ocaml/otherlibs/bigarray/bigarray_stubs.c

1073 lines
31 KiB
C

/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Manuel Serrano and Xavier Leroy, INRIA Rocquencourt */
/* */
/* Copyright 2000 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the GNU Library General Public License, with */
/* the special exception on linking described in file ../../LICENSE. */
/* */
/***********************************************************************/
/* $Id$ */
#include <stddef.h>
#include <stdarg.h>
#include <string.h>
#include "alloc.h"
#include "bigarray.h"
#include "custom.h"
#include "fail.h"
#include "intext.h"
#include "memory.h"
#include "mlvalues.h"
extern void caml_ba_unmap_file(void * addr, uintnat len);
/* from mmap_xxx.c */
/* Compute the number of elements of a big array */
static uintnat caml_ba_num_elts(struct caml_bigarray * b)
{
uintnat num_elts;
int i;
num_elts = 1;
for (i = 0; i < b->num_dims; i++) num_elts = num_elts * b->dim[i];
return num_elts;
}
/* Size in bytes of a bigarray element, indexed by bigarray kind */
int caml_ba_element_size[] =
{ 4 /*FLOAT32*/, 8 /*FLOAT64*/,
1 /*SINT8*/, 1 /*UINT8*/,
2 /*SINT16*/, 2 /*UINT16*/,
4 /*INT32*/, 8 /*INT64*/,
sizeof(value) /*CAML_INT*/, sizeof(value) /*NATIVE_INT*/,
8 /*COMPLEX32*/, 16 /*COMPLEX64*/
};
/* Compute the number of bytes for the elements of a big array */
uintnat caml_ba_byte_size(struct caml_bigarray * b)
{
return caml_ba_num_elts(b)
* caml_ba_element_size[b->flags & CAML_BA_KIND_MASK];
}
/* Operation table for bigarrays */
static void caml_ba_finalize(value v);
static int caml_ba_compare(value v1, value v2);
static intnat caml_ba_hash(value v);
static void caml_ba_serialize(value, uintnat *, uintnat *);
uintnat caml_ba_deserialize(void * dst);
static struct custom_operations caml_ba_ops = {
"_bigarray",
caml_ba_finalize,
caml_ba_compare,
caml_ba_hash,
caml_ba_serialize,
caml_ba_deserialize
};
/* Multiplication of unsigned longs with overflow detection */
static uintnat
caml_ba_multov(uintnat a, uintnat b, int * overflow)
{
#define HALF_SIZE (sizeof(uintnat) * 4)
#define HALF_MASK (((uintnat)1 << HALF_SIZE) - 1)
#define LOW_HALF(x) ((x) & HALF_MASK)
#define HIGH_HALF(x) ((x) >> HALF_SIZE)
/* Cut in half words */
uintnat al = LOW_HALF(a);
uintnat ah = HIGH_HALF(a);
uintnat bl = LOW_HALF(b);
uintnat bh = HIGH_HALF(b);
/* Exact product is:
al * bl
+ ah * bl << HALF_SIZE
+ al * bh << HALF_SIZE
+ ah * bh << 2*HALF_SIZE
Overflow occurs if:
ah * bh is not 0, i.e. ah != 0 and bh != 0
OR ah * bl has high half != 0
OR ah * bl has high half != 0
OR the sum al * bl + LOW_HALF(ah * bl) << HALF_SIZE
+ LOW_HALF(al * bh) << HALF_SIZE overflows.
This sum is equal to p = (a * b) modulo word size. */
uintnat p1 = al * bh;
uintnat p2 = ah * bl;
uintnat p = a * b;
if (ah != 0 && bh != 0) *overflow = 1;
if (HIGH_HALF(p1) != 0 || HIGH_HALF(p2) != 0) *overflow = 1;
p1 <<= HALF_SIZE;
p2 <<= HALF_SIZE;
p1 += p2;
if (p < p1 || p1 < p2) *overflow = 1; /* overflow in sums */
return p;
#undef HALF_SIZE
#undef LOW_HALF
#undef HIGH_HALF
}
/* Allocation of a big array */
#define CAML_BA_MAX_MEMORY 256*1024*1024
/* 256 Mb -- after allocating that much, it's probably worth speeding
up the major GC */
/* [caml_ba_alloc] will allocate a new bigarray object in the heap.
If [data] is NULL, the memory for the contents is also allocated
(with [malloc]) by [caml_ba_alloc].
[data] cannot point into the Caml heap.
[dim] may point into an object in the Caml heap.
*/
CAMLexport value
caml_ba_alloc(int flags, int num_dims, void * data, intnat * dim)
{
uintnat num_elts, size;
int overflow, i;
value res;
struct caml_bigarray * b;
intnat dimcopy[MAX_NUM_DIMS];
Assert(num_dims >= 1 && num_dims <= MAX_NUM_DIMS);
Assert((flags & BIGARRAY_KIND_MASK) <= BIGARRAY_COMPLEX64);
for (i = 0; i < num_dims; i++) dimcopy[i] = dim[i];
size = 0;
if (data == NULL) {
overflow = 0;
num_elts = 1;
for (i = 0; i < num_dims; i++) {
num_elts = caml_ba_multov(num_elts, dimcopy[i], &overflow);
}
size = caml_ba_multov(num_elts,
caml_ba_element_size[flags & BIGARRAY_KIND_MASK],
&overflow);
if (overflow) raise_out_of_memory();
data = malloc(size);
if (data == NULL && size != 0) raise_out_of_memory();
flags |= BIGARRAY_MANAGED;
}
res = alloc_custom(&caml_ba_ops,
sizeof(struct caml_ba_array)
+ (num_dims - 1) * sizeof(intnat),
size, CAML_BA_MAX_MEMORY);
b = Bigarray_val(res);
b->data = data;
b->num_dims = num_dims;
b->flags = flags;
b->proxy = NULL;
for (i = 0; i < num_dims; i++) b->dim[i] = dimcopy[i];
return res;
}
/* Same as caml_ba_alloc, but dimensions are passed as a list of
arguments */
CAMLexport value caml_ba_alloc_dims(int flags, int num_dims, void * data, ...)
{
va_list ap;
intnat dim[MAX_NUM_DIMS];
int i;
value res;
va_start(ap, data);
for (i = 0; i < num_dims; i++) dim[i] = va_arg(ap, intnat);
va_end(ap);
res = caml_ba_alloc(flags, num_dims, data, dim);
return res;
}
/* Allocate a bigarray from Caml */
CAMLprim value caml_ba_create(value vkind, value vlayout, value vdim)
{
intnat dim[MAX_NUM_DIMS];
mlsize_t num_dims;
int i, flags;
num_dims = Wosize_val(vdim);
if (num_dims < 1 || num_dims > MAX_NUM_DIMS)
invalid_argument("Bigarray.create: bad number of dimensions");
for (i = 0; i < num_dims; i++) {
dim[i] = Long_val(Field(vdim, i));
if (dim[i] < 0 || dim[i] > 0x7FFFFFFFL)
invalid_argument("Bigarray.create: negative dimension");
}
flags = Int_val(vkind) | Int_val(vlayout);
return caml_ba_alloc(flags, num_dims, NULL, dim);
}
/* Given a big array and a vector of indices, check that the indices
are within the bounds and return the offset of the corresponding
array element in the data part of the array. */
static long caml_ba_offset(struct caml_ba_array * b, intnat * index)
{
intnat offset;
int i;
offset = 0;
if ((b->flags & BIGARRAY_LAYOUT_MASK) == BIGARRAY_C_LAYOUT) {
/* C-style layout: row major, indices start at 0 */
for (i = 0; i < b->num_dims; i++) {
if ((uintnat) index[i] >= (uintnat) b->dim[i])
array_bound_error();
offset = offset * b->dim[i] + index[i];
}
} else {
/* Fortran-style layout: column major, indices start at 1 */
for (i = b->num_dims - 1; i >= 0; i--) {
if ((uintnat) (index[i] - 1) >= (uintnat) b->dim[i])
array_bound_error();
offset = offset * b->dim[i] + (index[i] - 1);
}
}
return offset;
}
/* Helper function to allocate a record of two double floats */
static value copy_two_doubles(double d0, double d1)
{
value res = alloc_small(2 * Double_wosize, Double_array_tag);
Store_double_field(res, 0, d0);
Store_double_field(res, 1, d1);
return res;
}
/* Generic code to read from a big array */
value caml_ba_get_N(value vb, value * vind, int nind)
{
struct caml_bigarray * b = Bigarray_val(vb);
intnat index[MAX_NUM_DIMS];
int i;
intnat offset;
/* Check number of indices = number of dimensions of array
(maybe not necessary if ML typing guarantees this) */
if (nind != b->num_dims)
invalid_argument("Bigarray.get: wrong number of indices");
/* Compute offset and check bounds */
for (i = 0; i < b->num_dims; i++) index[i] = Long_val(vind[i]);
offset = caml_ba_offset(b, index);
/* Perform read */
switch ((b->flags) & BIGARRAY_KIND_MASK) {
default:
Assert(0);
case BIGARRAY_FLOAT32:
return copy_double(((float *) b->data)[offset]);
case BIGARRAY_FLOAT64:
return copy_double(((double *) b->data)[offset]);
case BIGARRAY_SINT8:
return Val_int(((int8 *) b->data)[offset]);
case BIGARRAY_UINT8:
return Val_int(((uint8 *) b->data)[offset]);
case BIGARRAY_SINT16:
return Val_int(((int16 *) b->data)[offset]);
case BIGARRAY_UINT16:
return Val_int(((uint16 *) b->data)[offset]);
case BIGARRAY_INT32:
return copy_int32(((int32 *) b->data)[offset]);
case BIGARRAY_INT64:
return copy_int64(((int64 *) b->data)[offset]);
case BIGARRAY_NATIVE_INT:
return copy_nativeint(((intnat *) b->data)[offset]);
case BIGARRAY_CAML_INT:
return Val_long(((intnat *) b->data)[offset]);
case BIGARRAY_COMPLEX32:
{ float * p = ((float *) b->data) + offset * 2;
return copy_two_doubles(p[0], p[1]); }
case BIGARRAY_COMPLEX64:
{ double * p = ((double *) b->data) + offset * 2;
return copy_two_doubles(p[0], p[1]); }
}
}
CAMLprim value caml_ba_get_1(value vb, value vind1)
{
return caml_ba_get_N(vb, &vind1, 1);
}
CAMLprim value caml_ba_get_2(value vb, value vind1, value vind2)
{
value vind[2];
vind[0] = vind1; vind[1] = vind2;
return caml_ba_get_N(vb, vind, 2);
}
CAMLprim value caml_ba_get_3(value vb, value vind1, value vind2, value vind3)
{
value vind[3];
vind[0] = vind1; vind[1] = vind2; vind[2] = vind3;
return caml_ba_get_N(vb, vind, 3);
}
#if 0
CAMLprim value caml_ba_get_4(value vb, value vind1, value vind2,
value vind3, value vind4)
{
value vind[4];
vind[0] = vind1; vind[1] = vind2; vind[2] = vind3; vind[3] = vind4;
return caml_ba_get_N(vb, vind, 4);
}
CAMLprim value caml_ba_get_5(value vb, value vind1, value vind2,
value vind3, value vind4, value vind5)
{
value vind[5];
vind[0] = vind1; vind[1] = vind2; vind[2] = vind3;
vind[3] = vind4; vind[4] = vind5;
return caml_ba_get_N(vb, vind, 5);
}
CAMLprim value caml_ba_get_6(value vb, value vind1, value vind2,
value vind3, value vind4, value vind5, value vind6)
{
value vind[6];
vind[0] = vind1; vind[1] = vind2; vind[2] = vind3;
vind[3] = vind4; vind[4] = vind5; vind[5] = vind6;
return caml_ba_get_N(vb, vind, 6);
}
#endif
CAMLprim value caml_ba_get_generic(value vb, value vind)
{
return caml_ba_get_N(vb, &Field(vind, 0), Wosize_val(vind));
}
/* Generic write to a big array */
static value caml_ba_set_aux(value vb, value * vind, intnat nind, value newval)
{
struct caml_bigarray * b = Bigarray_val(vb);
intnat index[MAX_NUM_DIMS];
int i;
intnat offset;
/* Check number of indices = number of dimensions of array
(maybe not necessary if ML typing guarantees this) */
if (nind != b->num_dims)
invalid_argument("Bigarray.set: wrong number of indices");
/* Compute offset and check bounds */
for (i = 0; i < b->num_dims; i++) index[i] = Long_val(vind[i]);
offset = caml_ba_offset(b, index);
/* Perform write */
switch (b->flags & BIGARRAY_KIND_MASK) {
default:
Assert(0);
case BIGARRAY_FLOAT32:
((float *) b->data)[offset] = Double_val(newval); break;
case BIGARRAY_FLOAT64:
((double *) b->data)[offset] = Double_val(newval); break;
case BIGARRAY_SINT8:
case BIGARRAY_UINT8:
((int8 *) b->data)[offset] = Int_val(newval); break;
case BIGARRAY_SINT16:
case BIGARRAY_UINT16:
((int16 *) b->data)[offset] = Int_val(newval); break;
case BIGARRAY_INT32:
((int32 *) b->data)[offset] = Int32_val(newval); break;
case BIGARRAY_INT64:
((int64 *) b->data)[offset] = Int64_val(newval); break;
case BIGARRAY_NATIVE_INT:
((intnat *) b->data)[offset] = Nativeint_val(newval); break;
case BIGARRAY_CAML_INT:
((intnat *) b->data)[offset] = Long_val(newval); break;
case BIGARRAY_COMPLEX32:
{ float * p = ((float *) b->data) + offset * 2;
p[0] = Double_field(newval, 0);
p[1] = Double_field(newval, 1);
break; }
case BIGARRAY_COMPLEX64:
{ double * p = ((double *) b->data) + offset * 2;
p[0] = Double_field(newval, 0);
p[1] = Double_field(newval, 1);
break; }
}
return Val_unit;
}
CAMLprim value caml_ba_set_1(value vb, value vind1, value newval)
{
return caml_ba_set_aux(vb, &vind1, 1, newval);
}
CAMLprim value caml_ba_set_2(value vb, value vind1, value vind2, value newval)
{
value vind[2];
vind[0] = vind1; vind[1] = vind2;
return caml_ba_set_aux(vb, vind, 2, newval);
}
CAMLprim value caml_ba_set_3(value vb, value vind1, value vind2, value vind3,
value newval)
{
value vind[3];
vind[0] = vind1; vind[1] = vind2; vind[2] = vind3;
return caml_ba_set_aux(vb, vind, 3, newval);
}
#if 0
CAMLprim value caml_ba_set_4(value vb, value vind1, value vind2,
value vind3, value vind4, value newval)
{
value vind[4];
vind[0] = vind1; vind[1] = vind2; vind[2] = vind3; vind[3] = vind4;
return caml_ba_set_aux(vb, vind, 4, newval);
}
CAMLprim value caml_ba_set_5(value vb, value vind1, value vind2,
value vind3, value vind4, value vind5, value newval)
{
value vind[5];
vind[0] = vind1; vind[1] = vind2; vind[2] = vind3;
vind[3] = vind4; vind[4] = vind5;
return caml_ba_set_aux(vb, vind, 5, newval);
}
CAMLprim value caml_ba_set_6(value vb, value vind1, value vind2,
value vind3, value vind4, value vind5,
value vind6, value newval)
{
value vind[6];
vind[0] = vind1; vind[1] = vind2; vind[2] = vind3;
vind[3] = vind4; vind[4] = vind5; vind[5] = vind6;
return caml_ba_set_aux(vb, vind, 6, newval);
}
value caml_ba_set_N(value vb, value * vind, int nargs)
{
return caml_ba_set_aux(vb, vind, nargs - 1, vind[nargs - 1]);
}
#endif
CAMLprim value caml_ba_set_generic(value vb, value vind, value newval)
{
return caml_ba_set_aux(vb, &Field(vind, 0), Wosize_val(vind), newval);
}
/* Return the number of dimensions of a big array */
CAMLprim value caml_ba_num_dims(value vb)
{
struct caml_bigarray * b = Bigarray_val(vb);
return Val_long(b->num_dims);
}
/* Return the n-th dimension of a big array */
CAMLprim value caml_ba_dim(value vb, value vn)
{
struct caml_bigarray * b = Bigarray_val(vb);
intnat n = Long_val(vn);
if (n >= b->num_dims) invalid_argument("Bigarray.dim");
return Val_long(b->dim[n]);
}
/* Return the kind of a big array */
CAMLprim value caml_ba_kind(value vb)
{
return Val_int(Bigarray_val(vb)->flags & BIGARRAY_KIND_MASK);
}
/* Return the layout of a big array */
CAMLprim value caml_ba_layout(value vb)
{
return Val_int(Bigarray_val(vb)->flags & BIGARRAY_LAYOUT_MASK);
}
/* Finalization of a big array */
static void caml_ba_finalize(value v)
{
struct caml_bigarray * b = Bigarray_val(v);
switch (b->flags & BIGARRAY_MANAGED_MASK) {
case BIGARRAY_EXTERNAL:
break;
case BIGARRAY_MANAGED:
if (b->proxy == NULL) {
free(b->data);
} else {
if (-- b->proxy->refcount == 0) {
free(b->proxy->data);
stat_free(b->proxy);
}
}
break;
case BIGARRAY_MAPPED_FILE:
if (b->proxy == NULL) {
caml_ba_unmap_file(b->data, caml_ba_byte_size(b));
} else {
if (-- b->proxy->refcount == 0) {
caml_ba_unmap_file(b->proxy->data, b->proxy->size);
stat_free(b->proxy);
}
}
break;
}
}
/* Comparison of two big arrays */
static int caml_ba_compare(value v1, value v2)
{
struct caml_bigarray * b1 = Bigarray_val(v1);
struct caml_bigarray * b2 = Bigarray_val(v2);
uintnat n, num_elts;
int i;
/* Compare number of dimensions */
if (b1->num_dims != b2->num_dims) return b2->num_dims - b1->num_dims;
/* Same number of dimensions: compare dimensions lexicographically */
for (i = 0; i < b1->num_dims; i++) {
intnat d1 = b1->dim[i];
intnat d2 = b2->dim[i];
if (d1 != d2) return d1 < d2 ? -1 : 1;
}
/* Same dimensions: compare contents lexicographically */
num_elts = caml_ba_num_elts(b1);
#define DO_INTEGER_COMPARISON(type) \
{ type * p1 = b1->data; type * p2 = b2->data; \
for (n = 0; n < num_elts; n++) { \
type e1 = *p1++; type e2 = *p2++; \
if (e1 < e2) return -1; \
if (e1 > e2) return 1; \
} \
return 0; \
}
#define DO_FLOAT_COMPARISON(type) \
{ type * p1 = b1->data; type * p2 = b2->data; \
for (n = 0; n < num_elts; n++) { \
type e1 = *p1++; type e2 = *p2++; \
if (e1 < e2) return -1; \
if (e1 > e2) return 1; \
if (e1 != e2) { \
compare_unordered = 1; \
if (e1 == e1) return 1; \
if (e2 == e2) return -1; \
} \
} \
return 0; \
}
switch (b1->flags & BIGARRAY_KIND_MASK) {
case BIGARRAY_COMPLEX32:
num_elts *= 2; /*fallthrough*/
case BIGARRAY_FLOAT32:
DO_FLOAT_COMPARISON(float);
case BIGARRAY_COMPLEX64:
num_elts *= 2; /*fallthrough*/
case BIGARRAY_FLOAT64:
DO_FLOAT_COMPARISON(double);
case BIGARRAY_SINT8:
DO_INTEGER_COMPARISON(int8);
case BIGARRAY_UINT8:
DO_INTEGER_COMPARISON(uint8);
case BIGARRAY_SINT16:
DO_INTEGER_COMPARISON(int16);
case BIGARRAY_UINT16:
DO_INTEGER_COMPARISON(uint16);
case BIGARRAY_INT32:
DO_INTEGER_COMPARISON(int32);
case BIGARRAY_INT64:
#ifdef ARCH_INT64_TYPE
DO_INTEGER_COMPARISON(int64);
#else
{ int64 * p1 = b1->data; int64 * p2 = b2->data;
for (n = 0; n < num_elts; n++) {
int64 e1 = *p1++; int64 e2 = *p2++;
if ((int32)e1.h > (int32)e2.h) return 1;
if ((int32)e1.h < (int32)e2.h) return -1;
if (e1.l > e2.l) return 1;
if (e1.l < e2.l) return -1;
}
return 0;
}
#endif
case BIGARRAY_CAML_INT:
case BIGARRAY_NATIVE_INT:
DO_INTEGER_COMPARISON(intnat);
default:
Assert(0);
return 0; /* should not happen */
}
#undef DO_INTEGER_COMPARISON
#undef DO_FLOAT_COMPARISON
}
/* Hashing of a bigarray */
static intnat caml_ba_hash(value v)
{
struct caml_bigarray * b = Bigarray_val(v);
intnat num_elts, n, h;
int i;
num_elts = 1;
for (i = 0; i < b->num_dims; i++) num_elts = num_elts * b->dim[i];
if (num_elts >= 50) num_elts = 50;
h = 0;
#define COMBINE(h,v) ((h << 4) + h + (v))
switch (b->flags & BIGARRAY_KIND_MASK) {
case BIGARRAY_SINT8:
case BIGARRAY_UINT8: {
uint8 * p = b->data;
for (n = 0; n < num_elts; n++) h = COMBINE(h, *p++);
break;
}
case BIGARRAY_SINT16:
case BIGARRAY_UINT16: {
uint16 * p = b->data;
for (n = 0; n < num_elts; n++) h = COMBINE(h, *p++);
break;
}
case BIGARRAY_FLOAT32:
case BIGARRAY_COMPLEX32:
case BIGARRAY_INT32:
#ifndef ARCH_SIXTYFOUR
case BIGARRAY_CAML_INT:
case BIGARRAY_NATIVE_INT:
#endif
{
uint32 * p = b->data;
for (n = 0; n < num_elts; n++) h = COMBINE(h, *p++);
break;
}
case BIGARRAY_FLOAT64:
case BIGARRAY_COMPLEX64:
case BIGARRAY_INT64:
#ifdef ARCH_SIXTYFOUR
case BIGARRAY_CAML_INT:
case BIGARRAY_NATIVE_INT:
#endif
#ifdef ARCH_SIXTYFOUR
{
uintnat * p = b->data;
for (n = 0; n < num_elts; n++) h = COMBINE(h, *p++);
break;
}
#else
{
uint32 * p = b->data;
for (n = 0; n < num_elts; n++) {
#ifdef ARCH_BIG_ENDIAN
h = COMBINE(h, p[1]); h = COMBINE(h, p[0]); p += 2;
#else
h = COMBINE(h, p[0]); h = COMBINE(h, p[1]); p += 2;
#endif
}
break;
}
#endif
}
#undef COMBINE
return h;
}
static void caml_ba_serialize_longarray(void * data,
intnat num_elts,
intnat min_val, intnat max_val)
{
#ifdef ARCH_SIXTYFOUR
int overflow_32 = 0;
intnat * p, n;
for (n = 0, p = data; n < num_elts; n++, p++) {
if (*p < min_val || *p > max_val) { overflow_32 = 1; break; }
}
if (overflow_32) {
serialize_int_1(1);
serialize_block_8(data, num_elts);
} else {
serialize_int_1(0);
for (n = 0, p = data; n < num_elts; n++, p++) serialize_int_4((int32) *p);
}
#else
serialize_int_1(0);
serialize_block_4(data, num_elts);
#endif
}
static void caml_ba_serialize(value v,
uintnat * wsize_32,
uintnat * wsize_64)
{
struct caml_bigarray * b = Bigarray_val(v);
intnat num_elts;
int i;
/* Serialize header information */
serialize_int_4(b->num_dims);
serialize_int_4(b->flags & (BIGARRAY_KIND_MASK | BIGARRAY_LAYOUT_MASK));
for (i = 0; i < b->num_dims; i++) serialize_int_4(b->dim[i]);
/* Compute total number of elements */
num_elts = 1;
for (i = 0; i < b->num_dims; i++) num_elts = num_elts * b->dim[i];
/* Serialize elements */
switch (b->flags & BIGARRAY_KIND_MASK) {
case BIGARRAY_SINT8:
case BIGARRAY_UINT8:
serialize_block_1(b->data, num_elts); break;
case BIGARRAY_SINT16:
case BIGARRAY_UINT16:
serialize_block_2(b->data, num_elts); break;
case BIGARRAY_FLOAT32:
case BIGARRAY_INT32:
serialize_block_4(b->data, num_elts); break;
case BIGARRAY_COMPLEX32:
serialize_block_4(b->data, num_elts * 2); break;
case BIGARRAY_FLOAT64:
case BIGARRAY_INT64:
serialize_block_8(b->data, num_elts); break;
case BIGARRAY_COMPLEX64:
serialize_block_8(b->data, num_elts * 2); break;
case BIGARRAY_CAML_INT:
caml_ba_serialize_longarray(b->data, num_elts, -0x40000000, 0x3FFFFFFF);
break;
case BIGARRAY_NATIVE_INT:
caml_ba_serialize_longarray(b->data, num_elts, -0x80000000, 0x7FFFFFFF);
break;
}
/* Compute required size in Caml heap. Assumes struct caml_bigarray
is exactly 4 + num_dims words */
Assert(sizeof(struct caml_bigarray) == 5 * sizeof(value));
*wsize_32 = (4 + b->num_dims) * 4;
*wsize_64 = (4 + b->num_dims) * 8;
}
static void caml_ba_deserialize_longarray(void * dest, intnat num_elts)
{
int sixty = deserialize_uint_1();
#ifdef ARCH_SIXTYFOUR
if (sixty) {
deserialize_block_8(dest, num_elts);
} else {
intnat * p, n;
for (n = 0, p = dest; n < num_elts; n++, p++) *p = deserialize_sint_4();
}
#else
if (sixty)
deserialize_error("input_value: cannot read bigarray "
"with 64-bit Caml ints");
deserialize_block_4(dest, num_elts);
#endif
}
uintnat caml_ba_deserialize(void * dst)
{
struct caml_bigarray * b = dst;
int i, elt_size;
uintnat num_elts;
/* Read back header information */
b->num_dims = deserialize_uint_4();
b->flags = deserialize_uint_4() | BIGARRAY_MANAGED;
b->proxy = NULL;
for (i = 0; i < b->num_dims; i++) b->dim[i] = deserialize_uint_4();
/* Compute total number of elements */
num_elts = caml_ba_num_elts(b);
/* Determine element size in bytes */
if ((b->flags & BIGARRAY_KIND_MASK) > BIGARRAY_COMPLEX64)
deserialize_error("input_value: bad bigarray kind");
elt_size = caml_ba_element_size[b->flags & BIGARRAY_KIND_MASK];
/* Allocate room for data */
b->data = malloc(elt_size * num_elts);
if (b->data == NULL)
deserialize_error("input_value: out of memory for bigarray");
/* Read data */
switch (b->flags & BIGARRAY_KIND_MASK) {
case BIGARRAY_SINT8:
case BIGARRAY_UINT8:
deserialize_block_1(b->data, num_elts); break;
case BIGARRAY_SINT16:
case BIGARRAY_UINT16:
deserialize_block_2(b->data, num_elts); break;
case BIGARRAY_FLOAT32:
case BIGARRAY_INT32:
deserialize_block_4(b->data, num_elts); break;
case BIGARRAY_COMPLEX32:
deserialize_block_4(b->data, num_elts * 2); break;
case BIGARRAY_FLOAT64:
case BIGARRAY_INT64:
deserialize_block_8(b->data, num_elts); break;
case BIGARRAY_COMPLEX64:
deserialize_block_8(b->data, num_elts * 2); break;
case BIGARRAY_CAML_INT:
case BIGARRAY_NATIVE_INT:
caml_ba_deserialize_longarray(b->data, num_elts); break;
}
return sizeof(struct caml_bigarray) + (b->num_dims - 1) * sizeof(intnat);
}
/* Create / update proxy to indicate that b2 is a sub-array of b1 */
static void caml_ba_update_proxy(struct caml_bigarray * b1,
struct caml_bigarray * b2)
{
struct caml_bigarray_proxy * proxy;
/* Nothing to do for un-managed arrays */
if ((b1->flags & BIGARRAY_MANAGED_MASK) == BIGARRAY_EXTERNAL) return;
if (b1->proxy != NULL) {
/* If b1 is already a proxy for a larger array, increment refcount of
proxy */
b2->proxy = b1->proxy;
++ b1->proxy->refcount;
} else {
/* Otherwise, create proxy and attach it to both b1 and b2 */
proxy = stat_alloc(sizeof(struct caml_bigarray_proxy));
proxy->refcount = 2; /* original array + sub array */
proxy->data = b1->data;
proxy->size =
b1->flags & BIGARRAY_MAPPED_FILE ? caml_ba_byte_size(b1) : 0;
b1->proxy = proxy;
b2->proxy = proxy;
}
}
/* Slicing */
CAMLprim value caml_ba_slice(value vb, value vind)
{
CAMLparam2 (vb, vind);
#define b ((struct caml_bigarray *) Bigarray_val(vb))
CAMLlocal1 (res);
intnat index[MAX_NUM_DIMS];
int num_inds, i;
intnat offset;
intnat * sub_dims;
char * sub_data;
/* Check number of indices < number of dimensions of array */
num_inds = Wosize_val(vind);
if (num_inds >= b->num_dims)
invalid_argument("Bigarray.slice: too many indices");
/* Compute offset and check bounds */
if ((b->flags & BIGARRAY_LAYOUT_MASK) == BIGARRAY_C_LAYOUT) {
/* We slice from the left */
for (i = 0; i < num_inds; i++) index[i] = Long_val(Field(vind, i));
for (/*nothing*/; i < b->num_dims; i++) index[i] = 0;
offset = caml_ba_offset(b, index);
sub_dims = b->dim + num_inds;
} else {
/* We slice from the right */
for (i = 0; i < num_inds; i++)
index[b->num_dims - num_inds + i] = Long_val(Field(vind, i));
for (i = 0; i < b->num_dims - num_inds; i++) index[i] = 1;
offset = caml_ba_offset(b, index);
sub_dims = b->dim;
}
sub_data =
(char *) b->data +
offset * caml_ba_element_size[b->flags & BIGARRAY_KIND_MASK];
/* Allocate a Caml bigarray to hold the result */
res = alloc_bigarray(b->flags, b->num_dims - num_inds, sub_data, sub_dims);
/* Create or update proxy in case of managed bigarray */
caml_ba_update_proxy(b, Bigarray_val(res));
/* Return result */
CAMLreturn (res);
#undef b
}
/* Extracting a sub-array of same number of dimensions */
CAMLprim value caml_ba_sub(value vb, value vofs, value vlen)
{
CAMLparam3 (vb, vofs, vlen);
CAMLlocal1 (res);
#define b ((struct caml_bigarray *) Bigarray_val(vb))
intnat ofs = Long_val(vofs);
intnat len = Long_val(vlen);
int i, changed_dim;
intnat mul;
char * sub_data;
/* Compute offset and check bounds */
if ((b->flags & BIGARRAY_LAYOUT_MASK) == BIGARRAY_C_LAYOUT) {
/* We reduce the first dimension */
mul = 1;
for (i = 1; i < b->num_dims; i++) mul *= b->dim[i];
changed_dim = 0;
} else {
/* We reduce the last dimension */
mul = 1;
for (i = 0; i < b->num_dims - 1; i++) mul *= b->dim[i];
changed_dim = b->num_dims - 1;
ofs--; /* Fortran arrays start at 1 */
}
if (ofs < 0 || len < 0 || ofs + len > b->dim[changed_dim])
invalid_argument("Bigarray.sub: bad sub-array");
sub_data =
(char *) b->data +
ofs * mul * caml_ba_element_size[b->flags & BIGARRAY_KIND_MASK];
/* Allocate a Caml bigarray to hold the result */
res = alloc_bigarray(b->flags, b->num_dims, sub_data, b->dim);
/* Doctor the changed dimension */
Bigarray_val(res)->dim[changed_dim] = len;
/* Create or update proxy in case of managed bigarray */
caml_ba_update_proxy(b, Bigarray_val(res));
/* Return result */
CAMLreturn (res);
#undef b
}
/* Copying a big array into another one */
CAMLprim value caml_ba_blit(value vsrc, value vdst)
{
struct caml_bigarray * src = Bigarray_val(vsrc);
struct caml_bigarray * dst = Bigarray_val(vdst);
int i;
intnat num_bytes;
/* Check same numbers of dimensions and same dimensions */
if (src->num_dims != dst->num_dims) goto blit_error;
for (i = 0; i < src->num_dims; i++)
if (src->dim[i] != dst->dim[i]) goto blit_error;
/* Compute number of bytes in array data */
num_bytes =
caml_ba_num_elts(src)
* caml_ba_element_size[src->flags & BIGARRAY_KIND_MASK];
/* Do the copying */
memmove (dst->data, src->data, num_bytes);
return Val_unit;
blit_error:
invalid_argument("Bigarray.blit: dimension mismatch");
return Val_unit; /* not reached */
}
/* Filling a big array with a given value */
CAMLprim value caml_ba_fill(value vb, value vinit)
{
struct caml_bigarray * b = Bigarray_val(vb);
intnat num_elts = caml_ba_num_elts(b);
switch (b->flags & BIGARRAY_KIND_MASK) {
default:
Assert(0);
case BIGARRAY_FLOAT32: {
float init = Double_val(vinit);
float * p;
for (p = b->data; num_elts > 0; p++, num_elts--) *p = init;
break;
}
case BIGARRAY_FLOAT64: {
double init = Double_val(vinit);
double * p;
for (p = b->data; num_elts > 0; p++, num_elts--) *p = init;
break;
}
case BIGARRAY_SINT8:
case BIGARRAY_UINT8: {
int init = Int_val(vinit);
char * p;
for (p = b->data; num_elts > 0; p++, num_elts--) *p = init;
break;
}
case BIGARRAY_SINT16:
case BIGARRAY_UINT16: {
int init = Int_val(vinit);
int16 * p;
for (p = b->data; num_elts > 0; p++, num_elts--) *p = init;
break;
}
case BIGARRAY_INT32: {
int32 init = Int32_val(vinit);
int32 * p;
for (p = b->data; num_elts > 0; p++, num_elts--) *p = init;
break;
}
case BIGARRAY_INT64: {
int64 init = Int64_val(vinit);
int64 * p;
for (p = b->data; num_elts > 0; p++, num_elts--) *p = init;
break;
}
case BIGARRAY_NATIVE_INT: {
intnat init = Nativeint_val(vinit);
intnat * p;
for (p = b->data; num_elts > 0; p++, num_elts--) *p = init;
break;
}
case BIGARRAY_CAML_INT: {
intnat init = Long_val(vinit);
intnat * p;
for (p = b->data; num_elts > 0; p++, num_elts--) *p = init;
break;
}
case BIGARRAY_COMPLEX32: {
float init0 = Double_field(vinit, 0);
float init1 = Double_field(vinit, 1);
float * p;
for (p = b->data; num_elts > 0; num_elts--) { *p++ = init0; *p++ = init1; }
break;
}
case BIGARRAY_COMPLEX64: {
double init0 = Double_field(vinit, 0);
double init1 = Double_field(vinit, 1);
double * p;
for (p = b->data; num_elts > 0; num_elts--) { *p++ = init0; *p++ = init1; }
break;
}
}
return Val_unit;
}
/* Reshape an array: change dimensions and number of dimensions, preserving
array contents */
CAMLprim value caml_ba_reshape(value vb, value vdim)
{
CAMLparam2 (vb, vdim);
CAMLlocal1 (res);
#define b ((struct caml_bigarray *) Bigarray_val(vb))
intnat dim[MAX_NUM_DIMS];
mlsize_t num_dims;
uintnat num_elts;
int i;
num_dims = Wosize_val(vdim);
if (num_dims < 1 || num_dims > MAX_NUM_DIMS)
invalid_argument("Bigarray.reshape: bad number of dimensions");
num_elts = 1;
for (i = 0; i < num_dims; i++) {
dim[i] = Long_val(Field(vdim, i));
if (dim[i] < 0 || dim[i] > 0x7FFFFFFFL)
invalid_argument("Bigarray.reshape: negative dimension");
num_elts *= dim[i];
}
/* Check that sizes agree */
if (num_elts != caml_ba_num_elts(b))
invalid_argument("Bigarray.reshape: size mismatch");
/* Create bigarray with same data and new dimensions */
res = alloc_bigarray(b->flags, num_dims, b->data, dim);
/* Create or update proxy in case of managed bigarray */
caml_ba_update_proxy(b, Bigarray_val(res));
/* Return result */
CAMLreturn (res);
#undef b
}
/* Initialization */
CAMLprim value caml_ba_init(value unit)
{
register_custom_operations(&caml_ba_ops);
return Val_unit;
}