ocaml/asmcomp/coloring.ml

227 lines
8.5 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Register allocation by coloring of the interference graph *)
module OrderedRegSet =
Set.Make(struct
type t = Reg.t
let compare r1 r2 =
let open Reg in
let c1 = r1.spill_cost and d1 = r1.degree in
let c2 = r2.spill_cost and d2 = r2.degree in
let n = c2 * d1 - c1 * d2 in
if n <> 0 then n else
let n = c2 - c1 in
if n <> 0 then n else
let n = d1 - d2 in
if n <> 0 then n else r1.stamp - r2.stamp
end)
open Reg
let allocate_registers() =
(* Constrained regs with degree >= number of available registers,
sorted by spill cost (highest first).
The spill cost measure is [r.spill_cost / r.degree].
[r.spill_cost] estimates the number of accesses to [r]. *)
let constrained = ref OrderedRegSet.empty in
(* Unconstrained regs with degree < number of available registers *)
let unconstrained = ref [] in
(* Preallocate the spilled registers in the stack.
Split the remaining registers into constrained and unconstrained. *)
let remove_reg reg =
let cl = Proc.register_class reg in
if reg.spill then begin
(* Preallocate the registers in the stack *)
let nslots = Proc.num_stack_slots.(cl) in
let conflict = Array.make nslots false in
List.iter
(fun r ->
match r.loc with
Stack(Local n) ->
if Proc.register_class r = cl then conflict.(n) <- true
| _ -> ())
reg.interf;
let slot = ref 0 in
while !slot < nslots && conflict.(!slot) do incr slot done;
reg.loc <- Stack(Local !slot);
if !slot >= nslots then Proc.num_stack_slots.(cl) <- !slot + 1
end else if reg.degree < Proc.num_available_registers.(cl) then
unconstrained := reg :: !unconstrained
else begin
constrained := OrderedRegSet.add reg !constrained
end in
(* Iterate over all registers preferred by the given register (transitive) *)
let iter_preferred f reg =
let rec walk r w =
if not r.visited then begin
f r w;
begin match r.prefer with
[] -> ()
| p -> r.visited <- true;
List.iter (fun (r1, w1) -> walk r1 (min w w1)) p;
r.visited <- false
end
end in
reg.visited <- true;
List.iter (fun (r, w) -> walk r w) reg.prefer;
reg.visited <- false in
(* Where to start the search for a suitable register.
Used to introduce some "randomness" in the choice between registers
with equal scores. This offers more opportunities for scheduling. *)
let start_register = Array.make Proc.num_register_classes 0 in
(* Assign a location to a register, the best we can. *)
let assign_location reg =
let cl = Proc.register_class reg in
let first_reg = Proc.first_available_register.(cl) in
let num_regs = Proc.num_available_registers.(cl) in
let score = Array.make num_regs 0 in
let best_score = ref (-1000000) and best_reg = ref (-1) in
let start = start_register.(cl) in
if num_regs <> 0 then begin
(* Favor the registers that have been assigned to pseudoregs for which
we have a preference. If these pseudoregs have not been assigned
already, avoid the registers with which they conflict. *)
iter_preferred
(fun r w ->
match r.loc with
Reg n -> let n = n - first_reg in
if n < num_regs then
score.(n) <- score.(n) + w
| Unknown ->
List.iter
(fun neighbour ->
match neighbour.loc with
Reg n -> let n = n - first_reg in
if n < num_regs then
score.(n) <- score.(n) - w
| _ -> ())
r.interf
| _ -> ())
reg;
List.iter
(fun neighbour ->
(* Prohibit the registers that have been assigned
to our neighbours *)
begin match neighbour.loc with
Reg n -> let n = n - first_reg in
if n < num_regs then
score.(n) <- (-1000000)
| _ -> ()
end;
(* Avoid the registers that have been assigned to pseudoregs
for which our neighbours have a preference *)
iter_preferred
(fun r w ->
match r.loc with
Reg n -> let n = n - first_reg in
if n < num_regs then
score.(n) <- score.(n) - (w-1)
(* w-1 to break the symmetry when two conflicting regs
have the same preference for a third reg. *)
| _ -> ())
neighbour)
reg.interf;
(* Pick the register with the best score *)
for n = start to num_regs - 1 do
if score.(n) > !best_score then begin
best_score := score.(n);
best_reg := n
end
done;
for n = 0 to start - 1 do
if score.(n) > !best_score then begin
best_score := score.(n);
best_reg := n
end
done
end;
(* Found a register? *)
if !best_reg >= 0 then begin
reg.loc <- Reg(first_reg + !best_reg);
if Proc.rotate_registers then
start_register.(cl) <- (let start = start + 1 in
if start >= num_regs then 0 else start)
end else begin
(* Sorry, we must put the pseudoreg in a stack location *)
let nslots = Proc.num_stack_slots.(cl) in
let score = Array.make nslots 0 in
(* Compute the scores as for registers *)
List.iter
(fun (r, w) ->
match r.loc with
Stack(Local n) -> score.(n) <- score.(n) + w
| Unknown ->
List.iter
(fun neighbour ->
match neighbour.loc with
Stack(Local n) -> score.(n) <- score.(n) - w
| _ -> ())
r.interf
| _ -> ())
reg.prefer;
List.iter
(fun neighbour ->
begin match neighbour.loc with
Stack(Local n) -> score.(n) <- (-1000000)
| _ -> ()
end;
List.iter
(fun (r, w) ->
match r.loc with
Stack(Local n) -> score.(n) <- score.(n) - w
| _ -> ())
neighbour.prefer)
reg.interf;
(* Pick the location with the best score *)
let best_score = ref (-1000000) and best_slot = ref (-1) in
for n = 0 to nslots - 1 do
if score.(n) > !best_score then begin
best_score := score.(n);
best_slot := n
end
done;
(* Found one? *)
if !best_slot >= 0 then
reg.loc <- Stack(Local !best_slot)
else begin
(* Allocate a new stack slot *)
reg.loc <- Stack(Local nslots);
Proc.num_stack_slots.(cl) <- nslots + 1
end
end;
(* Cancel the preferences of this register so that they don't influence
transitively the allocation of registers that prefer this reg. *)
reg.prefer <- [] in
(* Reset the stack slot counts *)
for i = 0 to Proc.num_register_classes - 1 do
Proc.num_stack_slots.(i) <- 0;
done;
(* First pass: preallocate spill registers and split remaining regs
Second pass: assign locations to constrained regs
Third pass: assign locations to unconstrained regs *)
List.iter remove_reg (Reg.all_registers());
OrderedRegSet.iter assign_location !constrained;
List.iter assign_location !unconstrained