277 lines
8.8 KiB
OCaml
277 lines
8.8 KiB
OCaml
(***********************************************************************)
|
|
(* *)
|
|
(* OCaml *)
|
|
(* *)
|
|
(* Damien Doligez, projet Para, INRIA Rocquencourt *)
|
|
(* *)
|
|
(* Copyright 1996 Institut National de Recherche en Informatique et *)
|
|
(* en Automatique. All rights reserved. This file is distributed *)
|
|
(* under the terms of the GNU Library General Public License, with *)
|
|
(* the special exception on linking described in file ../LICENSE. *)
|
|
(* *)
|
|
(***********************************************************************)
|
|
|
|
(* $Id$ *)
|
|
|
|
(* Pseudo-random number generator
|
|
This is a lagged-Fibonacci F(55, 24, +) with a modified addition
|
|
function to enhance the mixing of bits.
|
|
If we use normal addition, the low-order bit fails tests 1 and 7
|
|
of the Diehard test suite, and bits 1 and 2 also fail test 7.
|
|
If we use multiplication as suggested by Marsaglia, it doesn't fare
|
|
much better.
|
|
By mixing the bits of one of the numbers before addition (XOR the
|
|
5 high-order bits into the low-order bits), we get a generator that
|
|
passes all the Diehard tests.
|
|
*)
|
|
|
|
external random_seed: unit -> int array = "caml_sys_random_seed";;
|
|
|
|
module State = struct
|
|
|
|
type t = { st : int array; mutable idx : int };;
|
|
|
|
let new_state () = { st = Array.make 55 0; idx = 0 };;
|
|
let assign st1 st2 =
|
|
Array.blit st2.st 0 st1.st 0 55;
|
|
st1.idx <- st2.idx;
|
|
;;
|
|
|
|
let full_init s seed =
|
|
let combine accu x = Digest.string (accu ^ string_of_int x) in
|
|
let extract d =
|
|
Char.code d.[0] + (Char.code d.[1] lsl 8) + (Char.code d.[2] lsl 16)
|
|
+ (Char.code d.[3] lsl 24)
|
|
in
|
|
let seed = if Array.length seed = 0 then [| 0 |] else seed in
|
|
let l = Array.length seed in
|
|
for i = 0 to 54 do
|
|
s.st.(i) <- i;
|
|
done;
|
|
let accu = ref "x" in
|
|
for i = 0 to 54 + max 55 l do
|
|
let j = i mod 55 in
|
|
let k = i mod l in
|
|
accu := combine !accu seed.(k);
|
|
s.st.(j) <- (s.st.(j) lxor extract !accu) land 0x3FFFFFFF; (* PR#5575 *)
|
|
done;
|
|
s.idx <- 0;
|
|
;;
|
|
|
|
let make seed =
|
|
let result = new_state () in
|
|
full_init result seed;
|
|
result
|
|
;;
|
|
|
|
let make_self_init () = make (random_seed ());;
|
|
|
|
let copy s =
|
|
let result = new_state () in
|
|
assign result s;
|
|
result
|
|
;;
|
|
|
|
(* Returns 30 random bits as an integer 0 <= x < 1073741824 *)
|
|
let bits s =
|
|
s.idx <- (s.idx + 1) mod 55;
|
|
let curval = s.st.(s.idx) in
|
|
let newval = s.st.((s.idx + 24) mod 55)
|
|
+ (curval lxor ((curval lsr 25) land 0x1F)) in
|
|
let newval30 = newval land 0x3FFFFFFF in (* PR#5575 *)
|
|
s.st.(s.idx) <- newval30;
|
|
newval30
|
|
;;
|
|
|
|
let rec intaux s n =
|
|
let r = bits s in
|
|
let v = r mod n in
|
|
if r - v > 0x3FFFFFFF - n + 1 then intaux s n else v
|
|
;;
|
|
let int s bound =
|
|
if bound > 0x3FFFFFFF || bound <= 0
|
|
then invalid_arg "Random.int"
|
|
else intaux s bound
|
|
;;
|
|
|
|
let rec int32aux s n =
|
|
let b1 = Int32.of_int (bits s) in
|
|
let b2 = Int32.shift_left (Int32.of_int (bits s land 1)) 30 in
|
|
let r = Int32.logor b1 b2 in
|
|
let v = Int32.rem r n in
|
|
if Int32.sub r v > Int32.add (Int32.sub Int32.max_int n) 1l
|
|
then int32aux s n
|
|
else v
|
|
;;
|
|
let int32 s bound =
|
|
if bound <= 0l
|
|
then invalid_arg "Random.int32"
|
|
else int32aux s bound
|
|
;;
|
|
|
|
let rec int64aux s n =
|
|
let b1 = Int64.of_int (bits s) in
|
|
let b2 = Int64.shift_left (Int64.of_int (bits s)) 30 in
|
|
let b3 = Int64.shift_left (Int64.of_int (bits s land 7)) 60 in
|
|
let r = Int64.logor b1 (Int64.logor b2 b3) in
|
|
let v = Int64.rem r n in
|
|
if Int64.sub r v > Int64.add (Int64.sub Int64.max_int n) 1L
|
|
then int64aux s n
|
|
else v
|
|
;;
|
|
let int64 s bound =
|
|
if bound <= 0L
|
|
then invalid_arg "Random.int64"
|
|
else int64aux s bound
|
|
;;
|
|
|
|
let nativeint =
|
|
if Nativeint.size = 32
|
|
then fun s bound -> Nativeint.of_int32 (int32 s (Nativeint.to_int32 bound))
|
|
else fun s bound -> Int64.to_nativeint (int64 s (Int64.of_nativeint bound))
|
|
;;
|
|
|
|
(* Returns a float 0 <= x <= 1 with at most 60 bits of precision. *)
|
|
let rawfloat s =
|
|
let scale = 1073741824.0 (* 2^30 *)
|
|
and r1 = Pervasives.float (bits s)
|
|
and r2 = Pervasives.float (bits s)
|
|
in (r1 /. scale +. r2) /. scale
|
|
;;
|
|
|
|
let float s bound = rawfloat s *. bound;;
|
|
|
|
let bool s = (bits s land 1 = 0);;
|
|
|
|
end;;
|
|
|
|
(* This is the state you get with [init 27182818]. *)
|
|
let default = {
|
|
State.st = [|
|
|
0x7ae2522b; 0x5d8d4634; 0x15b4fad0; 0x18b14ace; 0x12f8a3c4; 0x7b086c47;
|
|
0x16d467d6; 0x501d91c7; 0x321df177; 0x4176c193; 0x1ff72bf1; 0x5e889109;
|
|
0x0b464b18; 0x6b86b97c; 0x4891da48; 0x03137463; 0x485ac5a1; 0x15d61f2f;
|
|
0x7bced359; 0x69c1c132; 0x7a86766e; 0x366d8c86; 0x1f5b6222; 0x7ce1b59f;
|
|
0x2ebf78e1; 0x67cd1b86; 0x658f3dc3; 0x789a8194; 0x42e4c44c; 0x58c43f7d;
|
|
0x0f6e534f; 0x1e7df359; 0x455d0b7e; 0x10e84e7e; 0x126198e4; 0x4e7722cb;
|
|
0x5cbede28; 0x7391b964; 0x7d40e92a; 0x4c59933d; 0x0b8cd0b7; 0x64efff1c;
|
|
0x2803fdaa; 0x08ebc72e; 0x4f522e32; 0x45398edc; 0x2144a04c; 0x4aef3cbd;
|
|
0x41ad4719; 0x75b93cd6; 0x2a559d4f; 0x5e6fd768; 0x66e27f36; 0x186f18c3;
|
|
0x2fbf967a;
|
|
|];
|
|
State.idx = 0;
|
|
};;
|
|
|
|
let bits () = State.bits default;;
|
|
let int bound = State.int default bound;;
|
|
let int32 bound = State.int32 default bound;;
|
|
let nativeint bound = State.nativeint default bound;;
|
|
let int64 bound = State.int64 default bound;;
|
|
let float scale = State.float default scale;;
|
|
let bool () = State.bool default;;
|
|
|
|
let full_init seed = State.full_init default seed;;
|
|
let init seed = State.full_init default [| seed |];;
|
|
let self_init () = full_init (random_seed());;
|
|
|
|
(* Manipulating the current state. *)
|
|
|
|
let get_state () = State.copy default;;
|
|
let set_state s = State.assign default s;;
|
|
|
|
(********************
|
|
|
|
(* Test functions. Not included in the library.
|
|
The [chisquare] function should be called with n > 10r.
|
|
It returns a triple (low, actual, high).
|
|
If low <= actual <= high, the [g] function passed the test,
|
|
otherwise it failed.
|
|
|
|
Some results:
|
|
|
|
init 27182818; chisquare int 100000 1000;;
|
|
init 27182818; chisquare int 100000 100;;
|
|
init 27182818; chisquare int 100000 5000;;
|
|
init 27182818; chisquare int 1000000 1000;;
|
|
init 27182818; chisquare int 100000 1024;;
|
|
init 299792643; chisquare int 100000 1024;;
|
|
init 14142136; chisquare int 100000 1024;;
|
|
init 27182818; init_diff 1024; chisquare diff 100000 1024;;
|
|
init 27182818; init_diff 100; chisquare diff 100000 100;;
|
|
init 27182818; init_diff2 1024; chisquare diff2 100000 1024;;
|
|
init 27182818; init_diff2 100; chisquare diff2 100000 100;;
|
|
init 14142136; init_diff2 100; chisquare diff2 100000 100;;
|
|
init 299792643; init_diff2 100; chisquare diff2 100000 100;;
|
|
- : float * float * float = (936.754446796632465, 997.5, 1063.24555320336754)
|
|
# - : float * float * float = (80., 89.7400000000052387, 120.)
|
|
# - : float * float * float = (4858.57864376269, 5045.5, 5141.42135623731)
|
|
# - : float * float * float =
|
|
(936.754446796632465, 944.805999999982305, 1063.24555320336754)
|
|
# - : float * float * float = (960., 1019.19744000000355, 1088.)
|
|
# - : float * float * float = (960., 1059.31776000000536, 1088.)
|
|
# - : float * float * float = (960., 1039.98463999999512, 1088.)
|
|
# - : float * float * float = (960., 1054.38207999999577, 1088.)
|
|
# - : float * float * float = (80., 90.096000000005, 120.)
|
|
# - : float * float * float = (960., 1076.78720000000612, 1088.)
|
|
# - : float * float * float = (80., 85.1760000000067521, 120.)
|
|
# - : float * float * float = (80., 85.2160000000003492, 120.)
|
|
# - : float * float * float = (80., 80.6220000000030268, 120.)
|
|
|
|
*)
|
|
|
|
(* Return the sum of the squares of v[i0,i1[ *)
|
|
let rec sumsq v i0 i1 =
|
|
if i0 >= i1 then 0.0
|
|
else if i1 = i0 + 1 then Pervasives.float v.(i0) *. Pervasives.float v.(i0)
|
|
else sumsq v i0 ((i0+i1)/2) +. sumsq v ((i0+i1)/2) i1
|
|
;;
|
|
|
|
let chisquare g n r =
|
|
if n <= 10 * r then invalid_arg "chisquare";
|
|
let f = Array.make r 0 in
|
|
for i = 1 to n do
|
|
let t = g r in
|
|
f.(t) <- f.(t) + 1
|
|
done;
|
|
let t = sumsq f 0 r
|
|
and r = Pervasives.float r
|
|
and n = Pervasives.float n in
|
|
let sr = 2.0 *. sqrt r in
|
|
(r -. sr, (r *. t /. n) -. n, r +. sr)
|
|
;;
|
|
|
|
(* This is to test for linear dependencies between successive random numbers.
|
|
*)
|
|
let st = ref 0;;
|
|
let init_diff r = st := int r;;
|
|
let diff r =
|
|
let x1 = !st
|
|
and x2 = int r
|
|
in
|
|
st := x2;
|
|
if x1 >= x2 then
|
|
x1 - x2
|
|
else
|
|
r + x1 - x2
|
|
;;
|
|
|
|
let st1 = ref 0
|
|
and st2 = ref 0
|
|
;;
|
|
|
|
(* This is to test for quadratic dependencies between successive random
|
|
numbers.
|
|
*)
|
|
let init_diff2 r = st1 := int r; st2 := int r;;
|
|
let diff2 r =
|
|
let x1 = !st1
|
|
and x2 = !st2
|
|
and x3 = int r
|
|
in
|
|
st1 := x2;
|
|
st2 := x3;
|
|
(x3 - x2 - x2 + x1 + 2*r) mod r
|
|
;;
|
|
|
|
********************)
|