ocaml/testlabl/mixin.ml

141 lines
4.4 KiB
OCaml

(* $Id$ *)
(* Use maps for substitutions and sets for free variables *)
module Subst = Map.Make(struct type t = string let compare = compare end)
module Names = Set.Make(struct type t = string let compare = compare end)
(* Variables are common to lambda and expr *)
type var = [`Var string]
let subst_var :subst : var -> _ =
function `Var s as x ->
try Subst.find key:s subst
with Not_found -> x
let free_var : var -> _ = function `Var s -> Names.singleton s
(* The lambda language: free variables, substitutions, and evaluation *)
type 'a lambda = [`Var string | `Abs string * 'a | `App 'a * 'a]
let free_lambda :free_rec : _ lambda -> _ = function
#var as x -> free_var x
| `Abs (s, t) -> Names.remove item:s (free_rec t)
| `App (t1, t2) -> Names.union (free_rec t1) (free_rec t2)
let map_lambda :map_rec : _ lambda -> _ = function
#var as x -> x
| `Abs (s, t) as l ->
let t' = map_rec t in
if t == t' then l else `Abs(s, t')
| `App (t1, t2) as l ->
let t'1 = map_rec t1 and t'2 = map_rec t2 in
if t'1 == t1 && t'2 == t2 then l else `App (t'1, t'2)
let next_id =
let current = ref 3 in
fun () -> incr current; !current
let subst_lambda :subst_rec :free :subst : _ lambda -> _ = function
#var as x -> subst_var :subst x
| `Abs(s, t) as l ->
let used = free t in
let used_expr =
Subst.fold subst acc:[]
fun:(fun :key :data :acc ->
if Names.mem item:s used then data::acc else acc) in
if List.exists used_expr pred:(fun t -> Names.mem item:s (free t)) then
let name = s ^ string_of_int (next_id ()) in
`Abs(name, subst_rec subst:(Subst.add key:s data:(`Var name) subst) t)
else
map_lambda map_rec:(subst_rec subst:(Subst.remove key:s subst)) l
| `App _ as l ->
map_lambda map_rec:(subst_rec :subst) l
let eval_lambda :eval_rec :subst l =
match map_lambda map_rec:eval_rec l with
`App(`Abs(s,t1), t2) ->
eval_rec (subst subst:(Subst.add key:s data:t2 Subst.empty) t1)
| t -> t
(* Specialized versions to use on lambda *)
let rec free1 x = free_lambda free_rec:free1 x
let rec subst1 :subst = subst_lambda subst_rec:subst1 free:free1 :subst
let rec eval1 x = eval_lambda eval_rec:eval1 subst:subst1 x
(* The expr language of arithmetic expressions *)
type 'a expr =
[`Var string | `Num int | `Add 'a * 'a | `Neg 'a | `Mult 'a * 'a]
let free_expr :free_rec : _ expr -> _ = function
#var as x -> free_var x
| `Num _ -> Names.empty
| `Add(x, y) -> Names.union (free_rec x) (free_rec y)
| `Neg x -> free_rec x
| `Mult(x, y) -> Names.union (free_rec x) (free_rec y)
(* Here map_expr helps a lot *)
let map_expr :map_rec : _ expr -> _ = function
#var as x -> x
| `Num _ as x -> x
| `Add(x, y) as e ->
let x' = map_rec x and y' = map_rec y in
if x == x' && y == y' then e
else `Add(x', y')
| `Neg x as e ->
let x' = map_rec x in
if x == x' then e else `Neg x'
| `Mult(x, y) as e ->
let x' = map_rec x and y' = map_rec y in
if x == x' && y == y' then e
else `Mult(x', y')
let subst_expr :subst_rec :subst : _ expr -> _ = function
#var as x -> subst_var :subst x
| #expr as e -> map_expr map_rec:(subst_rec :subst) e
let eval_expr :eval_rec e =
match map_expr map_rec:eval_rec e with
`Add(`Num m, `Num n) -> `Num (m+n)
| `Neg(`Num n) -> `Num (-n)
| `Mult(`Num m, `Num n) -> `Num (m*n)
| #expr as e -> e
(* Specialized versions *)
let rec free2 x = free_expr free_rec:free2 x
let rec subst2 :subst = subst_expr subst_rec:subst2 :subst
let rec eval2 x = eval_expr eval_rec:eval2 x
(* The lexpr language, reunion of lambda and expr *)
type lexpr =
[ `Var string | `Abs string * lexpr | `App lexpr * lexpr
| `Num int | `Add lexpr * lexpr | `Neg lexpr | `Mult lexpr * lexpr ]
let rec free : lexpr -> _ = function
#lambda as x -> free_lambda free_rec:free x
| #expr as x -> free_expr free_rec:free x
let rec subst subst:s : lexpr -> _ = function
#lambda as x -> subst_lambda subst_rec:subst subst:s :free x
| #expr as x -> subst_expr subst_rec:subst subst:s x
let rec eval : lexpr -> _ = function
#lambda as x -> eval_lambda eval_rec:eval :subst x
| #expr as x -> eval_expr eval_rec:eval x
(* A few examples:
eval1 (`App(`Abs("x",`Var"x"), `Var"y"));;
eval2 (`Add(`Mult(`Num 3,`Neg(`Num 2)), `Var"x"));;
eval (`Add(`App(`Abs("x",`Mult(`Var"x",`Var"x")),`Num 2), `Num 5));;
*)