ocaml/lex/lexgen.ml

1187 lines
31 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, *)
(* Luc Maranget, projet Moscova, *)
(* INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Compiling a lexer definition *)
open Syntax
open Printf
exception Memory_overflow
(* Deep abstract syntax for regular expressions *)
type ident = string * Syntax.location
type tag_info = {id : string ; start : bool ; action : int}
type regexp =
Empty
| Chars of int * bool
| Action of int
| Tag of tag_info
| Seq of regexp * regexp
| Alt of regexp * regexp
| Star of regexp
type tag_base = Start | End | Mem of int
type tag_addr = Sum of (tag_base * int)
type ident_info =
| Ident_string of bool * tag_addr * tag_addr
| Ident_char of bool * tag_addr
type t_env = (ident * ident_info) list
type ('args,'action) lexer_entry =
{ lex_name: string;
lex_regexp: regexp;
lex_mem_tags: int ;
lex_actions: (int * t_env * 'action) list }
type automata =
Perform of int * tag_action list
| Shift of automata_trans * (automata_move * memory_action list) array
and automata_trans =
No_remember
| Remember of int * tag_action list
and automata_move =
Backtrack
| Goto of int
and memory_action =
| Copy of int * int
| Set of int
and tag_action = SetTag of int * int | EraseTag of int
(* Representation of entry points *)
type ('args,'action) automata_entry =
{ auto_name: string;
auto_args: 'args ;
auto_mem_size : int ;
auto_initial_state: int * memory_action list;
auto_actions: (int * t_env * 'action) list }
(* A lot of sets and map structures *)
module Ints = Set.Make(struct type t = int let compare = compare end)
let id_compare (id1,_) (id2,_) = String.compare id1 id2
let tag_compare t1 t2 = Pervasives.compare t1 t2
module Tags = Set.Make(struct type t = tag_info let compare = tag_compare end)
module TagMap =
Map.Make (struct type t = tag_info let compare = tag_compare end)
module IdSet =
Set.Make (struct type t = ident let compare = id_compare end)
module IdMap =
Map.Make (struct type t = ident let compare = id_compare end)
(*********************)
(* Variable cleaning *)
(*********************)
(* Silently eliminate nested variables *)
let rec do_remove_nested to_remove = function
| Bind (e,x) ->
if IdSet.mem x to_remove then
do_remove_nested to_remove e
else
Bind (do_remove_nested (IdSet.add x to_remove) e, x)
| Epsilon|Eof|Characters _ as e -> e
| Sequence (e1, e2) ->
Sequence
(do_remove_nested to_remove e1, do_remove_nested to_remove e2)
| Alternative (e1, e2) ->
Alternative
(do_remove_nested to_remove e1, do_remove_nested to_remove e2)
| Repetition e ->
Repetition (do_remove_nested to_remove e)
let remove_nested_as e = do_remove_nested IdSet.empty e
(*********************)
(* Variable analysis *)
(*********************)
(*
Optional variables.
A variable is optional when matching of regexp does not
implies it binds.
The typical case is:
("" | 'a' as x) -> optional
("" as x | 'a' as x) -> non-optional
*)
let stringset_delta s1 s2 =
IdSet.union
(IdSet.diff s1 s2)
(IdSet.diff s2 s1)
let rec find_all_vars = function
| Characters _|Epsilon|Eof ->
IdSet.empty
| Bind (e,x) ->
IdSet.add x (find_all_vars e)
| Sequence (e1,e2)|Alternative (e1,e2) ->
IdSet.union (find_all_vars e1) (find_all_vars e2)
| Repetition e -> find_all_vars e
let rec do_find_opt = function
| Characters _|Epsilon|Eof -> IdSet.empty, IdSet.empty
| Bind (e,x) ->
let opt,all = do_find_opt e in
opt, IdSet.add x all
| Sequence (e1,e2) ->
let opt1,all1 = do_find_opt e1
and opt2,all2 = do_find_opt e2 in
IdSet.union opt1 opt2, IdSet.union all1 all2
| Alternative (e1,e2) ->
let opt1,all1 = do_find_opt e1
and opt2,all2 = do_find_opt e2 in
IdSet.union
(IdSet.union opt1 opt2)
(stringset_delta all1 all2),
IdSet.union all1 all2
| Repetition e ->
let r = find_all_vars e in
r,r
let find_optional e =
let r,_ = do_find_opt e in r
(*
Double variables
A variable is double when it can be bound more than once
in a single matching
The typical case is:
(e1 as x) (e2 as x)
*)
let rec do_find_double = function
| Characters _|Epsilon|Eof -> IdSet.empty, IdSet.empty
| Bind (e,x) ->
let dbl,all = do_find_double e in
(if IdSet.mem x all then
IdSet.add x dbl
else
dbl),
IdSet.add x all
| Sequence (e1,e2) ->
let dbl1, all1 = do_find_double e1
and dbl2, all2 = do_find_double e2 in
IdSet.union
(IdSet.inter all1 all2)
(IdSet.union dbl1 dbl2),
IdSet.union all1 all2
| Alternative (e1,e2) ->
let dbl1, all1 = do_find_double e1
and dbl2, all2 = do_find_double e2 in
IdSet.union dbl1 dbl2,
IdSet.union all1 all2
| Repetition e ->
let r = find_all_vars e in
r,r
let find_double e = do_find_double e
(*
Type of variables:
A variable is bound to a char when all its occurences
bind a pattern of length 1.
The typical case is:
(_ as x) -> char
*)
let add_some x = function
| Some i -> Some (x+i)
| None -> None
let add_some_some x y = match x,y with
| Some i, Some j -> Some (i+j)
| _,_ -> None
let rec do_find_chars sz = function
| Epsilon|Eof -> IdSet.empty, IdSet.empty, sz
| Characters _ -> IdSet.empty, IdSet.empty, add_some 1 sz
| Bind (e,x) ->
let c,s,e_sz = do_find_chars (Some 0) e in
begin match e_sz with
| Some 1 ->
IdSet.add x c,s,add_some 1 sz
| _ ->
c, IdSet.add x s, add_some_some sz e_sz
end
| Sequence (e1,e2) ->
let c1,s1,sz1 = do_find_chars sz e1 in
let c2,s2,sz2 = do_find_chars sz1 e2 in
IdSet.union c1 c2,
IdSet.union s1 s2,
sz2
| Alternative (e1,e2) ->
let c1,s1,sz1 = do_find_chars sz e1
and c2,s2,sz2 = do_find_chars sz e2 in
IdSet.union c1 c2,
IdSet.union s1 s2,
(if sz1 = sz2 then sz1 else None)
| Repetition e -> do_find_chars None e
let find_chars e =
let c,s,_ = do_find_chars (Some 0) e in
IdSet.diff c s
(*******************************)
(* From shallow to deep syntax *)
(*******************************)
let chars = ref ([] : Cset.t list)
let chars_count = ref 0
let rec encode_regexp char_vars act = function
Epsilon -> Empty
| Characters cl ->
let n = !chars_count in
chars := cl :: !chars;
incr chars_count;
Chars(n,false)
| Eof ->
let n = !chars_count in
chars := Cset.eof :: !chars;
incr chars_count;
Chars(n,true)
| Sequence(r1,r2) ->
let r1 = encode_regexp char_vars act r1 in
let r2 = encode_regexp char_vars act r2 in
Seq (r1, r2)
| Alternative(r1,r2) ->
let r1 = encode_regexp char_vars act r1 in
let r2 = encode_regexp char_vars act r2 in
Alt(r1, r2)
| Repetition r ->
let r = encode_regexp char_vars act r in
Star r
| Bind (r,((name,_) as x)) ->
let r = encode_regexp char_vars act r in
if IdSet.mem x char_vars then
Seq (Tag {id=name ; start=true ; action=act},r)
else
Seq (Tag {id=name ; start=true ; action=act},
Seq (r, Tag {id=name ; start=false ; action=act}))
(* Optimisation,
Static optimization :
Replace tags by offsets relative to the beginning
or end of matched string.
Dynamic optimization:
Replace some non-optional, non-double tags by offsets w.r.t
a previous similar tag.
*)
let incr_pos = function
| None -> None
| Some i -> Some (i+1)
let decr_pos = function
| None -> None
| Some i -> Some (i-1)
let opt = true
let mk_seq r1 r2 = match r1,r2 with
| Empty,_ -> r2
| _,Empty -> r1
| _,_ -> Seq (r1,r2)
let add_pos p i = match p with
| Some (Sum (a,n)) -> Some (Sum (a,n+i))
| None -> None
let mem_name name id_set =
IdSet.exists (fun (id_name,_) -> name = id_name) id_set
let opt_regexp all_vars char_vars optional_vars double_vars r =
(* From removed tags to their addresses *)
let env = Hashtbl.create 17 in
(* First static optimizations, from start position *)
let rec size_forward pos = function
| Empty|Chars (_,true)|Tag _ -> Some pos
| Chars (_,false) -> Some (pos+1)
| Seq (r1,r2) ->
begin match size_forward pos r1 with
| None -> None
| Some pos -> size_forward pos r2
end
| Alt (r1,r2) ->
let pos1 = size_forward pos r1
and pos2 = size_forward pos r2 in
if pos1=pos2 then pos1 else None
| Star _ -> None
| Action _ -> assert false in
let rec simple_forward pos r = match r with
| Tag n ->
if mem_name n.id double_vars then
r,Some pos
else begin
Hashtbl.add env (n.id,n.start) (Sum (Start, pos)) ;
Empty,Some pos
end
| Empty -> r, Some pos
| Chars (_,is_eof) ->
r,Some (if is_eof then pos else pos+1)
| Seq (r1,r2) ->
let r1,pos = simple_forward pos r1 in
begin match pos with
| None -> mk_seq r1 r2,None
| Some pos ->
let r2,pos = simple_forward pos r2 in
mk_seq r1 r2,pos
end
| Alt (r1,r2) ->
let pos1 = size_forward pos r1
and pos2 = size_forward pos r2 in
r,(if pos1=pos2 then pos1 else None)
| Star _ -> r,None
| Action _ -> assert false in
(* Then static optimizations, from end position *)
let rec size_backward pos = function
| Empty|Chars (_,true)|Tag _ -> Some pos
| Chars (_,false) -> Some (pos-1)
| Seq (r1,r2) ->
begin match size_backward pos r2 with
| None -> None
| Some pos -> size_backward pos r1
end
| Alt (r1,r2) ->
let pos1 = size_backward pos r1
and pos2 = size_backward pos r2 in
if pos1=pos2 then pos1 else None
| Star _ -> None
| Action _ -> assert false in
let rec simple_backward pos r = match r with
| Tag n ->
if mem_name n.id double_vars then
r,Some pos
else begin
Hashtbl.add env (n.id,n.start) (Sum (End, pos)) ;
Empty,Some pos
end
| Empty -> r,Some pos
| Chars (_,is_eof) ->
r,Some (if is_eof then pos else pos-1)
| Seq (r1,r2) ->
let r2,pos = simple_backward pos r2 in
begin match pos with
| None -> mk_seq r1 r2,None
| Some pos ->
let r1,pos = simple_backward pos r1 in
mk_seq r1 r2,pos
end
| Alt (r1,r2) ->
let pos1 = size_backward pos r1
and pos2 = size_backward pos r2 in
r,(if pos1=pos2 then pos1 else None)
| Star _ -> r,None
| Action _ -> assert false in
let r =
if opt then
let r,_ = simple_forward 0 r in
let r,_ = simple_backward 0 r in
r
else
r in
let loc_count = ref 0 in
let get_tag_addr t =
try
Hashtbl.find env t
with
| Not_found ->
let n = !loc_count in
incr loc_count ;
Hashtbl.add env t (Sum (Mem n,0)) ;
Sum (Mem n,0) in
let rec alloc_exp pos r = match r with
| Tag n ->
if mem_name n.id double_vars then
r,pos
else begin match pos with
| Some a ->
Hashtbl.add env (n.id,n.start) a ;
Empty,pos
| None ->
let a = get_tag_addr (n.id,n.start) in
r,Some a
end
| Empty -> r,pos
| Chars (_,is_eof) -> r,(if is_eof then pos else add_pos pos 1)
| Seq (r1,r2) ->
let r1,pos = alloc_exp pos r1 in
let r2,pos = alloc_exp pos r2 in
mk_seq r1 r2,pos
| Alt (_,_) ->
let off = size_forward 0 r in
begin match off with
| Some i -> r,add_pos pos i
| None -> r,None
end
| Star _ -> r,None
| Action _ -> assert false in
let r,_ = alloc_exp None r in
let m =
IdSet.fold
(fun ((name,_) as x) r ->
let v =
if IdSet.mem x char_vars then
Ident_char
(IdSet.mem x optional_vars, get_tag_addr (name,true))
else
Ident_string
(IdSet.mem x optional_vars,
get_tag_addr (name,true),
get_tag_addr (name,false)) in
(x,v)::r)
all_vars [] in
m,r, !loc_count
let encode_casedef casedef =
let r =
List.fold_left
(fun (reg,actions,count,ntags) (expr, act) ->
let expr = remove_nested_as expr in
let char_vars = find_chars expr in
let r = encode_regexp char_vars count expr
and opt_vars = find_optional expr
and double_vars,all_vars = find_double expr in
let m,r,loc_ntags =
opt_regexp all_vars char_vars opt_vars double_vars r in
Alt(reg, Seq(r, Action count)),
(count, m ,act) :: actions,
(succ count),
max loc_ntags ntags)
(Empty, [], 0, 0)
casedef in
r
let encode_lexdef def =
chars := [];
chars_count := 0;
let entry_list =
List.map
(fun {name=entry_name ; args=args ; shortest=shortest ; clauses= casedef} ->
let (re,actions,_,ntags) = encode_casedef casedef in
{ lex_name = entry_name;
lex_regexp = re;
lex_mem_tags = ntags ;
lex_actions = List.rev actions },args,shortest)
def in
let chr = Array.of_list (List.rev !chars) in
chars := [];
(chr, entry_list)
(* To generate directly a NFA from a regular expression.
Confer Aho-Sethi-Ullman, dragon book, chap. 3
Extension to tagged automata.
Confer
Ville Larikari
``NFAs with Tagged Transitions, their Conversion to Deterministic
Automata and Application to Regular Expressions''.
Symposium on String Processing and Information Retrieval (SPIRE 2000),
http://kouli.iki.fi/~vlaurika/spire2000-tnfa.ps
(See also)
http://kouli.iki.fi/~vlaurika/regex-submatch.ps.gz
*)
type t_transition =
OnChars of int
| ToAction of int
type transition = t_transition * Tags.t
let trans_compare (t1,tags1) (t2,tags2) =
match Pervasives.compare t1 t2 with
| 0 -> Tags.compare tags1 tags2
| r -> r
module TransSet =
Set.Make(struct type t = transition let compare = trans_compare end)
let rec nullable = function
| Empty|Tag _ -> true
| Chars (_,_)|Action _ -> false
| Seq(r1,r2) -> nullable r1 && nullable r2
| Alt(r1,r2) -> nullable r1 || nullable r2
| Star r -> true
let rec emptymatch = function
| Empty | Chars (_,_) | Action _ -> Tags.empty
| Tag t -> Tags.add t Tags.empty
| Seq (r1,r2) -> Tags.union (emptymatch r1) (emptymatch r2)
| Alt(r1,r2) ->
if nullable r1 then
emptymatch r1
else
emptymatch r2
| Star r ->
if nullable r then
emptymatch r
else
Tags.empty
let addtags transs tags =
TransSet.fold
(fun (t,tags_t) r -> TransSet.add (t, Tags.union tags tags_t) r)
transs TransSet.empty
let rec firstpos = function
Empty|Tag _ -> TransSet.empty
| Chars (pos,_) -> TransSet.add (OnChars pos,Tags.empty) TransSet.empty
| Action act -> TransSet.add (ToAction act,Tags.empty) TransSet.empty
| Seq(r1,r2) ->
if nullable r1 then
TransSet.union (firstpos r1) (addtags (firstpos r2) (emptymatch r1))
else
firstpos r1
| Alt(r1,r2) -> TransSet.union (firstpos r1) (firstpos r2)
| Star r -> firstpos r
(* Berry-sethi followpos *)
let followpos size entry_list =
let v = Array.create size TransSet.empty in
let rec fill s = function
| Empty|Action _|Tag _ -> ()
| Chars (n,_) -> v.(n) <- s
| Alt (r1,r2) ->
fill s r1 ; fill s r2
| Seq (r1,r2) ->
fill
(if nullable r2 then
TransSet.union (firstpos r2) (addtags s (emptymatch r2))
else
(firstpos r2))
r1 ;
fill s r2
| Star r ->
fill (TransSet.union (firstpos r) s) r in
List.iter (fun (entry,_,_) -> fill TransSet.empty entry.lex_regexp) entry_list ;
v
(************************)
(* The algorithm itself *)
(************************)
let no_action = max_int
module StateSet =
Set.Make (struct type t = t_transition let compare = Pervasives.compare end)
module MemMap =
Map.Make (struct type t = int let compare = Pervasives.compare end)
type 'a dfa_state =
{final : int * ('a * int TagMap.t) ;
others : ('a * int TagMap.t) MemMap.t}
(*
let dtag oc t =
fprintf oc "%s<%s>" t.id (if t.start then "s" else "e")
let dmem_map dp ds m =
MemMap.iter
(fun k x ->
eprintf "%d -> " k ; dp x ; ds ())
m
and dtag_map dp ds m =
TagMap.iter
(fun t x ->
dtag stderr t ; eprintf " -> " ; dp x ; ds ())
m
let dstate {final=(act,(_,m)) ; others=o} =
if act <> no_action then begin
eprintf "final=%d " act ;
dtag_map (fun x -> eprintf "%d" x) (fun () -> prerr_string " ,") m ;
prerr_endline ""
end ;
dmem_map
(fun (_,m) ->
dtag_map (fun x -> eprintf "%d" x) (fun () -> prerr_string " ,") m)
(fun () -> prerr_endline "")
o
*)
let dfa_state_empty =
{final=(no_action, (max_int,TagMap.empty)) ;
others=MemMap.empty}
and dfa_state_is_empty {final=(act,_) ; others=o} =
act = no_action &&
o = MemMap.empty
(* A key is an abstraction on a dfa state,
two states with the same key can be made the same by
copying some memory cells into others *)
module StateSetSet =
Set.Make (struct type t = StateSet.t let compare = StateSet.compare end)
type t_equiv = {tag:tag_info ; equiv:StateSetSet.t}
module MemKey =
Set.Make
(struct
type t = t_equiv
let compare e1 e2 = match Pervasives.compare e1.tag e2.tag with
| 0 -> StateSetSet.compare e1.equiv e2.equiv
| r -> r
end)
type dfa_key = {kstate : StateSet.t ; kmem : MemKey.t}
(* Map a state to its key *)
let env_to_class m =
let env1 =
MemMap.fold
(fun _ (tag,s) r ->
try
let ss = TagMap.find tag r in
let r = TagMap.remove tag r in
TagMap.add tag (StateSetSet.add s ss) r
with
| Not_found ->
TagMap.add tag (StateSetSet.add s StateSetSet.empty) r)
m TagMap.empty in
TagMap.fold
(fun tag ss r -> MemKey.add {tag=tag ; equiv=ss} r)
env1 MemKey.empty
(* trans is nfa_state, m is associated memory map *)
let inverse_mem_map trans m r =
TagMap.fold
(fun tag addr r ->
try
let otag,s = MemMap.find addr r in
assert (tag = otag) ;
let r = MemMap.remove addr r in
MemMap.add addr (tag,StateSet.add trans s) r
with
| Not_found ->
MemMap.add addr (tag,StateSet.add trans StateSet.empty) r)
m r
let inverse_mem_map_other n (_,m) r = inverse_mem_map (OnChars n) m r
let get_key {final=(act,(_,m_act)) ; others=o} =
let env =
MemMap.fold inverse_mem_map_other
o
(if act = no_action then MemMap.empty
else inverse_mem_map (ToAction act) m_act MemMap.empty) in
let state_key =
MemMap.fold (fun n _ r -> StateSet.add (OnChars n) r) o
(if act=no_action then StateSet.empty
else StateSet.add (ToAction act) StateSet.empty) in
let mem_key = env_to_class env in
{kstate = state_key ; kmem = mem_key}
let key_compare k1 k2 = match StateSet.compare k1.kstate k2.kstate with
| 0 -> MemKey.compare k1.kmem k2.kmem
| r -> r
(* Association dfa_state -> state_num *)
module StateMap =
Map.Make(struct type t = dfa_key let compare = key_compare end)
let state_map = ref (StateMap.empty : int StateMap.t)
let todo = Stack.create()
let next_state_num = ref 0
let next_mem_cell = ref 0
let temp_pending = ref false
let tag_cells = Hashtbl.create 17
let state_table = Table.create dfa_state_empty
let reset_state_mem () =
state_map := StateMap.empty;
Stack.clear todo;
next_state_num := 0 ;
let _ = Table.trim state_table in
()
(* Allocation of memory cells *)
let reset_cell_mem ntags =
next_mem_cell := ntags ;
Hashtbl.clear tag_cells ;
temp_pending := false
let do_alloc_temp () =
temp_pending := true ;
let n = !next_mem_cell in
n
let do_alloc_cell used t =
let available =
try Hashtbl.find tag_cells t with Not_found -> Ints.empty in
try
Ints.choose (Ints.diff available used)
with
| Not_found ->
temp_pending := false ;
let n = !next_mem_cell in
if n >= 255 then raise Memory_overflow ;
Hashtbl.replace tag_cells t (Ints.add n available) ;
incr next_mem_cell ;
n
let is_old_addr a = a >= 0
and is_new_addr a = a < 0
let old_in_map m r =
TagMap.fold
(fun _ addr r ->
if is_old_addr addr then
Ints.add addr r
else
r)
m r
let alloc_map used m mvs =
TagMap.fold
(fun tag a (r,mvs) ->
let a,mvs =
if is_new_addr a then
let a = do_alloc_cell used tag in
a,Ints.add a mvs
else a,mvs in
TagMap.add tag a r,mvs)
m (TagMap.empty,mvs)
let create_new_state {final=(act,(_,m_act)) ; others=o} =
let used =
MemMap.fold (fun _ (_,m) r -> old_in_map m r)
o (old_in_map m_act Ints.empty) in
let new_m_act,mvs = alloc_map used m_act Ints.empty in
let new_o,mvs =
MemMap.fold (fun k (x,m) (r,mvs) ->
let m,mvs = alloc_map used m mvs in
MemMap.add k (x,m) r,mvs)
o (MemMap.empty,mvs) in
{final=(act,(0,new_m_act)) ; others=new_o},
Ints.fold (fun x r -> Set x::r) mvs []
type new_addr_gen = {mutable count : int ; mutable env : int TagMap.t}
let create_new_addr_gen () = {count = -1 ; env = TagMap.empty}
let alloc_new_addr tag r =
try
TagMap.find tag r.env
with
| Not_found ->
let a = r.count in
r.count <- a-1 ;
r.env <- TagMap.add tag a r.env ;
a
let create_mem_map tags gen =
Tags.fold
(fun tag r -> TagMap.add tag (alloc_new_addr tag gen) r)
tags TagMap.empty
let create_init_state pos =
let gen = create_new_addr_gen () in
let st =
TransSet.fold
(fun (t,tags) st ->
match t with
| ToAction n ->
let on,otags = st.final in
if n < on then
{st with final = (n, (0,create_mem_map tags gen))}
else
st
| OnChars n ->
try
let _ = MemMap.find n st.others in assert false
with
| Not_found ->
{st with others =
MemMap.add n (0,create_mem_map tags gen) st.others})
pos dfa_state_empty in
st
let get_map t st = match t with
| ToAction _ -> let _,(_,m) = st.final in m
| OnChars n ->
let (_,m) = MemMap.find n st.others in
m
let dest = function | Copy (d,_) | Set d -> d
and orig = function | Copy (_,o) -> o | Set _ -> -1
let pmv oc mv = fprintf oc "%d <- %d" (dest mv) (orig mv)
let pmvs oc mvs =
List.iter (fun mv -> fprintf oc "%a " pmv mv) mvs ;
output_char oc '\n' ; flush oc
(* Topological sort << a la louche >> *)
let sort_mvs mvs =
let rec do_rec r mvs = match mvs with
| [] -> r
| _ ->
let dests =
List.fold_left
(fun r mv -> Ints.add (dest mv) r)
Ints.empty mvs in
let rem,here =
List.partition
(fun mv -> Ints.mem (orig mv) dests)
mvs in
match here with
| [] ->
begin match rem with
| Copy (d,_)::_ ->
let d' = do_alloc_temp () in
Copy (d',d)::
do_rec r
(List.map
(fun mv ->
if orig mv = d then
Copy (dest mv,d')
else
mv)
rem)
| _ -> assert false
end
| _ -> do_rec (here@r) rem in
do_rec [] mvs
let move_to mem_key src tgt =
let mvs =
MemKey.fold
(fun {tag=tag ; equiv=m} r ->
StateSetSet.fold
(fun s r ->
try
let t = StateSet.choose s in
let src = TagMap.find tag (get_map t src)
and tgt = TagMap.find tag (get_map t tgt) in
if src <> tgt then begin
if is_new_addr src then
Set tgt::r
else
Copy (tgt, src)::r
end else
r
with
| Not_found -> assert false)
m r)
mem_key [] in
(* Moves are topologically sorted *)
sort_mvs mvs
let get_state st =
let key = get_key st in
try
let num = StateMap.find key !state_map in
num,move_to key.kmem st (Table.get state_table num)
with Not_found ->
let num = !next_state_num in
incr next_state_num;
let st,mvs = create_new_state st in
Table.emit state_table st ;
state_map := StateMap.add key num !state_map;
Stack.push (st, num) todo;
num,mvs
let map_on_all_states f old_res =
let res = ref old_res in
begin try
while true do
let (st, i) = Stack.pop todo in
let r = f st in
res := (r, i) :: !res
done
with Stack.Empty -> ()
end;
!res
let goto_state st =
if
dfa_state_is_empty st
then
Backtrack,[]
else
let n,moves = get_state st in
Goto n,moves
(****************************)
(* compute reachable states *)
(****************************)
let add_tags_to_map gen tags m =
Tags.fold
(fun tag m ->
let m = TagMap.remove tag m in
TagMap.add tag (alloc_new_addr tag gen) m)
tags m
let apply_transition gen r pri m = function
| ToAction n,tags ->
let on,(opri,_) = r.final in
if n < on || (on=n && pri < opri) then
let m = add_tags_to_map gen tags m in
{r with final=n,(pri,m)}
else r
| OnChars n,tags ->
try
let (opri,_) = MemMap.find n r.others in
if pri < opri then
let m = add_tags_to_map gen tags m in
{r with others=MemMap.add n (pri,m) (MemMap.remove n r.others)}
else
r
with
| Not_found ->
let m = add_tags_to_map gen tags m in
{r with others=MemMap.add n (pri,m) r.others}
(* add transitions ts to new state r
transitions in ts start from state pri and memory map m
*)
let apply_transitions gen r pri m ts =
TransSet.fold
(fun t r -> apply_transition gen r pri m t)
ts r
(* For a given nfa_state pos, refine char partition *)
let rec split_env gen follow pos m s = function
| [] -> (* Can occur ! because of non-matching regexp ([^'\000'-'\255']) *)
[]
| (s1,st1) as p::rem ->
let here = Cset.inter s s1 in
if Cset.is_empty here then
p::split_env gen follow pos m s rem
else
let rest = Cset.diff s here in
let rem =
if Cset.is_empty rest then
rem
else
split_env gen follow pos m rest rem
and new_st = apply_transitions gen st1 pos m follow in
let stay = Cset.diff s1 here in
if Cset.is_empty stay then
(here, new_st)::rem
else
(stay, st1)::(here, new_st)::rem
(* For all nfa_state pos in a dfa state st *)
let comp_shift gen chars follow st =
MemMap.fold
(fun pos (_,m) env -> split_env gen follow.(pos) pos m chars.(pos) env)
st [Cset.all_chars_eof,dfa_state_empty]
let reachs chars follow st =
let gen = create_new_addr_gen () in
(* build a association list (char set -> new state) *)
let env = comp_shift gen chars follow st in
(* change it into (char set -> new state_num) *)
let env =
List.map
(fun (s,dfa_state) -> s,goto_state dfa_state) env in
(* finally build the char indexed array -> new state num *)
let shift = Cset.env_to_array env in
shift
let get_tag_mem n env t =
try
TagMap.find t env.(n)
with
| Not_found -> assert false
let do_tag_actions n env m =
let used,r =
TagMap.fold (fun t m (used,r) ->
let a = get_tag_mem n env t in
Ints.add a used,SetTag (a,m)::r) m (Ints.empty,[]) in
let _,r =
TagMap.fold
(fun tag m (used,r) ->
if not (Ints.mem m used) && tag.start then
Ints.add m used, EraseTag m::r
else
used,r)
env.(n) (used,r) in
r
let translate_state shortest_match tags chars follow st =
let (n,(_,m)) = st.final in
if MemMap.empty = st.others then
Perform (n,do_tag_actions n tags m)
else if shortest_match then begin
if n=no_action then
Shift (No_remember,reachs chars follow st.others)
else
Perform(n, do_tag_actions n tags m)
end else begin
Shift (
(if n = no_action then
No_remember
else
Remember (n,do_tag_actions n tags m)),
reachs chars follow st.others)
end
(*
let dtags chan tags =
Tags.iter
(fun t -> fprintf chan " %a" dtag t)
tags
let dtransset s =
TransSet.iter
(fun trans -> match trans with
| OnChars i,tags ->
eprintf " (-> %d,%a)" i dtags tags
| ToAction i,tags ->
eprintf " ([%d],%a)" i dtags tags)
s
let dfollow t =
eprintf "follow=[" ;
for i = 0 to Array.length t-1 do
eprintf "%d:" i ;
dtransset t.(i)
done ;
prerr_endline "]"
*)
let make_tag_entry id start act a r = match a with
| Sum (Mem m,0) ->
TagMap.add {id=id ; start=start ; action=act} m r
| _ -> r
let extract_tags l =
let envs = Array.create (List.length l) TagMap.empty in
List.iter
(fun (act,m,_) ->
envs.(act) <-
List.fold_right
(fun ((name,_),v) r -> match v with
| Ident_char (_,t) -> make_tag_entry name true act t r
| Ident_string (_,t1,t2) ->
make_tag_entry name true act t1
(make_tag_entry name false act t2 r))
m TagMap.empty)
l ;
envs
let make_dfa lexdef =
let (chars, entry_list) = encode_lexdef lexdef in
let follow = followpos (Array.length chars) entry_list in
(*
dfollow follow ;
*)
reset_state_mem () ;
let r_states = ref [] in
let initial_states =
List.map
(fun (le,args,shortest) ->
let tags = extract_tags le.lex_actions in
reset_cell_mem le.lex_mem_tags ;
let pos_set = firstpos le.lex_regexp in
(*
prerr_string "trans={" ; dtransset pos_set ; prerr_endline "}" ;
*)
let init_state = create_init_state pos_set in
let init_num = get_state init_state in
r_states :=
map_on_all_states
(translate_state shortest tags chars follow) !r_states ;
{ auto_name = le.lex_name;
auto_args = args ;
auto_mem_size =
(if !temp_pending then !next_mem_cell+1 else !next_mem_cell) ;
auto_initial_state = init_num ;
auto_actions = le.lex_actions })
entry_list in
let states = !r_states in
(*
prerr_endline "** states **" ;
for i = 0 to !next_state_num-1 do
eprintf "+++ %d +++\n" i ;
dstate (Table.get state_table i) ;
prerr_endline ""
done ;
eprintf "%d states\n" !next_state_num ;
*)
let actions = Array.create !next_state_num (Perform (0,[])) in
List.iter (fun (act, i) -> actions.(i) <- act) states;
reset_state_mem () ;
reset_cell_mem 0 ;
(initial_states, actions)