ocaml/asmcomp/cmm_helpers.ml

2793 lines
98 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
[@@@ocaml.warning "+a-4-9-40-41-42-44-45"]
module V = Backend_var
module VP = Backend_var.With_provenance
open Cmm
open Arch
(* Local binding of complex expressions *)
let bind name arg fn =
match arg with
Cvar _ | Cconst_int _ | Cconst_natint _ | Cconst_symbol _ -> fn arg
| _ -> let id = V.create_local name in Clet(VP.create id, arg, fn (Cvar id))
let bind_load name arg fn =
match arg with
| Cop(Cload _, [Cvar _], _) -> fn arg
| _ -> bind name arg fn
let bind_nonvar name arg fn =
match arg with
Cconst_int _ | Cconst_natint _ | Cconst_symbol _ -> fn arg
| _ -> let id = V.create_local name in Clet(VP.create id, arg, fn (Cvar id))
let caml_black = Nativeint.shift_left (Nativeint.of_int 3) 8
(* cf. runtime/caml/gc.h *)
(* Block headers. Meaning of the tag field: see stdlib/obj.ml *)
let floatarray_tag dbg = Cconst_int (Obj.double_array_tag, dbg)
let block_header tag sz =
Nativeint.add (Nativeint.shift_left (Nativeint.of_int sz) 10)
(Nativeint.of_int tag)
(* Static data corresponding to "value"s must be marked black in case we are
in no-naked-pointers mode. See [caml_darken] and the code below that emits
structured constants and static module definitions. *)
let black_block_header tag sz = Nativeint.logor (block_header tag sz) caml_black
let white_closure_header sz = block_header Obj.closure_tag sz
let black_closure_header sz = black_block_header Obj.closure_tag sz
let infix_header ofs = block_header Obj.infix_tag ofs
let float_header = block_header Obj.double_tag (size_float / size_addr)
let floatarray_header len =
(* Zero-sized float arrays have tag zero for consistency with
[caml_alloc_float_array]. *)
assert (len >= 0);
if len = 0 then block_header 0 0
else block_header Obj.double_array_tag (len * size_float / size_addr)
let string_header len =
block_header Obj.string_tag ((len + size_addr) / size_addr)
let boxedint32_header = block_header Obj.custom_tag 2
let boxedint64_header = block_header Obj.custom_tag (1 + 8 / size_addr)
let boxedintnat_header = block_header Obj.custom_tag 2
let caml_nativeint_ops = "caml_nativeint_ops"
let caml_int32_ops = "caml_int32_ops"
let caml_int64_ops = "caml_int64_ops"
let pos_arity_in_closinfo = 8 * size_addr - 8
(* arity = the top 8 bits of the closinfo word *)
let closure_info ~arity ~startenv =
assert (-128 <= arity && arity <= 127);
assert (0 <= startenv && startenv < 1 lsl (pos_arity_in_closinfo - 1));
Nativeint.(add (shift_left (of_int arity) pos_arity_in_closinfo)
(add (shift_left (of_int startenv) 1)
1n))
let alloc_float_header dbg = Cconst_natint (float_header, dbg)
let alloc_floatarray_header len dbg = Cconst_natint (floatarray_header len, dbg)
let alloc_closure_header sz dbg = Cconst_natint (white_closure_header sz, dbg)
let alloc_infix_header ofs dbg = Cconst_natint (infix_header ofs, dbg)
let alloc_closure_info ~arity ~startenv dbg =
Cconst_natint (closure_info ~arity ~startenv, dbg)
let alloc_boxedint32_header dbg = Cconst_natint (boxedint32_header, dbg)
let alloc_boxedint64_header dbg = Cconst_natint (boxedint64_header, dbg)
let alloc_boxedintnat_header dbg = Cconst_natint (boxedintnat_header, dbg)
(* Integers *)
let max_repr_int = max_int asr 1
let min_repr_int = min_int asr 1
let int_const dbg n =
if n <= max_repr_int && n >= min_repr_int
then Cconst_int((n lsl 1) + 1, dbg)
else Cconst_natint
(Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n, dbg)
let natint_const_untagged dbg n =
if n > Nativeint.of_int max_int
|| n < Nativeint.of_int min_int
then Cconst_natint (n,dbg)
else Cconst_int (Nativeint.to_int n, dbg)
let cint_const n =
Cint(Nativeint.add (Nativeint.shift_left (Nativeint.of_int n) 1) 1n)
let targetint_const n =
Targetint.add (Targetint.shift_left (Targetint.of_int n) 1)
Targetint.one
let add_no_overflow n x c dbg =
let d = n + x in
if d = 0 then c else Cop(Caddi, [c; Cconst_int (d, dbg)], dbg)
let rec add_const c n dbg =
if n = 0 then c
else match c with
| Cconst_int (x, _) when Misc.no_overflow_add x n -> Cconst_int (x + n, dbg)
| Cop(Caddi, [Cconst_int (x, _); c], _)
when Misc.no_overflow_add n x ->
add_no_overflow n x c dbg
| Cop(Caddi, [c; Cconst_int (x, _)], _)
when Misc.no_overflow_add n x ->
add_no_overflow n x c dbg
| Cop(Csubi, [Cconst_int (x, _); c], _) when Misc.no_overflow_add n x ->
Cop(Csubi, [Cconst_int (n + x, dbg); c], dbg)
| Cop(Csubi, [c; Cconst_int (x, _)], _) when Misc.no_overflow_sub n x ->
add_const c (n - x) dbg
| c -> Cop(Caddi, [c; Cconst_int (n, dbg)], dbg)
let incr_int c dbg = add_const c 1 dbg
let decr_int c dbg = add_const c (-1) dbg
let rec add_int c1 c2 dbg =
match (c1, c2) with
| (Cconst_int (n, _), c) | (c, Cconst_int (n, _)) ->
add_const c n dbg
| (Cop(Caddi, [c1; Cconst_int (n1, _)], _), c2) ->
add_const (add_int c1 c2 dbg) n1 dbg
| (c1, Cop(Caddi, [c2; Cconst_int (n2, _)], _)) ->
add_const (add_int c1 c2 dbg) n2 dbg
| (_, _) ->
Cop(Caddi, [c1; c2], dbg)
let rec sub_int c1 c2 dbg =
match (c1, c2) with
| (c1, Cconst_int (n2, _)) when n2 <> min_int ->
add_const c1 (-n2) dbg
| (c1, Cop(Caddi, [c2; Cconst_int (n2, _)], _)) when n2 <> min_int ->
add_const (sub_int c1 c2 dbg) (-n2) dbg
| (Cop(Caddi, [c1; Cconst_int (n1, _)], _), c2) ->
add_const (sub_int c1 c2 dbg) n1 dbg
| (c1, c2) ->
Cop(Csubi, [c1; c2], dbg)
let rec lsl_int c1 c2 dbg =
match (c1, c2) with
| (Cop(Clsl, [c; Cconst_int (n1, _)], _), Cconst_int (n2, _))
when n1 > 0 && n2 > 0 && n1 + n2 < size_int * 8 ->
Cop(Clsl, [c; Cconst_int (n1 + n2, dbg)], dbg)
| (Cop(Caddi, [c1; Cconst_int (n1, _)], _), Cconst_int (n2, _))
when Misc.no_overflow_lsl n1 n2 ->
add_const (lsl_int c1 c2 dbg) (n1 lsl n2) dbg
| (_, _) ->
Cop(Clsl, [c1; c2], dbg)
let is_power2 n = n = 1 lsl Misc.log2 n
and mult_power2 c n dbg = lsl_int c (Cconst_int (Misc.log2 n, dbg)) dbg
let rec mul_int c1 c2 dbg =
match (c1, c2) with
| (c, Cconst_int (0, _)) | (Cconst_int (0, _), c) ->
Csequence (c, Cconst_int (0, dbg))
| (c, Cconst_int (1, _)) | (Cconst_int (1, _), c) ->
c
| (c, Cconst_int(-1, _)) | (Cconst_int(-1, _), c) ->
sub_int (Cconst_int (0, dbg)) c dbg
| (c, Cconst_int (n, _)) when is_power2 n -> mult_power2 c n dbg
| (Cconst_int (n, _), c) when is_power2 n -> mult_power2 c n dbg
| (Cop(Caddi, [c; Cconst_int (n, _)], _), Cconst_int (k, _)) |
(Cconst_int (k, _), Cop(Caddi, [c; Cconst_int (n, _)], _))
when Misc.no_overflow_mul n k ->
add_const (mul_int c (Cconst_int (k, dbg)) dbg) (n * k) dbg
| (c1, c2) ->
Cop(Cmuli, [c1; c2], dbg)
let ignore_low_bit_int = function
Cop(Caddi,
[(Cop(Clsl, [_; Cconst_int (n, _)], _) as c); Cconst_int (1, _)], _)
when n > 0
-> c
| Cop(Cor, [c; Cconst_int (1, _)], _) -> c
| c -> c
(* removes the 1-bit sign-extension left by untag_int (tag_int c) *)
let ignore_high_bit_int = function
Cop(Casr,
[Cop(Clsl, [c; Cconst_int (1, _)], _); Cconst_int (1, _)], _) -> c
| c -> c
let lsr_int c1 c2 dbg =
match c2 with
Cconst_int (0, _) ->
c1
| Cconst_int (n, _) when n > 0 ->
Cop(Clsr, [ignore_low_bit_int c1; c2], dbg)
| _ ->
Cop(Clsr, [c1; c2], dbg)
let asr_int c1 c2 dbg =
match c2 with
Cconst_int (0, _) ->
c1
| Cconst_int (n, _) when n > 0 ->
Cop(Casr, [ignore_low_bit_int c1; c2], dbg)
| _ ->
Cop(Casr, [c1; c2], dbg)
let tag_int i dbg =
match i with
Cconst_int (n, _) ->
int_const dbg n
| Cop(Casr, [c; Cconst_int (n, _)], _) when n > 0 ->
Cop(Cor,
[asr_int c (Cconst_int (n - 1, dbg)) dbg; Cconst_int (1, dbg)],
dbg)
| c ->
incr_int (lsl_int c (Cconst_int (1, dbg)) dbg) dbg
let untag_int i dbg =
match i with
Cconst_int (n, _) -> Cconst_int(n asr 1, dbg)
| Cop(Cor, [Cop(Casr, [c; Cconst_int (n, _)], _); Cconst_int (1, _)], _)
when n > 0 && n < size_int * 8 ->
Cop(Casr, [c; Cconst_int (n+1, dbg)], dbg)
| Cop(Cor, [Cop(Clsr, [c; Cconst_int (n, _)], _); Cconst_int (1, _)], _)
when n > 0 && n < size_int * 8 ->
Cop(Clsr, [c; Cconst_int (n+1, dbg)], dbg)
| c -> asr_int c (Cconst_int (1, dbg)) dbg
let mk_if_then_else dbg cond ifso_dbg ifso ifnot_dbg ifnot =
match cond with
| Cconst_int (0, _) -> ifnot
| Cconst_int (1, _) -> ifso
| _ ->
Cifthenelse(cond, ifso_dbg, ifso, ifnot_dbg, ifnot, dbg)
let mk_not dbg cmm =
match cmm with
| Cop(Caddi,
[Cop(Clsl, [c; Cconst_int (1, _)], _); Cconst_int (1, _)], dbg') ->
begin
match c with
| Cop(Ccmpi cmp, [c1; c2], dbg'') ->
tag_int
(Cop(Ccmpi (negate_integer_comparison cmp), [c1; c2], dbg'')) dbg'
| Cop(Ccmpa cmp, [c1; c2], dbg'') ->
tag_int
(Cop(Ccmpa (negate_integer_comparison cmp), [c1; c2], dbg'')) dbg'
| Cop(Ccmpf cmp, [c1; c2], dbg'') ->
tag_int
(Cop(Ccmpf (negate_float_comparison cmp), [c1; c2], dbg'')) dbg'
| _ ->
(* 0 -> 3, 1 -> 1 *)
Cop(Csubi,
[Cconst_int (3, dbg); Cop(Clsl, [c; Cconst_int (1, dbg)], dbg)],
dbg)
end
| Cconst_int (3, _) -> Cconst_int (1, dbg)
| Cconst_int (1, _) -> Cconst_int (3, dbg)
| c ->
(* 1 -> 3, 3 -> 1 *)
Cop(Csubi, [Cconst_int (4, dbg); c], dbg)
let mk_compare_ints dbg a1 a2 =
match (a1,a2) with
| Cconst_int (c1, _), Cconst_int (c2, _) ->
int_const dbg (Int.compare c1 c2)
| Cconst_natint (c1, _), Cconst_natint (c2, _) ->
int_const dbg (Nativeint.compare c1 c2)
| Cconst_int (c1, _), Cconst_natint (c2, _) ->
int_const dbg Nativeint.(compare (of_int c1) c2)
| Cconst_natint (c1, _), Cconst_int (c2, _) ->
int_const dbg Nativeint.(compare c1 (of_int c2))
| a1, a2 -> begin
bind "int_cmp" a1 (fun a1 ->
bind "int_cmp" a2 (fun a2 ->
let op1 = Cop(Ccmpi(Cgt), [a1; a2], dbg) in
let op2 = Cop(Ccmpi(Clt), [a1; a2], dbg) in
tag_int(sub_int op1 op2 dbg) dbg))
end
let mk_compare_floats dbg a1 a2 =
bind "float_cmp" a1 (fun a1 ->
bind "float_cmp" a2 (fun a2 ->
let op1 = Cop(Ccmpf(CFgt), [a1; a2], dbg) in
let op2 = Cop(Ccmpf(CFlt), [a1; a2], dbg) in
let op3 = Cop(Ccmpf(CFeq), [a1; a1], dbg) in
let op4 = Cop(Ccmpf(CFeq), [a2; a2], dbg) in
(* If both operands a1 and a2 are not NaN, then op3 = op4 = 1,
and the result is op1 - op2.
If at least one of the operands is NaN,
then op1 = op2 = 0, and the result is op3 - op4,
which orders NaN before other values.
To detect if the operand is NaN, we use the property:
for all x, NaN is not equal to x, even if x is NaN.
Therefore, op3 is 0 if and only if a1 is NaN,
and op4 is 0 if and only if a2 is NaN.
See also caml_float_compare_unboxed in runtime/floats.c *)
tag_int (add_int (sub_int op1 op2 dbg) (sub_int op3 op4 dbg) dbg) dbg))
let create_loop body dbg =
let cont = Lambda.next_raise_count () in
let call_cont = Cexit (cont, []) in
let body = Csequence (body, call_cont) in
Ccatch (Recursive, [cont, [], body, dbg], call_cont)
(* Turning integer divisions into multiply-high then shift.
The [division_parameters] function is used in module Emit for
those target platforms that support this optimization. *)
(* Unsigned comparison between native integers. *)
let ucompare x y = Nativeint.(compare (add x min_int) (add y min_int))
(* Unsigned division and modulus at type nativeint.
Algorithm: Hacker's Delight section 9.3 *)
let udivmod n d = Nativeint.(
if d < 0n then
if ucompare n d < 0 then (0n, n) else (1n, sub n d)
else begin
let q = shift_left (div (shift_right_logical n 1) d) 1 in
let r = sub n (mul q d) in
if ucompare r d >= 0 then (succ q, sub r d) else (q, r)
end)
(* Compute division parameters.
Algorithm: Hacker's Delight chapter 10, fig 10-1. *)
let divimm_parameters d = Nativeint.(
assert (d > 0n);
let twopsm1 = min_int in (* 2^31 for 32-bit archs, 2^63 for 64-bit archs *)
let nc = sub (pred twopsm1) (snd (udivmod twopsm1 d)) in
let rec loop p (q1, r1) (q2, r2) =
let p = p + 1 in
let q1 = shift_left q1 1 and r1 = shift_left r1 1 in
let (q1, r1) =
if ucompare r1 nc >= 0 then (succ q1, sub r1 nc) else (q1, r1) in
let q2 = shift_left q2 1 and r2 = shift_left r2 1 in
let (q2, r2) =
if ucompare r2 d >= 0 then (succ q2, sub r2 d) else (q2, r2) in
let delta = sub d r2 in
if ucompare q1 delta < 0 || (q1 = delta && r1 = 0n)
then loop p (q1, r1) (q2, r2)
else (succ q2, p - size)
in loop (size - 1) (udivmod twopsm1 nc) (udivmod twopsm1 d))
(* The result [(m, p)] of [divimm_parameters d] satisfies the following
inequality:
2^(wordsize + p) < m * d <= 2^(wordsize + p) + 2^(p + 1) (i)
from which it follows that
floor(n / d) = floor(n * m / 2^(wordsize+p))
if 0 <= n < 2^(wordsize-1)
ceil(n / d) = floor(n * m / 2^(wordsize+p)) + 1
if -2^(wordsize-1) <= n < 0
The correctness condition (i) above can be checked by the code below.
It was exhaustively tested for values of d from 2 to 10^9 in the
wordsize = 64 case.
let add2 (xh, xl) (yh, yl) =
let zl = add xl yl and zh = add xh yh in
((if ucompare zl xl < 0 then succ zh else zh), zl)
let shl2 (xh, xl) n =
assert (0 < n && n < size + size);
if n < size
then (logor (shift_left xh n) (shift_right_logical xl (size - n)),
shift_left xl n)
else (shift_left xl (n - size), 0n)
let mul2 x y =
let halfsize = size / 2 in
let halfmask = pred (shift_left 1n halfsize) in
let xl = logand x halfmask and xh = shift_right_logical x halfsize in
let yl = logand y halfmask and yh = shift_right_logical y halfsize in
add2 (mul xh yh, 0n)
(add2 (shl2 (0n, mul xl yh) halfsize)
(add2 (shl2 (0n, mul xh yl) halfsize)
(0n, mul xl yl)))
let ucompare2 (xh, xl) (yh, yl) =
let c = ucompare xh yh in if c = 0 then ucompare xl yl else c
let validate d m p =
let md = mul2 m d in
let one2 = (0n, 1n) in
let twoszp = shl2 one2 (size + p) in
let twop1 = shl2 one2 (p + 1) in
ucompare2 twoszp md < 0 && ucompare2 md (add2 twoszp twop1) <= 0
*)
let raise_symbol dbg symb =
Cop(Craise Lambda.Raise_regular, [Cconst_symbol (symb, dbg)], dbg)
let rec div_int c1 c2 is_safe dbg =
match (c1, c2) with
(c1, Cconst_int (0, _)) ->
Csequence(c1, raise_symbol dbg "caml_exn_Division_by_zero")
| (c1, Cconst_int (1, _)) ->
c1
| (Cconst_int (n1, _), Cconst_int (n2, _)) ->
Cconst_int (n1 / n2, dbg)
| (c1, Cconst_int (n, _)) when n <> min_int ->
let l = Misc.log2 n in
if n = 1 lsl l then
(* Algorithm:
t = shift-right-signed(c1, l - 1)
t = shift-right(t, W - l)
t = c1 + t
res = shift-right-signed(c1 + t, l)
*)
Cop(Casr, [bind "dividend" c1 (fun c1 ->
let t = asr_int c1 (Cconst_int (l - 1, dbg)) dbg in
let t =
lsr_int t (Cconst_int (Nativeint.size - l, dbg)) dbg
in
add_int c1 t dbg);
Cconst_int (l, dbg)], dbg)
else if n < 0 then
sub_int (Cconst_int (0, dbg))
(div_int c1 (Cconst_int (-n, dbg)) is_safe dbg)
dbg
else begin
let (m, p) = divimm_parameters (Nativeint.of_int n) in
(* Algorithm:
t = multiply-high-signed(c1, m)
if m < 0, t = t + c1
if p > 0, t = shift-right-signed(t, p)
res = t + sign-bit(c1)
*)
bind "dividend" c1 (fun c1 ->
let t = Cop(Cmulhi, [c1; natint_const_untagged dbg m], dbg) in
let t = if m < 0n then Cop(Caddi, [t; c1], dbg) else t in
let t =
if p > 0 then Cop(Casr, [t; Cconst_int (p, dbg)], dbg) else t
in
add_int t (lsr_int c1 (Cconst_int (Nativeint.size - 1, dbg)) dbg) dbg)
end
| (c1, c2) when !Clflags.unsafe || is_safe = Lambda.Unsafe ->
Cop(Cdivi, [c1; c2], dbg)
| (c1, c2) ->
bind "divisor" c2 (fun c2 ->
bind "dividend" c1 (fun c1 ->
Cifthenelse(c2,
dbg,
Cop(Cdivi, [c1; c2], dbg),
dbg,
raise_symbol dbg "caml_exn_Division_by_zero",
dbg)))
let mod_int c1 c2 is_safe dbg =
match (c1, c2) with
(c1, Cconst_int (0, _)) ->
Csequence(c1, raise_symbol dbg "caml_exn_Division_by_zero")
| (c1, Cconst_int ((1 | (-1)), _)) ->
Csequence(c1, Cconst_int (0, dbg))
| (Cconst_int (n1, _), Cconst_int (n2, _)) ->
Cconst_int (n1 mod n2, dbg)
| (c1, (Cconst_int (n, _) as c2)) when n <> min_int ->
let l = Misc.log2 n in
if n = 1 lsl l then
(* Algorithm:
t = shift-right-signed(c1, l - 1)
t = shift-right(t, W - l)
t = c1 + t
t = bit-and(t, -n)
res = c1 - t
*)
bind "dividend" c1 (fun c1 ->
let t = asr_int c1 (Cconst_int (l - 1, dbg)) dbg in
let t = lsr_int t (Cconst_int (Nativeint.size - l, dbg)) dbg in
let t = add_int c1 t dbg in
let t = Cop(Cand, [t; Cconst_int (-n, dbg)], dbg) in
sub_int c1 t dbg)
else
bind "dividend" c1 (fun c1 ->
sub_int c1 (mul_int (div_int c1 c2 is_safe dbg) c2 dbg) dbg)
| (c1, c2) when !Clflags.unsafe || is_safe = Lambda.Unsafe ->
(* Flambda already generates that test *)
Cop(Cmodi, [c1; c2], dbg)
| (c1, c2) ->
bind "divisor" c2 (fun c2 ->
bind "dividend" c1 (fun c1 ->
Cifthenelse(c2,
dbg,
Cop(Cmodi, [c1; c2], dbg),
dbg,
raise_symbol dbg "caml_exn_Division_by_zero",
dbg)))
(* Division or modulo on boxed integers. The overflow case min_int / -1
can occur, in which case we force x / -1 = -x and x mod -1 = 0. (PR#5513). *)
let is_different_from x = function
Cconst_int (n, _) -> n <> x
| Cconst_natint (n, _) -> n <> Nativeint.of_int x
| _ -> false
let safe_divmod_bi mkop is_safe mkm1 c1 c2 bi dbg =
bind "dividend" c1 (fun c1 ->
bind "divisor" c2 (fun c2 ->
let c = mkop c1 c2 is_safe dbg in
if Arch.division_crashes_on_overflow
&& (size_int = 4 || bi <> Primitive.Pint32)
&& not (is_different_from (-1) c2)
then
Cifthenelse(Cop(Ccmpi Cne, [c2; Cconst_int (-1, dbg)], dbg),
dbg, c,
dbg, mkm1 c1 dbg,
dbg)
else
c))
let safe_div_bi is_safe =
safe_divmod_bi div_int is_safe
(fun c1 dbg -> Cop(Csubi, [Cconst_int (0, dbg); c1], dbg))
let safe_mod_bi is_safe =
safe_divmod_bi mod_int is_safe (fun _ dbg -> Cconst_int (0, dbg))
(* Bool *)
let test_bool dbg cmm =
match cmm with
| Cop(Caddi, [Cop(Clsl, [c; Cconst_int (1, _)], _); Cconst_int (1, _)], _) ->
c
| Cconst_int (n, dbg) ->
if n = 1 then
Cconst_int (0, dbg)
else
Cconst_int (1, dbg)
| c -> Cop(Ccmpi Cne, [c; Cconst_int (1, dbg)], dbg)
(* Float *)
let box_float dbg c = Cop(Calloc, [alloc_float_header dbg; c], dbg)
let unbox_float dbg =
map_tail
(function
| Cop(Calloc, [Cconst_natint (hdr, _); c], _)
when Nativeint.equal hdr float_header ->
c
| Cconst_symbol (s, _dbg) as cmm ->
begin match Cmmgen_state.structured_constant_of_sym s with
| Some (Uconst_float x) ->
Cconst_float (x, dbg) (* or keep _dbg? *)
| _ ->
Cop(Cload (Double_u, Immutable), [cmm], dbg)
end
| cmm -> Cop(Cload (Double_u, Immutable), [cmm], dbg)
)
(* Complex *)
let box_complex dbg c_re c_im =
Cop(Calloc, [alloc_floatarray_header 2 dbg; c_re; c_im], dbg)
let complex_re c dbg = Cop(Cload (Double_u, Immutable), [c], dbg)
let complex_im c dbg = Cop(Cload (Double_u, Immutable),
[Cop(Cadda, [c; Cconst_int (size_float, dbg)], dbg)],
dbg)
(* Unit *)
let return_unit dbg c = Csequence(c, Cconst_int (1, dbg))
let rec remove_unit = function
Cconst_int (1, _) -> Ctuple []
| Csequence(c, Cconst_int (1, _)) -> c
| Csequence(c1, c2) ->
Csequence(c1, remove_unit c2)
| Cifthenelse(cond, ifso_dbg, ifso, ifnot_dbg, ifnot, dbg) ->
Cifthenelse(cond,
ifso_dbg, remove_unit ifso,
ifnot_dbg,
remove_unit ifnot, dbg)
| Cswitch(sel, index, cases, dbg) ->
Cswitch(sel, index,
Array.map (fun (case, dbg) -> remove_unit case, dbg) cases,
dbg)
| Ccatch(rec_flag, handlers, body) ->
let map_h (n, ids, handler, dbg) = (n, ids, remove_unit handler, dbg) in
Ccatch(rec_flag, List.map map_h handlers, remove_unit body)
| Ctrywith(body, exn, handler, dbg) ->
Ctrywith(remove_unit body, exn, remove_unit handler, dbg)
| Clet(id, c1, c2) ->
Clet(id, c1, remove_unit c2)
| Cop(Capply _mty, args, dbg) ->
Cop(Capply typ_void, args, dbg)
| Cop(Cextcall(proc, _ty_res, ty_args, alloc), args, dbg) ->
Cop(Cextcall(proc, typ_void, ty_args, alloc), args, dbg)
| Cexit (_,_) as c -> c
| Ctuple [] as c -> c
| c -> Csequence(c, Ctuple [])
(* Access to block fields *)
let field_address ptr n dbg =
if n = 0
then ptr
else Cop(Cadda, [ptr; Cconst_int(n * size_addr, dbg)], dbg)
let get_field_gen mut ptr n dbg =
Cop(Cload (Word_val, mut), [field_address ptr n dbg], dbg)
let set_field ptr n newval init dbg =
Cop(Cstore (Word_val, init), [field_address ptr n dbg; newval], dbg)
let non_profinfo_mask =
if Config.profinfo
then (1 lsl (64 - Config.profinfo_width)) - 1
else 0 (* [non_profinfo_mask] is unused in this case *)
let get_header ptr dbg =
(* We cannot deem this as [Immutable] due to the presence of [Obj.truncate]
and [Obj.set_tag]. *)
Cop(Cload (Word_int, Mutable),
[Cop(Cadda, [ptr; Cconst_int(-size_int, dbg)], dbg)], dbg)
let get_header_without_profinfo ptr dbg =
if Config.profinfo then
Cop(Cand, [get_header ptr dbg; Cconst_int (non_profinfo_mask, dbg)], dbg)
else
get_header ptr dbg
let tag_offset =
if big_endian then -1 else -size_int
let get_tag ptr dbg =
if Proc.word_addressed then (* If byte loads are slow *)
Cop(Cand, [get_header ptr dbg; Cconst_int (255, dbg)], dbg)
else (* If byte loads are efficient *)
(* Same comment as [get_header] above *)
Cop(Cload (Byte_unsigned, Mutable),
[Cop(Cadda, [ptr; Cconst_int(tag_offset, dbg)], dbg)], dbg)
let get_size ptr dbg =
Cop(Clsr, [get_header_without_profinfo ptr dbg; Cconst_int (10, dbg)], dbg)
(* Array indexing *)
let log2_size_addr = Misc.log2 size_addr
let log2_size_float = Misc.log2 size_float
let wordsize_shift = 9
let numfloat_shift = 9 + log2_size_float - log2_size_addr
let is_addr_array_hdr hdr dbg =
Cop(Ccmpi Cne,
[Cop(Cand, [hdr; Cconst_int (255, dbg)], dbg); floatarray_tag dbg],
dbg)
let is_addr_array_ptr ptr dbg =
Cop(Ccmpi Cne, [get_tag ptr dbg; floatarray_tag dbg], dbg)
let addr_array_length_shifted hdr dbg =
Cop(Clsr, [hdr; Cconst_int (wordsize_shift, dbg)], dbg)
let float_array_length_shifted hdr dbg =
Cop(Clsr, [hdr; Cconst_int (numfloat_shift, dbg)], dbg)
let lsl_const c n dbg =
if n = 0 then c
else Cop(Clsl, [c; Cconst_int (n, dbg)], dbg)
(* Produces a pointer to the element of the array [ptr] on the position [ofs]
with the given element [log2size] log2 element size. [ofs] is given as a
tagged int expression.
The optional ?typ argument is the C-- type of the result.
By default, it is Addr, meaning we are constructing a derived pointer
into the heap. If we know the pointer is outside the heap
(this is the case for bigarray indexing), we give type Int instead. *)
let array_indexing ?typ log2size ptr ofs dbg =
let add =
match typ with
| None | Some Addr -> Cadda
| Some Int -> Caddi
| _ -> assert false in
match ofs with
| Cconst_int (n, _) ->
let i = n asr 1 in
if i = 0 then ptr
else Cop(add, [ptr; Cconst_int(i lsl log2size, dbg)], dbg)
| Cop(Caddi,
[Cop(Clsl, [c; Cconst_int (1, _)], _); Cconst_int (1, _)], dbg') ->
Cop(add, [ptr; lsl_const c log2size dbg], dbg')
| Cop(Caddi, [c; Cconst_int (n, _)], dbg') when log2size = 0 ->
Cop(add,
[Cop(add, [ptr; untag_int c dbg], dbg); Cconst_int (n asr 1, dbg)],
dbg')
| Cop(Caddi, [c; Cconst_int (n, _)], _) ->
Cop(add, [Cop(add, [ptr; lsl_const c (log2size - 1) dbg], dbg);
Cconst_int((n-1) lsl (log2size - 1), dbg)], dbg)
| _ when log2size = 0 ->
Cop(add, [ptr; untag_int ofs dbg], dbg)
| _ ->
Cop(add, [Cop(add, [ptr; lsl_const ofs (log2size - 1) dbg], dbg);
Cconst_int((-1) lsl (log2size - 1), dbg)], dbg)
let addr_array_ref arr ofs dbg =
Cop(Cload (Word_val, Mutable),
[array_indexing log2_size_addr arr ofs dbg], dbg)
let int_array_ref arr ofs dbg =
Cop(Cload (Word_int, Mutable),
[array_indexing log2_size_addr arr ofs dbg], dbg)
let unboxed_float_array_ref arr ofs dbg =
Cop(Cload (Double_u, Mutable),
[array_indexing log2_size_float arr ofs dbg], dbg)
let float_array_ref arr ofs dbg =
box_float dbg (unboxed_float_array_ref arr ofs dbg)
let addr_array_set arr ofs newval dbg =
Cop(Cextcall("caml_modify", typ_void, [], false),
[array_indexing log2_size_addr arr ofs dbg; newval], dbg)
let addr_array_initialize arr ofs newval dbg =
Cop(Cextcall("caml_initialize", typ_void, [], false),
[array_indexing log2_size_addr arr ofs dbg; newval], dbg)
let int_array_set arr ofs newval dbg =
Cop(Cstore (Word_int, Lambda.Assignment),
[array_indexing log2_size_addr arr ofs dbg; newval], dbg)
let float_array_set arr ofs newval dbg =
Cop(Cstore (Double_u, Lambda.Assignment),
[array_indexing log2_size_float arr ofs dbg; newval], dbg)
(* String length *)
(* Length of string block *)
let string_length exp dbg =
bind "str" exp (fun str ->
let tmp_var = V.create_local "tmp" in
Clet(VP.create tmp_var,
Cop(Csubi,
[Cop(Clsl,
[get_size str dbg;
Cconst_int (log2_size_addr, dbg)],
dbg);
Cconst_int (1, dbg)],
dbg),
Cop(Csubi,
[Cvar tmp_var;
Cop(Cload (Byte_unsigned, Mutable),
[Cop(Cadda, [str; Cvar tmp_var], dbg)], dbg)], dbg)))
let bigstring_length ba dbg =
Cop(Cload (Word_int, Mutable), [field_address ba 5 dbg], dbg)
(* Message sending *)
let lookup_tag obj tag dbg =
bind "tag" tag (fun tag ->
Cop(Cextcall("caml_get_public_method", typ_val, [], false),
[obj; tag],
dbg))
let lookup_label obj lab dbg =
bind "lab" lab (fun lab ->
let table = Cop (Cload (Word_val, Mutable), [obj], dbg) in
addr_array_ref table lab dbg)
let call_cached_method obj tag cache pos args dbg =
let arity = List.length args in
let cache = array_indexing log2_size_addr cache pos dbg in
Compilenv.need_send_fun arity;
Cop(Capply typ_val,
Cconst_symbol("caml_send" ^ Int.to_string arity, dbg) ::
obj :: tag :: cache :: args,
dbg)
(* Allocation *)
let make_alloc_generic set_fn dbg tag wordsize args =
if wordsize <= Config.max_young_wosize then
Cop(Calloc, Cconst_natint(block_header tag wordsize, dbg) :: args, dbg)
else begin
let id = V.create_local "*alloc*" in
let rec fill_fields idx = function
[] -> Cvar id
| e1::el -> Csequence(set_fn (Cvar id) (Cconst_int (idx, dbg)) e1 dbg,
fill_fields (idx + 2) el) in
Clet(VP.create id,
Cop(Cextcall("caml_alloc", typ_val, [], true),
[Cconst_int (wordsize, dbg); Cconst_int (tag, dbg)], dbg),
fill_fields 1 args)
end
let make_alloc dbg tag args =
let addr_array_init arr ofs newval dbg =
Cop(Cextcall("caml_initialize", typ_void, [], false),
[array_indexing log2_size_addr arr ofs dbg; newval], dbg)
in
make_alloc_generic addr_array_init dbg tag (List.length args) args
let make_float_alloc dbg tag args =
make_alloc_generic float_array_set dbg tag
(List.length args * size_float / size_addr) args
(* Bounds checking *)
let make_checkbound dbg = function
| [Cop(Clsr, [a1; Cconst_int (n, _)], _); Cconst_int (m, _)]
when (m lsl n) > n ->
Cop(Ccheckbound, [a1; Cconst_int(m lsl n + 1 lsl n - 1, dbg)], dbg)
| args ->
Cop(Ccheckbound, args, dbg)
(* Record application and currying functions *)
let apply_function_sym n =
Compilenv.need_apply_fun n; "caml_apply" ^ Int.to_string n
let curry_function_sym n =
Compilenv.need_curry_fun n;
if n >= 0
then "caml_curry" ^ Int.to_string n
else "caml_tuplify" ^ Int.to_string (-n)
(* Big arrays *)
let bigarray_elt_size : Lambda.bigarray_kind -> int = function
Pbigarray_unknown -> assert false
| Pbigarray_float32 -> 4
| Pbigarray_float64 -> 8
| Pbigarray_sint8 -> 1
| Pbigarray_uint8 -> 1
| Pbigarray_sint16 -> 2
| Pbigarray_uint16 -> 2
| Pbigarray_int32 -> 4
| Pbigarray_int64 -> 8
| Pbigarray_caml_int -> size_int
| Pbigarray_native_int -> size_int
| Pbigarray_complex32 -> 8
| Pbigarray_complex64 -> 16
(* Produces a pointer to the element of the bigarray [b] on the position
[args]. [args] is given as a list of tagged int expressions, one per array
dimension. *)
let bigarray_indexing unsafe elt_kind layout b args dbg =
let check_ba_bound bound idx v =
Csequence(make_checkbound dbg [bound;idx], v) in
(* Validates the given multidimensional offset against the array bounds and
transforms it into a one dimensional offset. The offsets are expressions
evaluating to tagged int. *)
let rec ba_indexing dim_ofs delta_ofs = function
[] -> assert false
| [arg] ->
if unsafe then arg
else
bind "idx" arg (fun idx ->
(* Load the untagged int bound for the given dimension *)
let bound =
Cop(Cload (Word_int, Mutable),
[field_address b dim_ofs dbg], dbg)
in
let idxn = untag_int idx dbg in
check_ba_bound bound idxn idx)
| arg1 :: argl ->
(* The remainder of the list is transformed into a one dimensional offset
*)
let rem = ba_indexing (dim_ofs + delta_ofs) delta_ofs argl in
(* Load the untagged int bound for the given dimension *)
let bound =
Cop(Cload (Word_int, Mutable),
[field_address b dim_ofs dbg], dbg)
in
if unsafe then add_int (mul_int (decr_int rem dbg) bound dbg) arg1 dbg
else
bind "idx" arg1 (fun idx ->
bind "bound" bound (fun bound ->
let idxn = untag_int idx dbg in
(* [offset = rem * (tag_int bound) + idx] *)
let offset =
add_int (mul_int (decr_int rem dbg) bound dbg) idx dbg
in
check_ba_bound bound idxn offset)) in
(* The offset as an expression evaluating to int *)
let offset =
match (layout : Lambda.bigarray_layout) with
Pbigarray_unknown_layout ->
assert false
| Pbigarray_c_layout ->
ba_indexing (4 + List.length args) (-1) (List.rev args)
| Pbigarray_fortran_layout ->
ba_indexing 5 1
(List.map (fun idx -> sub_int idx (Cconst_int (2, dbg)) dbg) args)
and elt_size =
bigarray_elt_size elt_kind in
(* [array_indexing] can simplify the given expressions *)
array_indexing ~typ:Addr (Misc.log2 elt_size)
(Cop(Cload (Word_int, Mutable),
[field_address b 1 dbg], dbg)) offset dbg
let bigarray_word_kind : Lambda.bigarray_kind -> memory_chunk = function
Pbigarray_unknown -> assert false
| Pbigarray_float32 -> Single
| Pbigarray_float64 -> Double
| Pbigarray_sint8 -> Byte_signed
| Pbigarray_uint8 -> Byte_unsigned
| Pbigarray_sint16 -> Sixteen_signed
| Pbigarray_uint16 -> Sixteen_unsigned
| Pbigarray_int32 -> Thirtytwo_signed
| Pbigarray_int64 -> Word_int
| Pbigarray_caml_int -> Word_int
| Pbigarray_native_int -> Word_int
| Pbigarray_complex32 -> Single
| Pbigarray_complex64 -> Double
let bigarray_get unsafe elt_kind layout b args dbg =
bind "ba" b (fun b ->
match (elt_kind : Lambda.bigarray_kind) with
Pbigarray_complex32 | Pbigarray_complex64 ->
let kind = bigarray_word_kind elt_kind in
let sz = bigarray_elt_size elt_kind / 2 in
bind "addr"
(bigarray_indexing unsafe elt_kind layout b args dbg) (fun addr ->
bind "reval"
(Cop(Cload (kind, Mutable), [addr], dbg)) (fun reval ->
bind "imval"
(Cop(Cload (kind, Mutable),
[Cop(Cadda, [addr; Cconst_int (sz, dbg)], dbg)], dbg))
(fun imval -> box_complex dbg reval imval)))
| _ ->
Cop(Cload (bigarray_word_kind elt_kind, Mutable),
[bigarray_indexing unsafe elt_kind layout b args dbg],
dbg))
let bigarray_set unsafe elt_kind layout b args newval dbg =
bind "ba" b (fun b ->
match (elt_kind : Lambda.bigarray_kind) with
Pbigarray_complex32 | Pbigarray_complex64 ->
let kind = bigarray_word_kind elt_kind in
let sz = bigarray_elt_size elt_kind / 2 in
bind "newval" newval (fun newv ->
bind "addr" (bigarray_indexing unsafe elt_kind layout b args dbg)
(fun addr ->
Csequence(
Cop(Cstore (kind, Assignment), [addr; complex_re newv dbg], dbg),
Cop(Cstore (kind, Assignment),
[Cop(Cadda, [addr; Cconst_int (sz, dbg)], dbg);
complex_im newv dbg],
dbg))))
| _ ->
Cop(Cstore (bigarray_word_kind elt_kind, Assignment),
[bigarray_indexing unsafe elt_kind layout b args dbg; newval],
dbg))
(* the three functions below assume either 32-bit or 64-bit words *)
let () = assert (size_int = 4 || size_int = 8)
(* low_32 x is a value which agrees with x on at least the low 32 bits *)
let rec low_32 dbg = function
| x when size_int = 4 -> x
(* Ignore sign and zero extensions, which do not affect the low bits *)
| Cop(Casr, [Cop(Clsl, [x; Cconst_int (32, _)], _);
Cconst_int (32, _)], _)
| Cop(Cand, [x; Cconst_natint (0xFFFFFFFFn, _)], _) ->
low_32 dbg x
| Clet(id, e, body) ->
Clet(id, e, low_32 dbg body)
| x -> x
(* sign_extend_32 sign-extends values from 32 bits to the word size.
(if the word size is 32, this is a no-op) *)
let sign_extend_32 dbg e =
if size_int = 4 then e else
Cop(Casr, [Cop(Clsl, [low_32 dbg e; Cconst_int(32, dbg)], dbg);
Cconst_int(32, dbg)], dbg)
(* zero_extend_32 zero-extends values from 32 bits to the word size.
(if the word size is 32, this is a no-op) *)
let zero_extend_32 dbg e =
if size_int = 4 then e else
Cop(Cand, [low_32 dbg e; natint_const_untagged dbg 0xFFFFFFFFn], dbg)
(* Boxed integers *)
let operations_boxed_int (bi : Primitive.boxed_integer) =
match bi with
Pnativeint -> caml_nativeint_ops
| Pint32 -> caml_int32_ops
| Pint64 -> caml_int64_ops
let alloc_header_boxed_int (bi : Primitive.boxed_integer) =
match bi with
Pnativeint -> alloc_boxedintnat_header
| Pint32 -> alloc_boxedint32_header
| Pint64 -> alloc_boxedint64_header
let box_int_gen dbg (bi : Primitive.boxed_integer) arg =
let arg' =
if bi = Primitive.Pint32 && size_int = 8 then
if big_endian
then Cop(Clsl, [arg; Cconst_int (32, dbg)], dbg)
else sign_extend_32 dbg arg
else arg
in
Cop(Calloc, [alloc_header_boxed_int bi dbg;
Cconst_symbol(operations_boxed_int bi, dbg);
arg'], dbg)
let split_int64_for_32bit_target arg dbg =
bind "split_int64" arg (fun arg ->
let first = Cop (Cadda, [Cconst_int (size_int, dbg); arg], dbg) in
let second = Cop (Cadda, [Cconst_int (2 * size_int, dbg); arg], dbg) in
Ctuple [Cop (Cload (Thirtytwo_unsigned, Mutable), [first], dbg);
Cop (Cload (Thirtytwo_unsigned, Mutable), [second], dbg)])
let alloc_matches_boxed_int bi ~hdr ~ops =
match (bi : Primitive.boxed_integer), hdr, ops with
| Pnativeint, Cconst_natint (hdr, _dbg), Cconst_symbol (sym, _) ->
Nativeint.equal hdr boxedintnat_header
&& String.equal sym caml_nativeint_ops
| Pint32, Cconst_natint (hdr, _dbg), Cconst_symbol (sym, _) ->
Nativeint.equal hdr boxedint32_header
&& String.equal sym caml_int32_ops
| Pint64, Cconst_natint (hdr, _dbg), Cconst_symbol (sym, _) ->
Nativeint.equal hdr boxedint64_header
&& String.equal sym caml_int64_ops
| (Pnativeint | Pint32 | Pint64), _, _ -> false
let unbox_int dbg bi =
let default arg =
if size_int = 4 && bi = Primitive.Pint64 then
split_int64_for_32bit_target arg dbg
else
Cop(
Cload((if bi = Primitive.Pint32 then Thirtytwo_signed else Word_int),
Immutable),
[Cop(Cadda, [arg; Cconst_int (size_addr, dbg)], dbg)], dbg)
in
map_tail
(function
| Cop(Calloc,
[hdr; ops;
Cop(Clsl, [contents; Cconst_int (32, _)], _dbg')], _dbg)
when bi = Primitive.Pint32 && size_int = 8 && big_endian
&& alloc_matches_boxed_int bi ~hdr ~ops ->
(* Force sign-extension of low 32 bits *)
sign_extend_32 dbg contents
| Cop(Calloc,
[hdr; ops; contents], _dbg)
when bi = Primitive.Pint32 && size_int = 8 && not big_endian
&& alloc_matches_boxed_int bi ~hdr ~ops ->
(* Force sign-extension of low 32 bits *)
sign_extend_32 dbg contents
| Cop(Calloc, [hdr; ops; contents], _dbg)
when alloc_matches_boxed_int bi ~hdr ~ops ->
contents
| Cconst_symbol (s, _dbg) as cmm ->
begin match Cmmgen_state.structured_constant_of_sym s, bi with
| Some (Uconst_nativeint n), Primitive.Pnativeint ->
natint_const_untagged dbg n
| Some (Uconst_int32 n), Primitive.Pint32 ->
natint_const_untagged dbg (Nativeint.of_int32 n)
| Some (Uconst_int64 n), Primitive.Pint64 ->
if size_int = 8 then
natint_const_untagged dbg (Int64.to_nativeint n)
else
let low = Int64.to_nativeint n in
let high =
Int64.to_nativeint (Int64.shift_right_logical n 32)
in
if big_endian then
Ctuple [natint_const_untagged dbg high;
natint_const_untagged dbg low]
else
Ctuple [natint_const_untagged dbg low;
natint_const_untagged dbg high]
| _ ->
default cmm
end
| cmm ->
default cmm
)
let make_unsigned_int bi arg dbg =
if bi = Primitive.Pint32 && size_int = 8
then zero_extend_32 dbg arg
else arg
let unaligned_load_16 ptr idx dbg =
if Arch.allow_unaligned_access
then Cop(Cload (Sixteen_unsigned, Mutable), [add_int ptr idx dbg], dbg)
else
let cconst_int i = Cconst_int (i, dbg) in
let v1 = Cop(Cload (Byte_unsigned, Mutable), [add_int ptr idx dbg], dbg) in
let v2 = Cop(Cload (Byte_unsigned, Mutable),
[add_int (add_int ptr idx dbg) (cconst_int 1) dbg], dbg) in
let b1, b2 = if Arch.big_endian then v1, v2 else v2, v1 in
Cop(Cor, [lsl_int b1 (cconst_int 8) dbg; b2], dbg)
let unaligned_set_16 ptr idx newval dbg =
if Arch.allow_unaligned_access
then
Cop(Cstore (Sixteen_unsigned, Assignment),
[add_int ptr idx dbg; newval], dbg)
else
let cconst_int i = Cconst_int (i, dbg) in
let v1 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int 8], dbg);
cconst_int 0xFF], dbg)
in
let v2 = Cop(Cand, [newval; cconst_int 0xFF], dbg) in
let b1, b2 = if Arch.big_endian then v1, v2 else v2, v1 in
Csequence(
Cop(Cstore (Byte_unsigned, Assignment), [add_int ptr idx dbg; b1], dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 1) dbg; b2], dbg))
let unaligned_load_32 ptr idx dbg =
if Arch.allow_unaligned_access
then Cop(Cload (Thirtytwo_unsigned, Mutable), [add_int ptr idx dbg], dbg)
else
let cconst_int i = Cconst_int (i, dbg) in
let v1 = Cop(Cload (Byte_unsigned, Mutable), [add_int ptr idx dbg], dbg) in
let v2 = Cop(Cload (Byte_unsigned, Mutable),
[add_int (add_int ptr idx dbg) (cconst_int 1) dbg], dbg)
in
let v3 = Cop(Cload (Byte_unsigned, Mutable),
[add_int (add_int ptr idx dbg) (cconst_int 2) dbg], dbg)
in
let v4 = Cop(Cload (Byte_unsigned, Mutable),
[add_int (add_int ptr idx dbg) (cconst_int 3) dbg], dbg)
in
let b1, b2, b3, b4 =
if Arch.big_endian
then v1, v2, v3, v4
else v4, v3, v2, v1 in
Cop(Cor,
[Cop(Cor, [lsl_int b1 (cconst_int 24) dbg;
lsl_int b2 (cconst_int 16) dbg], dbg);
Cop(Cor, [lsl_int b3 (cconst_int 8) dbg; b4], dbg)],
dbg)
let unaligned_set_32 ptr idx newval dbg =
if Arch.allow_unaligned_access
then
Cop(Cstore (Thirtytwo_unsigned, Assignment), [add_int ptr idx dbg; newval],
dbg)
else
let cconst_int i = Cconst_int (i, dbg) in
let v1 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int 24], dbg); cconst_int 0xFF], dbg)
in
let v2 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int 16], dbg); cconst_int 0xFF], dbg)
in
let v3 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int 8], dbg); cconst_int 0xFF], dbg)
in
let v4 = Cop(Cand, [newval; cconst_int 0xFF], dbg) in
let b1, b2, b3, b4 =
if Arch.big_endian
then v1, v2, v3, v4
else v4, v3, v2, v1 in
Csequence(
Csequence(
Cop(Cstore (Byte_unsigned, Assignment),
[add_int ptr idx dbg; b1], dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 1) dbg; b2],
dbg)),
Csequence(
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 2) dbg; b3],
dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 3) dbg; b4],
dbg)))
let unaligned_load_64 ptr idx dbg =
assert(size_int = 8);
if Arch.allow_unaligned_access
then Cop(Cload (Word_int, Mutable), [add_int ptr idx dbg], dbg)
else
let cconst_int i = Cconst_int (i, dbg) in
let v1 = Cop(Cload (Byte_unsigned, Mutable), [add_int ptr idx dbg], dbg) in
let v2 = Cop(Cload (Byte_unsigned, Mutable),
[add_int (add_int ptr idx dbg) (cconst_int 1) dbg], dbg) in
let v3 = Cop(Cload (Byte_unsigned, Mutable),
[add_int (add_int ptr idx dbg) (cconst_int 2) dbg], dbg) in
let v4 = Cop(Cload (Byte_unsigned, Mutable),
[add_int (add_int ptr idx dbg) (cconst_int 3) dbg], dbg) in
let v5 = Cop(Cload (Byte_unsigned, Mutable),
[add_int (add_int ptr idx dbg) (cconst_int 4) dbg], dbg) in
let v6 = Cop(Cload (Byte_unsigned, Mutable),
[add_int (add_int ptr idx dbg) (cconst_int 5) dbg], dbg) in
let v7 = Cop(Cload (Byte_unsigned, Mutable),
[add_int (add_int ptr idx dbg) (cconst_int 6) dbg], dbg) in
let v8 = Cop(Cload (Byte_unsigned, Mutable),
[add_int (add_int ptr idx dbg) (cconst_int 7) dbg], dbg) in
let b1, b2, b3, b4, b5, b6, b7, b8 =
if Arch.big_endian
then v1, v2, v3, v4, v5, v6, v7, v8
else v8, v7, v6, v5, v4, v3, v2, v1 in
Cop(Cor,
[Cop(Cor,
[Cop(Cor, [lsl_int b1 (cconst_int (8*7)) dbg;
lsl_int b2 (cconst_int (8*6)) dbg], dbg);
Cop(Cor, [lsl_int b3 (cconst_int (8*5)) dbg;
lsl_int b4 (cconst_int (8*4)) dbg], dbg)],
dbg);
Cop(Cor,
[Cop(Cor, [lsl_int b5 (cconst_int (8*3)) dbg;
lsl_int b6 (cconst_int (8*2)) dbg], dbg);
Cop(Cor, [lsl_int b7 (cconst_int 8) dbg;
b8], dbg)],
dbg)], dbg)
let unaligned_set_64 ptr idx newval dbg =
assert(size_int = 8);
if Arch.allow_unaligned_access
then Cop(Cstore (Word_int, Assignment), [add_int ptr idx dbg; newval], dbg)
else
let cconst_int i = Cconst_int (i, dbg) in
let v1 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*7)], dbg); cconst_int 0xFF],
dbg)
in
let v2 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*6)], dbg); cconst_int 0xFF],
dbg)
in
let v3 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*5)], dbg); cconst_int 0xFF],
dbg)
in
let v4 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*4)], dbg); cconst_int 0xFF],
dbg)
in
let v5 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*3)], dbg); cconst_int 0xFF],
dbg)
in
let v6 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int (8*2)], dbg); cconst_int 0xFF],
dbg)
in
let v7 =
Cop(Cand, [Cop(Clsr, [newval; cconst_int 8], dbg); cconst_int 0xFF],
dbg)
in
let v8 = Cop(Cand, [newval; cconst_int 0xFF], dbg) in
let b1, b2, b3, b4, b5, b6, b7, b8 =
if Arch.big_endian
then v1, v2, v3, v4, v5, v6, v7, v8
else v8, v7, v6, v5, v4, v3, v2, v1 in
Csequence(
Csequence(
Csequence(
Cop(Cstore (Byte_unsigned, Assignment),
[add_int ptr idx dbg; b1],
dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 1) dbg; b2],
dbg)),
Csequence(
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 2) dbg; b3],
dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 3) dbg; b4],
dbg))),
Csequence(
Csequence(
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 4) dbg; b5],
dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 5) dbg; b6],
dbg)),
Csequence(
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 6) dbg; b7],
dbg),
Cop(Cstore (Byte_unsigned, Assignment),
[add_int (add_int ptr idx dbg) (cconst_int 7) dbg; b8],
dbg))))
let max_or_zero a dbg =
bind "size" a (fun a ->
(* equivalent to
Cifthenelse(Cop(Ccmpi Cle, [a; cconst_int 0]), cconst_int 0, a)
if a is positive, sign is 0 hence sign_negation is full of 1
so sign_negation&a = a
if a is negative, sign is full of 1 hence sign_negation is 0
so sign_negation&a = 0 *)
let sign = Cop(Casr, [a; Cconst_int (size_int * 8 - 1, dbg)], dbg) in
let sign_negation = Cop(Cxor, [sign; Cconst_int (-1, dbg)], dbg) in
Cop(Cand, [sign_negation; a], dbg))
let check_bound safety access_size dbg length a2 k =
match (safety : Lambda.is_safe) with
| Unsafe -> k
| Safe ->
let offset =
match (access_size : Clambda_primitives.memory_access_size) with
| Sixteen -> 1
| Thirty_two -> 3
| Sixty_four -> 7
in
let a1 =
sub_int length (Cconst_int (offset, dbg)) dbg
in
Csequence(make_checkbound dbg [max_or_zero a1 dbg; a2], k)
let unaligned_set size ptr idx newval dbg =
match (size : Clambda_primitives.memory_access_size) with
| Sixteen -> unaligned_set_16 ptr idx newval dbg
| Thirty_two -> unaligned_set_32 ptr idx newval dbg
| Sixty_four -> unaligned_set_64 ptr idx newval dbg
let unaligned_load size ptr idx dbg =
match (size : Clambda_primitives.memory_access_size) with
| Sixteen -> unaligned_load_16 ptr idx dbg
| Thirty_two -> unaligned_load_32 ptr idx dbg
| Sixty_four -> unaligned_load_64 ptr idx dbg
let box_sized size dbg exp =
match (size : Clambda_primitives.memory_access_size) with
| Sixteen -> tag_int exp dbg
| Thirty_two -> box_int_gen dbg Pint32 exp
| Sixty_four -> box_int_gen dbg Pint64 exp
(* Simplification of some primitives into C calls *)
let default_prim name =
Primitive.simple ~name ~arity:0(*ignored*) ~alloc:true
let int64_native_prim name arity ~alloc =
let u64 = Primitive.Unboxed_integer Primitive.Pint64 in
let rec make_args = function 0 -> [] | n -> u64 :: make_args (n - 1) in
Primitive.make ~name ~native_name:(name ^ "_native")
~alloc
~native_repr_args:(make_args arity)
~native_repr_res:u64
let simplif_primitive_32bits :
Clambda_primitives.primitive -> Clambda_primitives.primitive = function
Pbintofint Pint64 -> Pccall (default_prim "caml_int64_of_int")
| Pintofbint Pint64 -> Pccall (default_prim "caml_int64_to_int")
| Pcvtbint(Pint32, Pint64) -> Pccall (default_prim "caml_int64_of_int32")
| Pcvtbint(Pint64, Pint32) -> Pccall (default_prim "caml_int64_to_int32")
| Pcvtbint(Pnativeint, Pint64) ->
Pccall (default_prim "caml_int64_of_nativeint")
| Pcvtbint(Pint64, Pnativeint) ->
Pccall (default_prim "caml_int64_to_nativeint")
| Pnegbint Pint64 -> Pccall (int64_native_prim "caml_int64_neg" 1
~alloc:false)
| Paddbint Pint64 -> Pccall (int64_native_prim "caml_int64_add" 2
~alloc:false)
| Psubbint Pint64 -> Pccall (int64_native_prim "caml_int64_sub" 2
~alloc:false)
| Pmulbint Pint64 -> Pccall (int64_native_prim "caml_int64_mul" 2
~alloc:false)
| Pdivbint {size=Pint64} -> Pccall (int64_native_prim "caml_int64_div" 2
~alloc:true)
| Pmodbint {size=Pint64} -> Pccall (int64_native_prim "caml_int64_mod" 2
~alloc:true)
| Pandbint Pint64 -> Pccall (int64_native_prim "caml_int64_and" 2
~alloc:false)
| Porbint Pint64 -> Pccall (int64_native_prim "caml_int64_or" 2
~alloc:false)
| Pxorbint Pint64 -> Pccall (int64_native_prim "caml_int64_xor" 2
~alloc:false)
| Plslbint Pint64 -> Pccall (default_prim "caml_int64_shift_left")
| Plsrbint Pint64 -> Pccall (default_prim "caml_int64_shift_right_unsigned")
| Pasrbint Pint64 -> Pccall (default_prim "caml_int64_shift_right")
| Pbintcomp(Pint64, Lambda.Ceq) -> Pccall (default_prim "caml_equal")
| Pbintcomp(Pint64, Lambda.Cne) -> Pccall (default_prim "caml_notequal")
| Pbintcomp(Pint64, Lambda.Clt) -> Pccall (default_prim "caml_lessthan")
| Pbintcomp(Pint64, Lambda.Cgt) -> Pccall (default_prim "caml_greaterthan")
| Pbintcomp(Pint64, Lambda.Cle) -> Pccall (default_prim "caml_lessequal")
| Pbintcomp(Pint64, Lambda.Cge) -> Pccall (default_prim "caml_greaterequal")
| Pcompare_bints Pint64 -> Pccall (default_prim "caml_int64_compare")
| Pbigarrayref(_unsafe, n, Pbigarray_int64, _layout) ->
Pccall (default_prim ("caml_ba_get_" ^ Int.to_string n))
| Pbigarrayset(_unsafe, n, Pbigarray_int64, _layout) ->
Pccall (default_prim ("caml_ba_set_" ^ Int.to_string n))
| Pstring_load(Sixty_four, _) -> Pccall (default_prim "caml_string_get64")
| Pbytes_load(Sixty_four, _) -> Pccall (default_prim "caml_bytes_get64")
| Pbytes_set(Sixty_four, _) -> Pccall (default_prim "caml_bytes_set64")
| Pbigstring_load(Sixty_four,_) -> Pccall (default_prim "caml_ba_uint8_get64")
| Pbigstring_set(Sixty_four,_) -> Pccall (default_prim "caml_ba_uint8_set64")
| Pbbswap Pint64 -> Pccall (default_prim "caml_int64_bswap")
| p -> p
let simplif_primitive p : Clambda_primitives.primitive =
match (p : Clambda_primitives.primitive) with
| Pduprecord _ ->
Pccall (default_prim "caml_obj_dup")
| Pbigarrayref(_unsafe, n, Pbigarray_unknown, _layout) ->
Pccall (default_prim ("caml_ba_get_" ^ string_of_int n))
| Pbigarrayset(_unsafe, n, Pbigarray_unknown, _layout) ->
Pccall (default_prim ("caml_ba_set_" ^ string_of_int n))
| Pbigarrayref(_unsafe, n, _kind, Pbigarray_unknown_layout) ->
Pccall (default_prim ("caml_ba_get_" ^ string_of_int n))
| Pbigarrayset(_unsafe, n, _kind, Pbigarray_unknown_layout) ->
Pccall (default_prim ("caml_ba_set_" ^ string_of_int n))
| p ->
if size_int = 8 then p else simplif_primitive_32bits p
(* Build switchers both for constants and blocks *)
let transl_isout h arg dbg = tag_int (Cop(Ccmpa Clt, [h ; arg], dbg)) dbg
(* Build an actual switch (ie jump table) *)
let make_switch arg cases actions dbg =
let extract_uconstant =
function
(* Constant integers loaded from a table should end in 1,
so that Cload never produces untagged integers *)
| Cconst_int (n, _), _dbg when (n land 1) = 1 ->
Some (Cint (Nativeint.of_int n))
| Cconst_natint (n, _), _dbg
when Nativeint.(to_int (logand n one) = 1) ->
Some (Cint n)
| Cconst_symbol (s,_), _dbg ->
Some (Csymbol_address s)
| _ -> None
in
let extract_affine ~cases ~const_actions =
let length = Array.length cases in
if length >= 2
then begin
match const_actions.(cases.(0)), const_actions.(cases.(1)) with
| Cint v0, Cint v1 ->
let slope = Nativeint.sub v1 v0 in
let check i = function
| Cint v -> v = Nativeint.(add (mul (of_int i) slope) v0)
| _ -> false
in
if Misc.Stdlib.Array.for_alli
(fun i idx -> check i const_actions.(idx)) cases
then Some (v0, slope)
else None
| _, _ ->
None
end
else None
in
let make_table_lookup ~cases ~const_actions arg dbg =
let table = Compilenv.new_const_symbol () in
Cmmgen_state.add_constant table (Const_table (Local,
Array.to_list (Array.map (fun act ->
const_actions.(act)) cases)));
addr_array_ref (Cconst_symbol (table, dbg)) (tag_int arg dbg) dbg
in
let make_affine_computation ~offset ~slope arg dbg =
(* In case the resulting integers are an affine function of the index, we
don't emit a table, and just compute the result directly *)
add_int
(mul_int arg (natint_const_untagged dbg slope) dbg)
(natint_const_untagged dbg offset)
dbg
in
match Misc.Stdlib.Array.all_somes (Array.map extract_uconstant actions) with
| None ->
Cswitch (arg,cases,actions,dbg)
| Some const_actions ->
match extract_affine ~cases ~const_actions with
| Some (offset, slope) ->
make_affine_computation ~offset ~slope arg dbg
| None -> make_table_lookup ~cases ~const_actions arg dbg
module SArgBlocks =
struct
type primitive = operation
let eqint = Ccmpi Ceq
let neint = Ccmpi Cne
let leint = Ccmpi Cle
let ltint = Ccmpi Clt
let geint = Ccmpi Cge
let gtint = Ccmpi Cgt
type act = expression
type loc = Debuginfo.t
(* CR mshinwell: GPR#2294 will fix the Debuginfo here *)
let make_const i = Cconst_int (i, Debuginfo.none)
let make_prim p args = Cop (p,args, Debuginfo.none)
let make_offset arg n = add_const arg n Debuginfo.none
let make_isout h arg = Cop (Ccmpa Clt, [h ; arg], Debuginfo.none)
let make_isin h arg = Cop (Ccmpa Cge, [h ; arg], Debuginfo.none)
let make_if cond ifso ifnot =
Cifthenelse (cond, Debuginfo.none, ifso, Debuginfo.none, ifnot,
Debuginfo.none)
let make_switch dbg arg cases actions =
let actions = Array.map (fun expr -> expr, dbg) actions in
make_switch arg cases actions dbg
let bind arg body = bind "switcher" arg body
let make_catch handler = match handler with
| Cexit (i,[]) -> i,fun e -> e
| _ ->
let dbg = Debuginfo.none in
let i = Lambda.next_raise_count () in
(*
Printf.eprintf "SHARE CMM: %i\n" i ;
Printcmm.expression Format.str_formatter handler ;
Printf.eprintf "%s\n" (Format.flush_str_formatter ()) ;
*)
i,
(fun body -> match body with
| Cexit (j,_) ->
if i=j then handler
else body
| _ -> ccatch (i,[],body,handler, dbg))
let make_exit i = Cexit (i,[])
end
(* cmm store, as sharing as normally been detected in previous
phases, we only share exits *)
(* Some specific patterns can lead to switches where several cases
point to the same action, but this action is not an exit (see GPR#1370).
The addition of the index in the action array as context allows to
share them correctly without duplication. *)
module StoreExpForSwitch =
Switch.CtxStore
(struct
type t = expression
type key = int option * int
type context = int
let make_key index expr =
let continuation =
match expr with
| Cexit (i,[]) -> Some i
| _ -> None
in
Some (continuation, index)
let compare_key (cont, index) (cont', index') =
match cont, cont' with
| Some i, Some i' when i = i' -> 0
| _, _ -> Stdlib.compare index index'
end)
(* For string switches, we can use a generic store *)
module StoreExp =
Switch.Store
(struct
type t = expression
type key = int
let make_key = function
| Cexit (i,[]) -> Some i
| _ -> None
let compare_key = Stdlib.compare
end)
module SwitcherBlocks = Switch.Make(SArgBlocks)
(* Int switcher, arg in [low..high],
cases is list of individual cases, and is sorted by first component *)
let transl_int_switch dbg arg low high cases default = match cases with
| [] -> assert false
| _::_ ->
let store = StoreExp.mk_store () in
assert (store.Switch.act_store () default = 0) ;
let cases =
List.map
(fun (i,act) -> i,store.Switch.act_store () act)
cases in
let rec inters plow phigh pact = function
| [] ->
if phigh = high then [plow,phigh,pact]
else [(plow,phigh,pact); (phigh+1,high,0) ]
| (i,act)::rem ->
if i = phigh+1 then
if pact = act then
inters plow i pact rem
else
(plow,phigh,pact)::inters i i act rem
else (* insert default *)
if pact = 0 then
if act = 0 then
inters plow i 0 rem
else
(plow,i-1,pact)::
inters i i act rem
else (* pact <> 0 *)
(plow,phigh,pact)::
begin
if act = 0 then inters (phigh+1) i 0 rem
else (phigh+1,i-1,0)::inters i i act rem
end in
let inters = match cases with
| [] -> assert false
| (k0,act0)::rem ->
if k0 = low then inters k0 k0 act0 rem
else inters low (k0-1) 0 cases in
bind "switcher" arg
(fun a ->
SwitcherBlocks.zyva
dbg
(low,high)
a
(Array.of_list inters) store)
let transl_switch_clambda loc arg index cases =
let store = StoreExpForSwitch.mk_store () in
let index =
Array.map
(fun j -> store.Switch.act_store j cases.(j))
index in
let n_index = Array.length index in
let inters = ref []
and this_high = ref (n_index-1)
and this_low = ref (n_index-1)
and this_act = ref index.(n_index-1) in
for i = n_index-2 downto 0 do
let act = index.(i) in
if act = !this_act then
decr this_low
else begin
inters := (!this_low, !this_high, !this_act) :: !inters ;
this_high := i ;
this_low := i ;
this_act := act
end
done ;
inters := (0, !this_high, !this_act) :: !inters ;
match !inters with
| [_] -> cases.(0)
| inters ->
bind "switcher" arg
(fun a ->
SwitcherBlocks.zyva
loc
(0,n_index-1)
a
(Array.of_list inters) store)
let strmatch_compile =
let module S =
Strmatch.Make
(struct
let string_block_length ptr = get_size ptr Debuginfo.none
let transl_switch = transl_int_switch
end) in
S.compile
let ptr_offset ptr offset dbg =
if offset = 0
then ptr
else Cop(Caddv, [ptr; Cconst_int(offset * size_addr, dbg)], dbg)
let direct_apply lbl args dbg =
Cop(Capply typ_val, Cconst_symbol (lbl, dbg) :: args, dbg)
let generic_apply mut clos args dbg =
match args with
| [arg] ->
bind "fun" clos (fun clos ->
Cop(Capply typ_val, [get_field_gen mut clos 0 dbg; arg; clos],
dbg))
| _ ->
let arity = List.length args in
let cargs =
Cconst_symbol(apply_function_sym arity, dbg) :: args @ [clos]
in
Cop(Capply typ_val, cargs, dbg)
let send kind met obj args dbg =
let call_met obj args clos =
(* met is never a simple expression, so it never gets turned into an
Immutable load *)
generic_apply Asttypes.Mutable clos (obj :: args) dbg
in
bind "obj" obj (fun obj ->
match (kind : Lambda.meth_kind), args with
Self, _ ->
bind "met" (lookup_label obj met dbg)
(call_met obj args)
| Cached, cache :: pos :: args ->
call_cached_method obj met cache pos args dbg
| _ ->
bind "met" (lookup_tag obj met dbg)
(call_met obj args))
(*
CAMLprim value caml_cache_public_method (value meths, value tag, value *cache)
{
int li = 3, hi = Field(meths,0), mi;
while (li < hi) { // no need to check the 1st time
mi = ((li+hi) >> 1) | 1;
if (tag < Field(meths,mi)) hi = mi-2;
else li = mi;
}
*cache = (li-3)*sizeof(value)+1;
return Field (meths, li-1);
}
*)
let cache_public_method meths tag cache dbg =
let raise_num = Lambda.next_raise_count () in
let cconst_int i = Cconst_int (i, dbg) in
let li = V.create_local "*li*" and hi = V.create_local "*hi*"
and mi = V.create_local "*mi*" and tagged = V.create_local "*tagged*" in
Clet_mut (
VP.create li, typ_int, cconst_int 3,
Clet_mut (
VP.create hi, typ_int, Cop(Cload (Word_int, Mutable), [meths], dbg),
Csequence(
ccatch
(raise_num, [],
create_loop
(Clet(
VP.create mi,
Cop(Cor,
[Cop(Clsr, [Cop(Caddi, [Cvar li; Cvar hi], dbg); cconst_int 1],
dbg);
cconst_int 1],
dbg),
Csequence(
Cifthenelse
(Cop (Ccmpi Clt,
[tag;
Cop(Cload (Word_int, Mutable),
[Cop(Cadda,
[meths; lsl_const (Cvar mi) log2_size_addr dbg],
dbg)],
dbg)], dbg),
dbg, Cassign(hi, Cop(Csubi, [Cvar mi; cconst_int 2], dbg)),
dbg, Cassign(li, Cvar mi),
dbg),
Cifthenelse
(Cop(Ccmpi Cge, [Cvar li; Cvar hi], dbg),
dbg, Cexit (raise_num, []),
dbg, Ctuple [],
dbg))))
dbg,
Ctuple [],
dbg),
Clet (
VP.create tagged,
Cop(Caddi, [lsl_const (Cvar li) log2_size_addr dbg;
cconst_int(1 - 3 * size_addr)], dbg),
Csequence(Cop (Cstore (Word_int, Assignment), [cache; Cvar tagged], dbg),
Cvar tagged)))))
(* CR mshinwell: These will be filled in by later pull requests. *)
let placeholder_dbg () = Debuginfo.none
let placeholder_fun_dbg ~human_name:_ = Debuginfo.none
(* Generate an application function:
(defun caml_applyN (a1 ... aN clos)
(if (= clos.arity N)
(app clos.direct a1 ... aN clos)
(let (clos1 (app clos.code a1 clos)
clos2 (app clos1.code a2 clos)
...
closN-1 (app closN-2.code aN-1 closN-2))
(app closN-1.code aN closN-1))))
*)
let apply_function_body arity =
let dbg = placeholder_dbg in
let arg = Array.make arity (V.create_local "arg") in
for i = 1 to arity - 1 do arg.(i) <- V.create_local "arg" done;
let clos = V.create_local "clos" in
let rec app_fun clos n =
if n = arity-1 then
Cop(Capply typ_val,
[get_field_gen Asttypes.Mutable (Cvar clos) 0 (dbg ());
Cvar arg.(n);
Cvar clos],
dbg ())
else begin
let newclos = V.create_local "clos" in
Clet(VP.create newclos,
Cop(Capply typ_val,
[get_field_gen Asttypes.Mutable (Cvar clos) 0 (dbg ());
Cvar arg.(n); Cvar clos], dbg ()),
app_fun newclos (n+1))
end in
let args = Array.to_list arg in
let all_args = args @ [clos] in
(args, clos,
if arity = 1 then app_fun clos 0 else
Cifthenelse(
Cop(Ccmpi Ceq, [Cop(Casr,
[get_field_gen Asttypes.Mutable (Cvar clos) 1 (dbg());
Cconst_int(pos_arity_in_closinfo, dbg())], dbg());
Cconst_int(arity, dbg())], dbg()),
dbg (),
Cop(Capply typ_val,
get_field_gen Asttypes.Mutable (Cvar clos) 2 (dbg ())
:: List.map (fun s -> Cvar s) all_args,
dbg ()),
dbg (),
app_fun clos 0,
dbg ()))
let send_function arity =
let dbg = placeholder_dbg in
let cconst_int i = Cconst_int (i, dbg ()) in
let (args, clos', body) = apply_function_body (1+arity) in
let cache = V.create_local "cache"
and obj = List.hd args
and tag = V.create_local "tag" in
let clos =
let cache = Cvar cache and obj = Cvar obj and tag = Cvar tag in
let meths = V.create_local "meths" and cached = V.create_local "cached" in
let real = V.create_local "real" in
let mask = get_field_gen Asttypes.Mutable (Cvar meths) 1 (dbg ()) in
let cached_pos = Cvar cached in
let tag_pos = Cop(Cadda, [Cop (Cadda, [cached_pos; Cvar meths], dbg ());
cconst_int(3*size_addr-1)], dbg ()) in
let tag' = Cop(Cload (Word_int, Mutable), [tag_pos], dbg ()) in
Clet (
VP.create meths, Cop(Cload (Word_val, Mutable), [obj], dbg ()),
Clet (
VP.create cached,
Cop(Cand, [Cop(Cload (Word_int, Mutable), [cache], dbg ()); mask],
dbg ()),
Clet (
VP.create real,
Cifthenelse(Cop(Ccmpa Cne, [tag'; tag], dbg ()),
dbg (),
cache_public_method (Cvar meths) tag cache (dbg ()),
dbg (),
cached_pos,
dbg ()),
Cop(Cload (Word_val, Mutable),
[Cop(Cadda, [Cop (Cadda, [Cvar real; Cvar meths], dbg ());
cconst_int(2*size_addr-1)], dbg ())], dbg ()))))
in
let body = Clet(VP.create clos', clos, body) in
let cache = cache in
let fun_name = "caml_send" ^ Int.to_string arity in
let fun_args =
[obj, typ_val; tag, typ_int; cache, typ_val]
@ List.map (fun id -> (id, typ_val)) (List.tl args) in
let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
Cfunction
{fun_name;
fun_args = List.map (fun (arg, ty) -> VP.create arg, ty) fun_args;
fun_body = body;
fun_codegen_options = [];
fun_dbg;
}
let apply_function arity =
let (args, clos, body) = apply_function_body arity in
let all_args = args @ [clos] in
let fun_name = "caml_apply" ^ Int.to_string arity in
let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
Cfunction
{fun_name;
fun_args = List.map (fun arg -> (VP.create arg, typ_val)) all_args;
fun_body = body;
fun_codegen_options = [];
fun_dbg;
}
(* Generate tuplifying functions:
(defun caml_tuplifyN (arg clos)
(app clos.direct #0(arg) ... #N-1(arg) clos)) *)
let tuplify_function arity =
let dbg = placeholder_dbg in
let arg = V.create_local "arg" in
let clos = V.create_local "clos" in
let rec access_components i =
if i >= arity
then []
else get_field_gen Asttypes.Mutable (Cvar arg) i (dbg ())
:: access_components(i+1)
in
let fun_name = "caml_tuplify" ^ Int.to_string arity in
let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
Cfunction
{fun_name;
fun_args = [VP.create arg, typ_val; VP.create clos, typ_val];
fun_body =
Cop(Capply typ_val,
get_field_gen Asttypes.Mutable (Cvar clos) 2 (dbg ())
:: access_components 0 @ [Cvar clos],
(dbg ()));
fun_codegen_options = [];
fun_dbg;
}
(* Generate currying functions:
(defun caml_curryN (arg clos)
(alloc HDR caml_curryN_1 <arity (N-1)> caml_curry_N_1_app arg clos))
(defun caml_curryN_1 (arg clos)
(alloc HDR caml_curryN_2 <arity (N-2)> caml_curry_N_2_app arg clos))
...
(defun caml_curryN_N-1 (arg clos)
(let (closN-2 clos.vars[1]
closN-3 closN-2.vars[1]
...
clos1 clos2.vars[1]
clos clos1.vars[1])
(app clos.direct
clos1.vars[0] ... closN-2.vars[0] clos.vars[0] arg clos)))
Special "shortcut" functions are also generated to handle the
case where a partially applied function is applied to all remaining
arguments in one go. For instance:
(defun caml_curry_N_1_app (arg2 ... argN clos)
(let clos' clos.vars[1]
(app clos'.direct clos.vars[0] arg2 ... argN clos')))
Those shortcuts may lead to a quadratic number of application
primitives being generated in the worst case, which resulted in
linking time blowup in practice (PR#5933), so we only generate and
use them when below a fixed arity 'max_arity_optimized'.
*)
let max_arity_optimized = 15
let final_curry_function arity =
let dbg = placeholder_dbg in
let last_arg = V.create_local "arg" in
let last_clos = V.create_local "clos" in
let rec curry_fun args clos n =
if n = 0 then
Cop(Capply typ_val,
get_field_gen Asttypes.Mutable (Cvar clos) 2 (dbg ()) ::
args @ [Cvar last_arg; Cvar clos],
dbg ())
else
if n = arity - 1 || arity > max_arity_optimized then
begin
let newclos = V.create_local "clos" in
Clet(VP.create newclos,
get_field_gen Asttypes.Mutable (Cvar clos) 3 (dbg ()),
curry_fun (get_field_gen Asttypes.Mutable (Cvar clos) 2 (dbg ())
:: args)
newclos (n-1))
end else
begin
let newclos = V.create_local "clos" in
Clet(VP.create newclos,
get_field_gen Asttypes.Mutable (Cvar clos) 4 (dbg ()),
curry_fun
(get_field_gen Asttypes.Mutable (Cvar clos) 3 (dbg ()) :: args)
newclos (n-1))
end in
let fun_name =
"caml_curry" ^ Int.to_string arity ^ "_" ^ Int.to_string (arity-1)
in
let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
Cfunction
{fun_name;
fun_args = [VP.create last_arg, typ_val; VP.create last_clos, typ_val];
fun_body = curry_fun [] last_clos (arity-1);
fun_codegen_options = [];
fun_dbg;
}
let rec intermediate_curry_functions arity num =
let dbg = placeholder_dbg in
if num = arity - 1 then
[final_curry_function arity]
else begin
let name1 = "caml_curry" ^ Int.to_string arity in
let name2 = if num = 0 then name1 else name1 ^ "_" ^ Int.to_string num in
let arg = V.create_local "arg" and clos = V.create_local "clos" in
let fun_dbg = placeholder_fun_dbg ~human_name:name2 in
Cfunction
{fun_name = name2;
fun_args = [VP.create arg, typ_val; VP.create clos, typ_val];
fun_body =
if arity - num > 2 && arity <= max_arity_optimized then
Cop(Calloc,
[alloc_closure_header 5 (dbg ());
Cconst_symbol(name1 ^ "_" ^ Int.to_string (num+1), dbg ());
alloc_closure_info ~arity:(arity - num - 1)
~startenv:3 (dbg ());
Cconst_symbol(name1 ^ "_" ^ Int.to_string (num+1) ^ "_app",
dbg ());
Cvar arg; Cvar clos],
dbg ())
else
Cop(Calloc,
[alloc_closure_header 4 (dbg ());
Cconst_symbol(name1 ^ "_" ^ Int.to_string (num+1), dbg ());
alloc_closure_info ~arity:1 ~startenv:2 (dbg ());
Cvar arg; Cvar clos],
dbg ());
fun_codegen_options = [];
fun_dbg;
}
::
(if arity <= max_arity_optimized && arity - num > 2 then
let rec iter i =
if i <= arity then
let arg = V.create_local (Printf.sprintf "arg%d" i) in
(arg, typ_val) :: iter (i+1)
else []
in
let direct_args = iter (num+2) in
let rec iter i args clos =
if i = 0 then
Cop(Capply typ_val,
(get_field_gen Asttypes.Mutable (Cvar clos) 2 (dbg ()))
:: args @ [Cvar clos],
dbg ())
else
let newclos = V.create_local "clos" in
Clet(VP.create newclos,
get_field_gen Asttypes.Mutable (Cvar clos) 4 (dbg ()),
iter (i-1)
(get_field_gen Asttypes.Mutable (Cvar clos) 3 (dbg ())
:: args)
newclos)
in
let fun_args =
List.map (fun (arg, ty) -> VP.create arg, ty)
(direct_args @ [clos, typ_val])
in
let fun_name = name1 ^ "_" ^ Int.to_string (num+1) ^ "_app" in
let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
let cf =
Cfunction
{fun_name;
fun_args;
fun_body = iter (num+1)
(List.map (fun (arg,_) -> Cvar arg) direct_args) clos;
fun_codegen_options = [];
fun_dbg;
}
in
cf :: intermediate_curry_functions arity (num+1)
else
intermediate_curry_functions arity (num+1))
end
let curry_function arity =
assert(arity <> 0);
(* Functions with arity = 0 does not have a curry_function *)
if arity > 0
then intermediate_curry_functions arity 0
else [tuplify_function (-arity)]
module Int = Numbers.Int
let default_apply = Int.Set.add 2 (Int.Set.add 3 Int.Set.empty)
(* These apply funs are always present in the main program because
the run-time system needs them (cf. runtime/<arch>.S) . *)
let generic_functions shared units =
let (apply,send,curry) =
List.fold_left
(fun (apply,send,curry) (ui : Cmx_format.unit_infos) ->
List.fold_right Int.Set.add ui.ui_apply_fun apply,
List.fold_right Int.Set.add ui.ui_send_fun send,
List.fold_right Int.Set.add ui.ui_curry_fun curry)
(Int.Set.empty,Int.Set.empty,Int.Set.empty)
units in
let apply = if shared then apply else Int.Set.union apply default_apply in
let accu = Int.Set.fold (fun n accu -> apply_function n :: accu) apply [] in
let accu = Int.Set.fold (fun n accu -> send_function n :: accu) send accu in
Int.Set.fold (fun n accu -> curry_function n @ accu) curry accu
(* Primitives *)
type unary_primitive = expression -> Debuginfo.t -> expression
let floatfield n ptr dbg =
Cop(Cload (Double_u, Mutable),
[if n = 0 then ptr
else Cop(Cadda, [ptr; Cconst_int(n * size_float, dbg)], dbg)],
dbg)
let int_as_pointer arg dbg =
Cop(Caddi, [arg; Cconst_int (-1, dbg)], dbg)
(* always a pointer outside the heap *)
let raise_prim raise_kind arg dbg =
if !Clflags.debug then
Cop (Craise raise_kind, [arg], dbg)
else
Cop (Craise Lambda.Raise_notrace, [arg], dbg)
let negint arg dbg =
Cop(Csubi, [Cconst_int (2, dbg); arg], dbg)
(* [offsetint] moved down to reuse add_int_caml *)
let offsetref n arg dbg =
return_unit dbg
(bind "ref" arg (fun arg ->
Cop(Cstore (Word_int, Assignment),
[arg;
add_const (Cop(Cload (Word_int, Mutable), [arg], dbg))
(n lsl 1) dbg],
dbg)))
let arraylength kind arg dbg =
let hdr = get_header_without_profinfo arg dbg in
match (kind : Lambda.array_kind) with
Pgenarray ->
let len =
if wordsize_shift = numfloat_shift then
Cop(Clsr, [hdr; Cconst_int (wordsize_shift, dbg)], dbg)
else
bind "header" hdr (fun hdr ->
Cifthenelse(is_addr_array_hdr hdr dbg,
dbg,
Cop(Clsr,
[hdr; Cconst_int (wordsize_shift, dbg)], dbg),
dbg,
Cop(Clsr,
[hdr; Cconst_int (numfloat_shift, dbg)], dbg),
dbg))
in
Cop(Cor, [len; Cconst_int (1, dbg)], dbg)
| Paddrarray | Pintarray ->
Cop(Cor, [addr_array_length_shifted hdr dbg; Cconst_int (1, dbg)], dbg)
| Pfloatarray ->
Cop(Cor, [float_array_length_shifted hdr dbg; Cconst_int (1, dbg)], dbg)
let bbswap bi arg dbg =
let prim, tyarg = match (bi : Primitive.boxed_integer) with
| Pnativeint -> "nativeint", XInt
| Pint32 -> "int32", XInt32
| Pint64 -> "int64", XInt64
in
Cop(Cextcall(Printf.sprintf "caml_%s_direct_bswap" prim,
typ_int, [tyarg], false),
[arg],
dbg)
let bswap16 arg dbg =
(Cop(Cextcall("caml_bswap16_direct", typ_int, [], false),
[arg],
dbg))
type binary_primitive = expression -> expression -> Debuginfo.t -> expression
(* let pfield_computed = addr_array_ref *)
(* Helper for compilation of initialization and assignment operations *)
type assignment_kind = Caml_modify | Caml_initialize | Simple
let assignment_kind
(ptr: Lambda.immediate_or_pointer)
(init: Lambda.initialization_or_assignment) =
match init, ptr with
| Assignment, Pointer -> Caml_modify
| Heap_initialization, Pointer -> Caml_initialize
| Assignment, Immediate
| Heap_initialization, Immediate
| Root_initialization, (Immediate | Pointer) -> Simple
let setfield n ptr init arg1 arg2 dbg =
match assignment_kind ptr init with
| Caml_modify ->
return_unit dbg
(Cop(Cextcall("caml_modify", typ_void, [], false),
[field_address arg1 n dbg; arg2],
dbg))
| Caml_initialize ->
return_unit dbg
(Cop(Cextcall("caml_initialize", typ_void, [], false),
[field_address arg1 n dbg; arg2],
dbg))
| Simple ->
return_unit dbg (set_field arg1 n arg2 init dbg)
let setfloatfield n init arg1 arg2 dbg =
return_unit dbg (
Cop(Cstore (Double_u, init),
[if n = 0 then arg1
else Cop(Cadda, [arg1; Cconst_int(n * size_float, dbg)], dbg);
arg2], dbg))
let add_int_caml arg1 arg2 dbg =
decr_int (add_int arg1 arg2 dbg) dbg
(* Unary primitive delayed to reuse add_int_caml *)
let offsetint n arg dbg =
if Misc.no_overflow_lsl n 1 then
add_const arg (n lsl 1) dbg
else
add_int_caml arg (int_const dbg n) dbg
let sub_int_caml arg1 arg2 dbg =
incr_int (sub_int arg1 arg2 dbg) dbg
let mul_int_caml arg1 arg2 dbg =
(* decrementing the non-constant part helps when the multiplication is
followed by an addition;
for example, using this trick compiles (100 * a + 7) into
(+ ( * a 100) -85)
rather than
(+ ( * 200 (>>s a 1)) 15)
*)
match arg1, arg2 with
| Cconst_int _ as c1, c2 ->
incr_int (mul_int (untag_int c1 dbg) (decr_int c2 dbg) dbg) dbg
| c1, c2 ->
incr_int (mul_int (decr_int c1 dbg) (untag_int c2 dbg) dbg) dbg
let div_int_caml is_safe arg1 arg2 dbg =
tag_int(div_int (untag_int arg1 dbg)
(untag_int arg2 dbg) is_safe dbg) dbg
let mod_int_caml is_safe arg1 arg2 dbg =
tag_int(mod_int (untag_int arg1 dbg)
(untag_int arg2 dbg) is_safe dbg) dbg
let and_int_caml arg1 arg2 dbg =
Cop(Cand, [arg1; arg2], dbg)
let or_int_caml arg1 arg2 dbg =
Cop(Cor, [arg1; arg2], dbg)
let xor_int_caml arg1 arg2 dbg =
Cop(Cor, [Cop(Cxor, [ignore_low_bit_int arg1;
ignore_low_bit_int arg2], dbg);
Cconst_int (1, dbg)], dbg)
let lsl_int_caml arg1 arg2 dbg =
incr_int(lsl_int (decr_int arg1 dbg)
(untag_int arg2 dbg) dbg) dbg
let lsr_int_caml arg1 arg2 dbg =
Cop(Cor, [lsr_int arg1 (untag_int arg2 dbg) dbg;
Cconst_int (1, dbg)], dbg)
let asr_int_caml arg1 arg2 dbg =
Cop(Cor, [asr_int arg1 (untag_int arg2 dbg) dbg;
Cconst_int (1, dbg)], dbg)
let int_comp_caml cmp arg1 arg2 dbg =
tag_int(Cop(Ccmpi cmp,
[arg1; arg2], dbg)) dbg
let stringref_unsafe arg1 arg2 dbg =
tag_int(Cop(Cload (Byte_unsigned, Mutable),
[add_int arg1 (untag_int arg2 dbg) dbg],
dbg)) dbg
let stringref_safe arg1 arg2 dbg =
tag_int
(bind "str" arg1 (fun str ->
bind "index" (untag_int arg2 dbg) (fun idx ->
Csequence(
make_checkbound dbg [string_length str dbg; idx],
Cop(Cload (Byte_unsigned, Mutable),
[add_int str idx dbg], dbg))))) dbg
let string_load size unsafe arg1 arg2 dbg =
box_sized size dbg
(bind "str" arg1 (fun str ->
bind "index" (untag_int arg2 dbg) (fun idx ->
check_bound unsafe size dbg
(string_length str dbg)
idx (unaligned_load size str idx dbg))))
let bigstring_load size unsafe arg1 arg2 dbg =
box_sized size dbg
(bind "ba" arg1 (fun ba ->
bind "index" (untag_int arg2 dbg) (fun idx ->
bind "ba_data"
(Cop(Cload (Word_int, Mutable), [field_address ba 1 dbg], dbg))
(fun ba_data ->
check_bound unsafe size dbg
(bigstring_length ba dbg)
idx
(unaligned_load size ba_data idx dbg)))))
let arrayref_unsafe kind arg1 arg2 dbg =
match (kind : Lambda.array_kind) with
| Pgenarray ->
bind "arr" arg1 (fun arr ->
bind "index" arg2 (fun idx ->
Cifthenelse(is_addr_array_ptr arr dbg,
dbg,
addr_array_ref arr idx dbg,
dbg,
float_array_ref arr idx dbg,
dbg)))
| Paddrarray ->
addr_array_ref arg1 arg2 dbg
| Pintarray ->
(* CR mshinwell: for int/addr_array_ref move "dbg" to first arg *)
int_array_ref arg1 arg2 dbg
| Pfloatarray ->
float_array_ref arg1 arg2 dbg
let arrayref_safe kind arg1 arg2 dbg =
match (kind : Lambda.array_kind) with
| Pgenarray ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
bind "header" (get_header_without_profinfo arr dbg) (fun hdr ->
if wordsize_shift = numfloat_shift then
Csequence(
make_checkbound dbg [addr_array_length_shifted hdr dbg; idx],
Cifthenelse(is_addr_array_hdr hdr dbg,
dbg,
addr_array_ref arr idx dbg,
dbg,
float_array_ref arr idx dbg,
dbg))
else
Cifthenelse(is_addr_array_hdr hdr dbg,
dbg,
Csequence(
make_checkbound dbg [addr_array_length_shifted hdr dbg; idx],
addr_array_ref arr idx dbg),
dbg,
Csequence(
make_checkbound dbg [float_array_length_shifted hdr dbg; idx],
float_array_ref arr idx dbg),
dbg))))
| Paddrarray ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Csequence(
make_checkbound dbg [
addr_array_length_shifted
(get_header_without_profinfo arr dbg) dbg; idx],
addr_array_ref arr idx dbg)))
| Pintarray ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Csequence(
make_checkbound dbg [
addr_array_length_shifted
(get_header_without_profinfo arr dbg) dbg; idx],
int_array_ref arr idx dbg)))
| Pfloatarray ->
box_float dbg (
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Csequence(
make_checkbound dbg [
float_array_length_shifted
(get_header_without_profinfo arr dbg) dbg;
idx],
unboxed_float_array_ref arr idx dbg))))
type ternary_primitive =
expression -> expression -> expression -> Debuginfo.t -> expression
let setfield_computed ptr init arg1 arg2 arg3 dbg =
match assignment_kind ptr init with
| Caml_modify ->
return_unit dbg (addr_array_set arg1 arg2 arg3 dbg)
| Caml_initialize ->
return_unit dbg (addr_array_initialize arg1 arg2 arg3 dbg)
| Simple ->
return_unit dbg (int_array_set arg1 arg2 arg3 dbg)
let bytesset_unsafe arg1 arg2 arg3 dbg =
return_unit dbg (Cop(Cstore (Byte_unsigned, Assignment),
[add_int arg1 (untag_int arg2 dbg) dbg;
ignore_high_bit_int (untag_int arg3 dbg)], dbg))
let bytesset_safe arg1 arg2 arg3 dbg =
return_unit dbg
(bind "str" arg1 (fun str ->
bind "index" (untag_int arg2 dbg) (fun idx ->
Csequence(
make_checkbound dbg [string_length str dbg; idx],
Cop(Cstore (Byte_unsigned, Assignment),
[add_int str idx dbg;
ignore_high_bit_int (untag_int arg3 dbg)],
dbg)))))
let arrayset_unsafe kind arg1 arg2 arg3 dbg =
return_unit dbg (match (kind: Lambda.array_kind) with
| Pgenarray ->
bind "newval" arg3 (fun newval ->
bind "index" arg2 (fun index ->
bind "arr" arg1 (fun arr ->
Cifthenelse(is_addr_array_ptr arr dbg,
dbg,
addr_array_set arr index newval dbg,
dbg,
float_array_set arr index (unbox_float dbg newval)
dbg,
dbg))))
| Paddrarray ->
addr_array_set arg1 arg2 arg3 dbg
| Pintarray ->
int_array_set arg1 arg2 arg3 dbg
| Pfloatarray ->
float_array_set arg1 arg2 arg3 dbg
)
let arrayset_safe kind arg1 arg2 arg3 dbg =
return_unit dbg (match (kind: Lambda.array_kind) with
| Pgenarray ->
bind "newval" arg3 (fun newval ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
bind "header" (get_header_without_profinfo arr dbg) (fun hdr ->
if wordsize_shift = numfloat_shift then
Csequence(
make_checkbound dbg [addr_array_length_shifted hdr dbg; idx],
Cifthenelse(is_addr_array_hdr hdr dbg,
dbg,
addr_array_set arr idx newval dbg,
dbg,
float_array_set arr idx
(unbox_float dbg newval)
dbg,
dbg))
else
Cifthenelse(
is_addr_array_hdr hdr dbg,
dbg,
Csequence(
make_checkbound dbg [addr_array_length_shifted hdr dbg; idx],
addr_array_set arr idx newval dbg),
dbg,
Csequence(
make_checkbound dbg [float_array_length_shifted hdr dbg; idx],
float_array_set arr idx
(unbox_float dbg newval) dbg),
dbg)))))
| Paddrarray ->
bind "newval" arg3 (fun newval ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Csequence(
make_checkbound dbg [
addr_array_length_shifted
(get_header_without_profinfo arr dbg) dbg;
idx],
addr_array_set arr idx newval dbg))))
| Pintarray ->
bind "newval" arg3 (fun newval ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Csequence(
make_checkbound dbg [
addr_array_length_shifted
(get_header_without_profinfo arr dbg) dbg;
idx],
int_array_set arr idx newval dbg))))
| Pfloatarray ->
bind_load "newval" arg3 (fun newval ->
bind "index" arg2 (fun idx ->
bind "arr" arg1 (fun arr ->
Csequence(
make_checkbound dbg [
float_array_length_shifted
(get_header_without_profinfo arr dbg) dbg;
idx],
float_array_set arr idx newval dbg))))
)
let bytes_set size unsafe arg1 arg2 arg3 dbg =
return_unit dbg
(bind "str" arg1 (fun str ->
bind "index" (untag_int arg2 dbg) (fun idx ->
bind "newval" arg3 (fun newval ->
check_bound unsafe size dbg (string_length str dbg)
idx (unaligned_set size str idx newval dbg)))))
let bigstring_set size unsafe arg1 arg2 arg3 dbg =
return_unit dbg
(bind "ba" arg1 (fun ba ->
bind "index" (untag_int arg2 dbg) (fun idx ->
bind "newval" arg3 (fun newval ->
bind "ba_data"
(Cop(Cload (Word_int, Mutable), [field_address ba 1 dbg], dbg))
(fun ba_data ->
check_bound unsafe size dbg (bigstring_length ba dbg)
idx (unaligned_set size ba_data idx newval dbg))))))
(* Symbols *)
let cdefine_symbol (symb, (global: Cmmgen_state.is_global)) =
match global with
| Global -> [Cglobal_symbol symb; Cdefine_symbol symb]
| Local -> [Cdefine_symbol symb]
let emit_block symb white_header cont =
(* Headers for structured constants must be marked black in case we
are in no-naked-pointers mode. See [caml_darken]. *)
let black_header = Nativeint.logor white_header caml_black in
Cint black_header :: cdefine_symbol symb @ cont
let emit_string_constant_fields s cont =
let n = size_int - 1 - (String.length s) mod size_int in
Cstring s :: Cskip n :: Cint8 n :: cont
let emit_boxed_int32_constant_fields n cont =
let n = Nativeint.of_int32 n in
if size_int = 8 then
Csymbol_address caml_int32_ops :: Cint32 n :: Cint32 0n :: cont
else
Csymbol_address caml_int32_ops :: Cint n :: cont
let emit_boxed_int64_constant_fields n cont =
let lo = Int64.to_nativeint n in
if size_int = 8 then
Csymbol_address caml_int64_ops :: Cint lo :: cont
else begin
let hi = Int64.to_nativeint (Int64.shift_right n 32) in
if big_endian then
Csymbol_address caml_int64_ops :: Cint hi :: Cint lo :: cont
else
Csymbol_address caml_int64_ops :: Cint lo :: Cint hi :: cont
end
let emit_boxed_nativeint_constant_fields n cont =
Csymbol_address caml_nativeint_ops :: Cint n :: cont
let emit_float_constant symb f cont =
emit_block symb float_header (Cdouble f :: cont)
let emit_string_constant symb s cont =
emit_block symb (string_header (String.length s))
(emit_string_constant_fields s cont)
let emit_int32_constant symb n cont =
emit_block symb boxedint32_header
(emit_boxed_int32_constant_fields n cont)
let emit_int64_constant symb n cont =
emit_block symb boxedint64_header
(emit_boxed_int64_constant_fields n cont)
let emit_nativeint_constant symb n cont =
emit_block symb boxedintnat_header
(emit_boxed_nativeint_constant_fields n cont)
let emit_float_array_constant symb fields cont =
emit_block symb (floatarray_header (List.length fields))
(Misc.map_end (fun f -> Cdouble f) fields cont)
(* Generate the entry point *)
let entry_point namelist =
let dbg = placeholder_dbg in
let cconst_int i = Cconst_int (i, dbg ()) in
let cconst_symbol sym = Cconst_symbol (sym, dbg ()) in
let incr_global_inited () =
Cop(Cstore (Word_int, Assignment),
[cconst_symbol "caml_globals_inited";
Cop(Caddi, [Cop(Cload (Word_int, Mutable),
[cconst_symbol "caml_globals_inited"], dbg ());
cconst_int 1], dbg ())], dbg ()) in
let body =
List.fold_right
(fun name next ->
let entry_sym = Compilenv.make_symbol ~unitname:name (Some "entry") in
Csequence(Cop(Capply typ_void,
[cconst_symbol entry_sym], dbg ()),
Csequence(incr_global_inited (), next)))
namelist (cconst_int 1) in
let fun_name = "caml_program" in
let fun_dbg = placeholder_fun_dbg ~human_name:fun_name in
Cfunction {fun_name;
fun_args = [];
fun_body = body;
fun_codegen_options = [Reduce_code_size];
fun_dbg;
}
(* Generate the table of globals *)
let cint_zero = Cint 0n
let global_table namelist =
let mksym name =
Csymbol_address (Compilenv.make_symbol ~unitname:name (Some "gc_roots"))
in
Cdata(Cglobal_symbol "caml_globals" ::
Cdefine_symbol "caml_globals" ::
List.map mksym namelist @
[cint_zero])
let reference_symbols namelist =
let mksym name = Csymbol_address name in
Cdata(List.map mksym namelist)
let global_data name v =
Cdata(emit_string_constant (name, Global)
(Marshal.to_string v []) [])
let globals_map v = global_data "caml_globals_map" v
(* Generate the master table of frame descriptors *)
let frame_table namelist =
let mksym name =
Csymbol_address (Compilenv.make_symbol ~unitname:name (Some "frametable"))
in
Cdata(Cglobal_symbol "caml_frametable" ::
Cdefine_symbol "caml_frametable" ::
List.map mksym namelist
@ [cint_zero])
(* Generate the table of module data and code segments *)
let segment_table namelist symbol begname endname =
let addsyms name lst =
Csymbol_address (Compilenv.make_symbol ~unitname:name (Some begname)) ::
Csymbol_address (Compilenv.make_symbol ~unitname:name (Some endname)) ::
lst
in
Cdata(Cglobal_symbol symbol ::
Cdefine_symbol symbol ::
List.fold_right addsyms namelist [cint_zero])
let data_segment_table namelist =
segment_table namelist "caml_data_segments" "data_begin" "data_end"
let code_segment_table namelist =
segment_table namelist "caml_code_segments" "code_begin" "code_end"
(* Initialize a predefined exception *)
let predef_exception i name =
let name_sym = Compilenv.new_const_symbol () in
let data_items =
emit_string_constant (name_sym, Local) name []
in
let exn_sym = "caml_exn_" ^ name in
let tag = Obj.object_tag in
let size = 2 in
let fields =
(Csymbol_address name_sym)
:: (cint_const (-i - 1))
:: data_items
in
let data_items =
emit_block (exn_sym, Global) (block_header tag size) fields
in
Cdata data_items
(* Header for a plugin *)
let plugin_header units =
let mk ((ui : Cmx_format.unit_infos),crc) : Cmxs_format.dynunit =
{ dynu_name = ui.ui_name;
dynu_crc = crc;
dynu_imports_cmi = ui.ui_imports_cmi;
dynu_imports_cmx = ui.ui_imports_cmx;
dynu_defines = ui.ui_defines
} in
global_data "caml_plugin_header"
({ dynu_magic = Config.cmxs_magic_number;
dynu_units = List.map mk units }
: Cmxs_format.dynheader)
(* To compile "let rec" over values *)
let fundecls_size fundecls =
let sz = ref (-1) in
List.iter
(fun (f : Clambda.ufunction) ->
let indirect_call_code_pointer_size =
match f.arity with
| 0 | 1 -> 0
(* arity 1 does not need an indirect call handler.
arity 0 cannot be indirect called *)
| _ -> 1
(* For other arities there is an indirect call handler.
if arity >= 2 it is caml_curry...
if arity < 0 it is caml_tuplify... *)
in
sz := !sz + 1 + 2 + indirect_call_code_pointer_size)
fundecls;
!sz
(* Emit constant closures *)
let emit_constant_closure ((_, global_symb) as symb) fundecls clos_vars cont =
let closure_symbol (f : Clambda.ufunction) =
if Config.flambda then
cdefine_symbol (f.label ^ "_closure", global_symb)
else
[]
in
match (fundecls : Clambda.ufunction list) with
[] ->
(* This should probably not happen: dead code has normally been
eliminated and a closure cannot be accessed without going through
a [Project_closure], which depends on the function. *)
assert (clos_vars = []);
cdefine_symbol symb @ clos_vars @ cont
| f1 :: remainder ->
let startenv = fundecls_size fundecls in
let rec emit_others pos = function
[] -> clos_vars @ cont
| (f2 : Clambda.ufunction) :: rem ->
if f2.arity = 1 || f2.arity = 0 then
Cint(infix_header pos) ::
(closure_symbol f2) @
Csymbol_address f2.label ::
Cint(closure_info ~arity:f2.arity ~startenv:(startenv - pos)) ::
emit_others (pos + 3) rem
else
Cint(infix_header pos) ::
(closure_symbol f2) @
Csymbol_address(curry_function_sym f2.arity) ::
Cint(closure_info ~arity:f2.arity ~startenv:(startenv - pos)) ::
Csymbol_address f2.label ::
emit_others (pos + 4) rem in
Cint(black_closure_header (fundecls_size fundecls
+ List.length clos_vars)) ::
cdefine_symbol symb @
(closure_symbol f1) @
if f1.arity = 1 || f1.arity = 0 then
Csymbol_address f1.label ::
Cint(closure_info ~arity:f1.arity ~startenv) ::
emit_others 3 remainder
else
Csymbol_address(curry_function_sym f1.arity) ::
Cint(closure_info ~arity:f1.arity ~startenv) ::
Csymbol_address f1.label ::
emit_others 4 remainder
(* Build the NULL terminated array of gc roots *)
let emit_gc_roots_table ~symbols cont =
let table_symbol = Compilenv.make_symbol (Some "gc_roots") in
Cdata(Cglobal_symbol table_symbol ::
Cdefine_symbol table_symbol ::
List.map (fun s -> Csymbol_address s) symbols @
[Cint 0n])
:: cont
(* Build preallocated blocks (used for Flambda [Initialize_symbol]
constructs, and Clambda global module) *)
let preallocate_block cont { Clambda.symbol; exported; tag; fields } =
let space =
(* These words will be registered as roots and as such must contain
valid values, in case we are in no-naked-pointers mode. Likewise
the block header must be black, below (see [caml_darken]), since
the overall record may be referenced. *)
List.map (fun field ->
match field with
| None ->
Cint (Nativeint.of_int 1 (* Val_unit *))
| Some (Clambda.Uconst_field_int n) ->
cint_const n
| Some (Clambda.Uconst_field_ref label) ->
Csymbol_address label)
fields
in
let global = Cmmgen_state.(if exported then Global else Local) in
let symb = (symbol, global) in
let data =
emit_block symb (block_header tag (List.length fields)) space
in
Cdata data :: cont
let emit_preallocated_blocks preallocated_blocks cont =
let symbols =
List.map (fun ({ Clambda.symbol }:Clambda.preallocated_block) -> symbol)
preallocated_blocks
in
let c1 = emit_gc_roots_table ~symbols cont in
List.fold_left preallocate_block c1 preallocated_blocks