568 lines
20 KiB
OCaml
568 lines
20 KiB
OCaml
(***********************************************************************)
|
|
(* *)
|
|
(* Objective Caml *)
|
|
(* *)
|
|
(* Valerie Menissier-Morain, projet Cristal, INRIA Rocquencourt *)
|
|
(* *)
|
|
(* Copyright 1996 Institut National de Recherche en Informatique et *)
|
|
(* Automatique. Distributed only by permission. *)
|
|
(* *)
|
|
(***********************************************************************)
|
|
|
|
open Int_misc
|
|
open String_misc
|
|
open Nat
|
|
open Big_int
|
|
open Arith_flags
|
|
|
|
(* Definition of the type ratio :
|
|
Conventions :
|
|
- the denominator is always a positive number
|
|
- the sign of n/0 is the sign of n
|
|
These convention is automatically respected when a ratio is created with
|
|
the create_ratio primitive
|
|
*)
|
|
|
|
type ratio = { mutable numerator : big_int;
|
|
mutable denominator : big_int;
|
|
mutable normalized : bool}
|
|
|
|
let failwith_zero name =
|
|
let s = "infinite or undefined rational number" in
|
|
failwith (if String.length name = 0 then s else name ^ " " ^ s)
|
|
|
|
let numerator_ratio r = r.numerator
|
|
and denominator_ratio r = r.denominator
|
|
|
|
let null_denominator r = sign_big_int r.denominator = 0
|
|
|
|
let verify_null_denominator r =
|
|
if sign_big_int r.denominator = 0
|
|
then (if !error_when_null_denominator_flag
|
|
then (failwith_zero "")
|
|
else true)
|
|
else false
|
|
|
|
let sign_ratio r = sign_big_int r.numerator
|
|
|
|
(* Physical normalization of rational numbers *)
|
|
(* 1/0, 0/0 and -1/0 are the normalized forms for n/0 numbers *)
|
|
let normalize_ratio r =
|
|
if r.normalized then r
|
|
else if verify_null_denominator r then begin
|
|
r.numerator <- big_int_of_int (sign_big_int r.numerator);
|
|
r.normalized <- true;
|
|
r
|
|
end else begin
|
|
let p = gcd_big_int r.numerator r.denominator in
|
|
if eq_big_int p unit_big_int
|
|
then begin
|
|
r.normalized <- true; r
|
|
end else begin
|
|
r.numerator <- div_big_int (r.numerator) p;
|
|
r.denominator <- div_big_int (r.denominator) p;
|
|
r.normalized <- true; r
|
|
end
|
|
end
|
|
|
|
let cautious_normalize_ratio r =
|
|
if (!normalize_ratio_flag) then (normalize_ratio r) else r
|
|
|
|
let cautious_normalize_ratio_when_printing r =
|
|
if (!normalize_ratio_when_printing_flag) then (normalize_ratio r) else r
|
|
|
|
let create_ratio bi1 bi2 =
|
|
match sign_big_int bi2 with
|
|
-1 -> cautious_normalize_ratio
|
|
{ numerator = minus_big_int bi1;
|
|
denominator = minus_big_int bi2;
|
|
normalized = false }
|
|
| 0 -> if !error_when_null_denominator_flag
|
|
then (failwith_zero "create_ratio")
|
|
else cautious_normalize_ratio
|
|
{ numerator = bi1; denominator = bi2; normalized = false }
|
|
| _ -> cautious_normalize_ratio
|
|
{ numerator = bi1; denominator = bi2; normalized = false }
|
|
|
|
let create_normalized_ratio bi1 bi2 =
|
|
match sign_big_int bi2 with
|
|
-1 -> { numerator = minus_big_int bi1;
|
|
denominator = minus_big_int bi2;
|
|
normalized = true }
|
|
| 0 -> if !error_when_null_denominator_flag
|
|
then failwith_zero "create_normalized_ratio"
|
|
else { numerator = bi1; denominator = bi2; normalized = true }
|
|
| _ -> { numerator = bi1; denominator = bi2; normalized = true }
|
|
|
|
let is_normalized_ratio r = r.normalized
|
|
|
|
let report_sign_ratio r bi =
|
|
if sign_ratio r = -1
|
|
then minus_big_int bi
|
|
else bi
|
|
|
|
let abs_ratio r =
|
|
{ numerator = abs_big_int r.numerator;
|
|
denominator = r.denominator;
|
|
normalized = r.normalized }
|
|
|
|
let is_integer_ratio r =
|
|
eq_big_int ((normalize_ratio r).denominator) unit_big_int
|
|
|
|
(* Operations on rational numbers *)
|
|
|
|
let add_ratio r1 r2 =
|
|
if !normalize_ratio_flag then begin
|
|
let p = gcd_big_int ((normalize_ratio r1).denominator)
|
|
((normalize_ratio r2).denominator) in
|
|
if eq_big_int p unit_big_int then
|
|
{numerator = add_big_int (mult_big_int (r1.numerator) r2.denominator)
|
|
(mult_big_int (r2.numerator) r1.denominator);
|
|
denominator = mult_big_int (r1.denominator) r2.denominator;
|
|
normalized = true}
|
|
else begin
|
|
let d1 = div_big_int (r1.denominator) p
|
|
and d2 = div_big_int (r2.denominator) p in
|
|
let n = add_big_int (mult_big_int (r1.numerator) d2)
|
|
(mult_big_int d1 r2.numerator) in
|
|
let p' = gcd_big_int n p in
|
|
{ numerator = div_big_int n p';
|
|
denominator = mult_big_int d1 (div_big_int (r2.denominator) p');
|
|
normalized = true }
|
|
end
|
|
end else
|
|
{ numerator = add_big_int (mult_big_int (r1.numerator) r2.denominator)
|
|
(mult_big_int (r1.denominator) r2.numerator);
|
|
denominator = mult_big_int (r1.denominator) r2.denominator;
|
|
normalized = false }
|
|
|
|
let minus_ratio r =
|
|
{ numerator = minus_big_int (r.numerator);
|
|
denominator = r.denominator;
|
|
normalized = r.normalized }
|
|
|
|
let add_int_ratio i r =
|
|
cautious_normalize_ratio r;
|
|
{ numerator = add_big_int (mult_int_big_int i r.denominator) r.numerator;
|
|
denominator = r.denominator;
|
|
normalized = r.normalized }
|
|
|
|
let add_big_int_ratio bi r =
|
|
cautious_normalize_ratio r;
|
|
{ numerator = add_big_int (mult_big_int bi r.denominator) r.numerator ;
|
|
denominator = r.denominator;
|
|
normalized = r.normalized }
|
|
|
|
let sub_ratio r1 r2 = add_ratio r1 (minus_ratio r2)
|
|
|
|
let mult_ratio r1 r2 =
|
|
if !normalize_ratio_flag then begin
|
|
let p1 = gcd_big_int ((normalize_ratio r1).numerator)
|
|
((normalize_ratio r2).denominator)
|
|
and p2 = gcd_big_int (r2.numerator) r1.denominator in
|
|
let (n1, d2) =
|
|
if eq_big_int p1 unit_big_int
|
|
then (r1.numerator, r2.denominator)
|
|
else (div_big_int (r1.numerator) p1, div_big_int (r2.denominator) p1)
|
|
and (n2, d1) =
|
|
if eq_big_int p2 unit_big_int
|
|
then (r2.numerator, r1.denominator)
|
|
else (div_big_int r2.numerator p2, div_big_int r1.denominator p2) in
|
|
{ numerator = mult_big_int n1 n2;
|
|
denominator = mult_big_int d1 d2;
|
|
normalized = true }
|
|
end else
|
|
{ numerator = mult_big_int (r1.numerator) r2.numerator;
|
|
denominator = mult_big_int (r1.denominator) r2.denominator;
|
|
normalized = false }
|
|
|
|
let mult_int_ratio i r =
|
|
if !normalize_ratio_flag then
|
|
begin
|
|
let p = gcd_big_int ((normalize_ratio r).denominator) (big_int_of_int i) in
|
|
if eq_big_int p unit_big_int
|
|
then { numerator = mult_big_int (big_int_of_int i) r.numerator;
|
|
denominator = r.denominator;
|
|
normalized = true }
|
|
else { numerator = mult_big_int (div_big_int (big_int_of_int i) p)
|
|
r.numerator;
|
|
denominator = div_big_int (r.denominator) p;
|
|
normalized = true }
|
|
end
|
|
else
|
|
{ numerator = mult_int_big_int i r.numerator;
|
|
denominator = r.denominator;
|
|
normalized = false }
|
|
|
|
let mult_big_int_ratio bi r =
|
|
if !normalize_ratio_flag then
|
|
begin
|
|
let p = gcd_big_int ((normalize_ratio r).denominator) bi in
|
|
if eq_big_int p unit_big_int
|
|
then { numerator = mult_big_int bi r.numerator;
|
|
denominator = r.denominator;
|
|
normalized = true }
|
|
else { numerator = mult_big_int (div_big_int bi p) r.numerator;
|
|
denominator = div_big_int (r.denominator) p;
|
|
normalized = true }
|
|
end
|
|
else
|
|
{ numerator = mult_big_int bi r.numerator;
|
|
denominator = r.denominator;
|
|
normalized = false }
|
|
|
|
let square_ratio r =
|
|
cautious_normalize_ratio r;
|
|
{ numerator = square_big_int r.numerator;
|
|
denominator = square_big_int r.denominator;
|
|
normalized = r.normalized }
|
|
|
|
let inverse_ratio r =
|
|
if !error_when_null_denominator_flag & (sign_big_int r.numerator) = 0
|
|
then failwith_zero "inverse_ratio"
|
|
else {numerator = report_sign_ratio r r.denominator;
|
|
denominator = abs_big_int r.numerator;
|
|
normalized = r.normalized}
|
|
|
|
let div_ratio r1 r2 =
|
|
mult_ratio r1 (inverse_ratio r2)
|
|
|
|
(* Integer part of a rational number *)
|
|
(* Odd function *)
|
|
let integer_ratio r =
|
|
if null_denominator r then failwith_zero "integer_ratio"
|
|
else if sign_ratio r = 0 then zero_big_int
|
|
else report_sign_ratio r (div_big_int (abs_big_int r.numerator)
|
|
(abs_big_int r.denominator))
|
|
|
|
(* Floor of a rational number *)
|
|
(* Always less or equal to r *)
|
|
let floor_ratio r =
|
|
verify_null_denominator r;
|
|
div_big_int (r.numerator) r.denominator
|
|
|
|
(* Round of a rational number *)
|
|
(* Odd function, 1/2 -> 1 *)
|
|
let round_ratio r =
|
|
verify_null_denominator r;
|
|
let abs_num = abs_big_int r.numerator in
|
|
let bi = div_big_int abs_num r.denominator in
|
|
report_sign_ratio r
|
|
(if sign_big_int
|
|
(sub_big_int
|
|
(mult_int_big_int
|
|
2
|
|
(sub_big_int abs_num (mult_big_int (r.denominator) bi)))
|
|
r.denominator) = -1
|
|
then bi
|
|
else succ_big_int bi)
|
|
|
|
let ceiling_ratio r =
|
|
if (is_integer_ratio r)
|
|
then r.numerator
|
|
else succ_big_int (floor_ratio r)
|
|
|
|
|
|
(* Comparison operators on rational numbers *)
|
|
let eq_ratio r1 r2 =
|
|
normalize_ratio r1;
|
|
normalize_ratio r2;
|
|
eq_big_int (r1.numerator) r2.numerator &
|
|
eq_big_int (r1.denominator) r2.denominator
|
|
|
|
let compare_ratio r1 r2 =
|
|
if verify_null_denominator r1 then
|
|
let sign_num_r1 = sign_big_int r1.numerator in
|
|
if (verify_null_denominator r2)
|
|
then
|
|
let sign_num_r2 = sign_big_int r2.numerator in
|
|
if sign_num_r1 = 1 & sign_num_r2 = -1 then 1
|
|
else if sign_num_r1 = -1 & sign_num_r2 = 1 then -1
|
|
else 0
|
|
else sign_num_r1
|
|
else if verify_null_denominator r2 then
|
|
-(sign_big_int r2.numerator)
|
|
else match compare_int (sign_big_int r1.numerator)
|
|
(sign_big_int r2.numerator) with
|
|
1 -> 1
|
|
| -1 -> -1
|
|
| _ -> if eq_big_int (r1.denominator) r2.denominator
|
|
then compare_big_int (r1.numerator) r2.numerator
|
|
else compare_big_int
|
|
(mult_big_int (r1.numerator) r2.denominator)
|
|
(mult_big_int (r1.denominator) r2.numerator)
|
|
|
|
|
|
let lt_ratio r1 r2 = compare_ratio r1 r2 < 0
|
|
and le_ratio r1 r2 = compare_ratio r1 r2 <= 0
|
|
and gt_ratio r1 r2 = compare_ratio r1 r2 > 0
|
|
and ge_ratio r1 r2 = compare_ratio r1 r2 >= 0
|
|
|
|
let max_ratio r1 r2 = if lt_ratio r1 r2 then r2 else r1
|
|
and min_ratio r1 r2 = if gt_ratio r1 r2 then r2 else r1
|
|
|
|
let eq_big_int_ratio bi r =
|
|
(is_integer_ratio r) & eq_big_int bi r.numerator
|
|
|
|
let compare_big_int_ratio bi r =
|
|
normalize_ratio r;
|
|
if (verify_null_denominator r)
|
|
then -(sign_big_int r.numerator)
|
|
else compare_big_int (mult_big_int bi r.denominator) r.numerator
|
|
|
|
let lt_big_int_ratio bi r = compare_big_int_ratio bi r < 0
|
|
and le_big_int_ratio bi r = compare_big_int_ratio bi r <= 0
|
|
and gt_big_int_ratio bi r = compare_big_int_ratio bi r > 0
|
|
and ge_big_int_ratio bi r = compare_big_int_ratio bi r >= 0
|
|
|
|
(* Coercions *)
|
|
|
|
(* Coercions with type int *)
|
|
let int_of_ratio r =
|
|
if ((is_integer_ratio r) & (is_int_big_int r.numerator))
|
|
then (int_of_big_int r.numerator)
|
|
else failwith "integer argument required"
|
|
|
|
and ratio_of_int i =
|
|
{ numerator = big_int_of_int i;
|
|
denominator = unit_big_int;
|
|
normalized = true }
|
|
|
|
(* Coercions with type nat *)
|
|
let ratio_of_nat nat =
|
|
{ numerator = big_int_of_nat nat;
|
|
denominator = unit_big_int;
|
|
normalized = true }
|
|
|
|
and nat_of_ratio r =
|
|
normalize_ratio r;
|
|
if not (is_integer_ratio r) then
|
|
failwith "nat_of_ratio"
|
|
else if sign_big_int r.numerator > -1 then
|
|
nat_of_big_int (r.numerator)
|
|
else failwith "nat_of_ratio"
|
|
|
|
(* Coercions with type big_int *)
|
|
let ratio_of_big_int bi =
|
|
{ numerator = bi; denominator = unit_big_int; normalized = true }
|
|
|
|
and big_int_of_ratio r =
|
|
normalize_ratio r;
|
|
if is_integer_ratio r
|
|
then r.numerator
|
|
else failwith "big_int_of_ratio"
|
|
|
|
let div_int_ratio i r =
|
|
verify_null_denominator r;
|
|
mult_int_ratio i (inverse_ratio r)
|
|
|
|
let div_ratio_int r i =
|
|
div_ratio r (ratio_of_int i)
|
|
|
|
let div_big_int_ratio bi r =
|
|
verify_null_denominator r;
|
|
mult_big_int_ratio bi (inverse_ratio r)
|
|
|
|
let div_ratio_big_int r bi =
|
|
div_ratio r (ratio_of_big_int bi)
|
|
|
|
(* Functions on type string *)
|
|
(* giving floating point approximations of rational numbers *)
|
|
|
|
let only_zeros s i l =
|
|
let res = ref true in
|
|
for j = i to i + l - 1 do
|
|
if s.[j] <> '0' then res := false
|
|
done;
|
|
!res
|
|
|
|
(* Position of the leading digit of the decimal expansion *)
|
|
(* of a strictly positive rational number *)
|
|
(* if the decimal expansion of a non null rational r is equal to *)
|
|
(* sigma for k=-P to N of r_k*10^k then msd_ratio r = N *)
|
|
(* Nota : for a big_int we have msd_ratio = nums_digits_big_int -1 *)
|
|
let msd_ratio r =
|
|
cautious_normalize_ratio r;
|
|
if null_denominator r then failwith_zero "msd_ratio"
|
|
else if sign_big_int r.numerator = 0 then 0
|
|
else begin
|
|
let str_num = string_of_big_int r.numerator
|
|
and str_den = string_of_big_int r.denominator in
|
|
let size_num = String.length str_num
|
|
and size_den = String.length str_den in
|
|
let rec msd_rec str_num nnum str_den nden i m =
|
|
if i > nnum then
|
|
if i > nden or only_zeros str_den i (nden - i)
|
|
then m else pred m
|
|
else if i > nden then m
|
|
else match compare_int (Char.code (String.get str_num i))
|
|
(Char.code (String.get str_den i)) with
|
|
0 -> msd_rec str_num nnum str_den nden (succ i) m
|
|
| 1 -> m
|
|
| _ -> pred m
|
|
in msd_rec str_num (pred size_num) str_den (pred size_den)
|
|
0 (size_num - size_den)
|
|
end
|
|
|
|
(* Decimal approximations of rational numbers *)
|
|
|
|
(* Approximation with fix decimal point *)
|
|
(* This is an odd function and the last digit is round off *)
|
|
(* Format integer_part . decimal_part_with_n_digits *)
|
|
let approx_ratio_fix n r =
|
|
(* Don't need to normalize *)
|
|
if (null_denominator r) then failwith_zero "approx_ratio_fix"
|
|
else
|
|
let sign_r = sign_ratio r in
|
|
if sign_r = 0
|
|
then "+0" (* r = 0 *)
|
|
else (* r.numerator and r.denominator are not null numbers
|
|
s contains one more digit than desired for the round off operation
|
|
and to have enough room in s when including the decimal point *)
|
|
if n >= 0 then
|
|
let s =
|
|
let nat =
|
|
(nat_of_big_int
|
|
(div_big_int
|
|
(base_power_big_int
|
|
10 (succ n) (abs_big_int r.numerator))
|
|
r.denominator))
|
|
in (if sign_r = -1 then "-" else "+") ^ string_of_nat nat in
|
|
let l = String.length s in
|
|
if round_futur_last_digit s 1 (pred l)
|
|
then begin (* if one more char is needed in s *)
|
|
let str = (String.make (succ l) '0') in
|
|
String.set str 0 (if sign_r = -1 then '-' else '+');
|
|
String.set str 1 '1';
|
|
String.set str (l - n) '.';
|
|
str
|
|
end else (* s can contain the final result *)
|
|
if l > n + 2
|
|
then begin (* |r| >= 1, set decimal point *)
|
|
let l2 = (pred l) - n in
|
|
String.blit s l2 s (succ l2) n;
|
|
String.set s l2 '.'; s
|
|
end else begin (* |r| < 1, there must be 0-characters *)
|
|
(* before the significant development, *)
|
|
(* with care to the sign of the number *)
|
|
let size = n + 3 in
|
|
let m = size - l + 2
|
|
and str = String.make size '0' in
|
|
|
|
(String.blit (if sign_r = 1 then "+0." else "-0.") 0 str 0 3);
|
|
(String.blit s 1 str m (l - 2));
|
|
str
|
|
end
|
|
else begin
|
|
let s = string_of_big_int
|
|
(div_big_int
|
|
(abs_big_int r.numerator)
|
|
(base_power_big_int
|
|
10 (-n) r.denominator)) in
|
|
let len = succ (String.length s) in
|
|
let s' = String.make len '0' in
|
|
String.set s' 0 (if sign_r = -1 then '-' else '+');
|
|
String.blit s 0 s' 1 (pred len);
|
|
s'
|
|
end
|
|
|
|
(* Number of digits of the decimal representation of an int *)
|
|
let num_decimal_digits_int n =
|
|
String.length (string_of_int n)
|
|
|
|
(* Approximation with floating decimal point *)
|
|
(* This is an odd function and the last digit is round off *)
|
|
(* Format (+/-)(0. n_first_digits e msd)/(1. n_zeros e (msd+1) *)
|
|
let approx_ratio_exp n r =
|
|
(* Don't need to normalize *)
|
|
if (null_denominator r) then failwith_zero "approx_ratio_exp"
|
|
else if n <= 0 then invalid_arg "approx_ratio_exp"
|
|
else
|
|
let sign_r = sign_ratio r
|
|
and i = ref (n + 3) in
|
|
if sign_r = 0
|
|
then
|
|
let s = String.make (n + 5) '0' in
|
|
(String.blit "+0." 0 s 0 3);
|
|
(String.blit "e0" 0 s !i 2); s
|
|
else
|
|
let msd = msd_ratio (abs_ratio r) in
|
|
let k = n - msd in
|
|
let s =
|
|
(let nat = nat_of_big_int
|
|
(if k < 0
|
|
then
|
|
div_big_int (abs_big_int r.numerator)
|
|
(base_power_big_int 10 (-k)
|
|
r.denominator)
|
|
else
|
|
div_big_int (base_power_big_int
|
|
10 k (abs_big_int r.numerator))
|
|
r.denominator) in
|
|
string_of_nat nat) in
|
|
if (round_futur_last_digit s 0 (String.length s))
|
|
then
|
|
let m = num_decimal_digits_int (succ msd) in
|
|
let str = String.make (n + m + 4) '0' in
|
|
(String.blit (if sign_r = -1 then "-1." else "+1.") 0 str 0 3);
|
|
String.set str !i ('e');
|
|
incr i;
|
|
(if m = 0
|
|
then String.set str !i '0'
|
|
else String.blit (string_of_int (succ msd)) 0 str !i m);
|
|
str
|
|
else
|
|
let m = num_decimal_digits_int (succ msd)
|
|
and p = n + 3 in
|
|
let str = String.make (succ (m + p)) '0' in
|
|
(String.blit (if sign_r = -1 then "-0." else "+0.") 0 str 0 3);
|
|
(String.blit s 0 str 3 n);
|
|
String.set str p 'e';
|
|
(if m = 0
|
|
then String.set str (succ p) '0'
|
|
else (String.blit (string_of_int (succ msd)) 0 str (succ p) m));
|
|
str
|
|
|
|
(* String approximation of a rational with a fixed number of significant *)
|
|
(* digits printed *)
|
|
let float_of_rational_string r =
|
|
let s = approx_ratio_exp !floating_precision r in
|
|
if String.get s 0 = '+'
|
|
then (String.sub s 1 (pred (String.length s)))
|
|
else s
|
|
|
|
(* Coercions with type string *)
|
|
let string_of_ratio r =
|
|
cautious_normalize_ratio_when_printing r;
|
|
if !approx_printing_flag
|
|
then float_of_rational_string r
|
|
else string_of_big_int r.numerator ^ "/" ^ string_of_big_int r.denominator
|
|
|
|
(* XL: j'ai puissamment simplifie "ratio_of_string" en virant la notation
|
|
scientifique. *)
|
|
|
|
let ratio_of_string s =
|
|
let n = index_char s '/' 0 in
|
|
if n = -1 then
|
|
{ numerator = big_int_of_string s;
|
|
denominator = unit_big_int;
|
|
normalized = true }
|
|
else
|
|
create_ratio (sys_big_int_of_string s 0 n)
|
|
(sys_big_int_of_string s (n+1) (String.length s - n - 1))
|
|
|
|
(* Coercion with type float *)
|
|
|
|
let float_of_ratio r =
|
|
float_of_string (float_of_rational_string r)
|
|
|
|
(* XL: suppression de ratio_of_float *)
|
|
|
|
let power_ratio_positive_int r n =
|
|
create_ratio (power_big_int_positive_int (r.numerator) n)
|
|
(power_big_int_positive_int (r.denominator) n)
|
|
|
|
let power_ratio_positive_big_int r bi =
|
|
create_ratio (power_big_int_positive_big_int (r.numerator) bi)
|
|
(power_big_int_positive_big_int (r.denominator) bi)
|