAMLparam1 (extra_root);
if (force_major_slice) minor_collection();
CAMLreturn (extra_root);
}
void realloc_ref_table (void)
{ Assert (ref_table_ptr == ref_table_limit);
Assert (ref_table_limit <= ref_table_end);
Assert (ref_table_limit >= ref_table_threshold);
if (ref_table_limit == ref_table_threshold){
gc_message (0x08, "ref_table threshold crossed\n", 0);
ref_table_limit = ref_table_end;
urge_major_slice ();
}else{ /* This will almost never happen with the bytecode interpreter. */
asize_t sz;
asize_t cur_ptr = ref_table_ptr - ref_table;
Assert (force_major_slice);
ref_table_size *= 2;
sz = (ref_table_size + ref_table_reserve) * sizeof (value *);
gc_message (0x08, "Growing ref_table to %ldk bytes\n", (long) sz / 1024);
ref_table = (value **) realloc ((char *) ref_table, sz);
if (ref_table == NULL) fatal_error ("Fatal error: ref_table overflow\n");
ref_table_end = ref_table + ref_table_size + ref_table_reserve;
ref_table_threshold = ref_table + ref_table_size;
ref_table_ptr = ref_table + cur_ptr;
ref_table_limit = ref_table_end;
}
}