ocaml/lex/outputbis.ml

242 lines
7.7 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Output the DFA tables and its entry points *)
open Printf
open Lexgen
open Common
let output_auto_defs oc has_refill =
output_string oc
"let __ocaml_lex_init_lexbuf lexbuf mem_size =\
\n let pos = lexbuf.Lexing.lex_curr_pos in\
\n lexbuf.Lexing.lex_mem <- Array.make mem_size (-1) ;\
\n lexbuf.Lexing.lex_start_pos <- pos ;\
\n lexbuf.Lexing.lex_last_pos <- pos ;\
\n lexbuf.Lexing.lex_last_action <- -1\
\n\n\
" ;
if has_refill then
output_string oc
"let rec __ocaml_lex_next_char lexbuf state k =\
\n if lexbuf.Lexing.lex_curr_pos >= lexbuf.Lexing.lex_buffer_len then begin\
\n if lexbuf.Lexing.lex_eof_reached then\
\n state lexbuf k 256\
\n else begin\
\n __ocaml_lex_refill (fun lexbuf ->\
\n lexbuf.Lexing.refill_buff lexbuf ;\
\n __ocaml_lex_next_char lexbuf state k)\
\n lexbuf\
\n end\
\n end else begin\
\n let i = lexbuf.Lexing.lex_curr_pos in\
\n let c = lexbuf.Lexing.lex_buffer.[i] in\
\n lexbuf.Lexing.lex_curr_pos <- i+1 ;\
\n state lexbuf k (Char.code c)\
\n end\
\n\n"
else
output_string oc
"let rec __ocaml_lex_next_char lexbuf =\
\n if lexbuf.Lexing.lex_curr_pos >= lexbuf.Lexing.lex_buffer_len then begin\
\n if lexbuf.Lexing.lex_eof_reached then\
\n 256\
\n else begin\
\n lexbuf.Lexing.refill_buff lexbuf ;\
\n __ocaml_lex_next_char lexbuf\
\n end\
\n end else begin\
\n let i = lexbuf.Lexing.lex_curr_pos in\
\n let c = lexbuf.Lexing.lex_buffer.[i] in\
\n lexbuf.Lexing.lex_curr_pos <- i+1 ;\
\n Char.code c\
\n end\
\n\n"
let output_pats oc pats = List.iter (fun p -> fprintf oc "|%d" p) pats
let output_action oc has_refill mems r =
output_memory_actions " " oc mems ;
match r with
| Backtrack ->
fprintf oc
" lexbuf.Lexing.lex_curr_pos <- lexbuf.Lexing.lex_last_pos ;\n" ;
if has_refill then
fprintf oc " k lexbuf lexbuf.Lexing.lex_last_action\n"
else
fprintf oc " lexbuf.Lexing.lex_last_action\n"
| Goto n ->
fprintf oc " __ocaml_lex_state%d lexbuf%s\n" n
(if has_refill then " k" else "")
let output_pat oc i =
if i >= 256 then
fprintf oc "|eof"
else
fprintf oc "|'%s'" (Char.escaped (Char.chr i))
let output_clause oc has_refill pats mems r =
fprintf oc "(* " ;
List.iter (output_pat oc) pats ;
fprintf oc " *)\n" ;
fprintf oc " %a ->\n" output_pats pats ;
output_action oc has_refill mems r
let output_default_clause oc has_refill mems r =
fprintf oc " | _ ->\n" ; output_action oc has_refill mems r
let output_moves oc has_refill moves =
let t = Hashtbl.create 17 in
let add_move i (m,mems) =
let mems,r = try Hashtbl.find t m with Not_found -> mems,[] in
Hashtbl.replace t m (mems,(i::r)) in
for i = 0 to 256 do
add_move i moves.(i)
done ;
let most_frequent = ref Backtrack
and most_mems = ref []
and size = ref 0 in
Hashtbl.iter
(fun m (mems,pats) ->
let size_m = List.length pats in
if size_m > !size then begin
most_frequent := m ;
most_mems := mems ;
size := size_m
end)
t ;
Hashtbl.iter
(fun m (mems,pats) ->
if m <> !most_frequent then
output_clause oc has_refill (List.rev pats) mems m)
t ;
output_default_clause oc has_refill !most_mems !most_frequent
let output_tag_actions pref oc mvs =
output_string oc "(*" ;
List.iter
(fun i -> match i with
| SetTag (t,m) -> fprintf oc " t%d <- [%d] ;" t m
| EraseTag t -> fprintf oc " t%d <- -1 ;" t)
mvs ;
output_string oc " *)\n" ;
List.iter
(fun i -> match i with
| SetTag (t,m) ->
fprintf oc "%s%a <- %a ;\n"
pref output_mem_access t output_mem_access m
| EraseTag t ->
fprintf oc "%s%a <- -1 ;\n"
pref output_mem_access t)
mvs
let output_trans pref oc has_refill i trans =
let entry = sprintf "__ocaml_lex_state%d" i in
fprintf oc "%s %s lexbuf %s= " pref entry
(if has_refill then "k " else "");
match trans with
| Perform (n,mvs) ->
output_tag_actions " " oc mvs ;
fprintf oc " %s%d\n"
(if has_refill then "k lexbuf " else "")
n
| Shift (trans, move) ->
begin match trans with
| Remember (n,mvs) ->
output_tag_actions " " oc mvs ;
fprintf oc
" lexbuf.Lexing.lex_last_pos <- lexbuf.Lexing.lex_curr_pos ;\n" ;
fprintf oc " lexbuf.Lexing.lex_last_action <- %d ;\n" n;
| No_remember -> ()
end;
if has_refill then
let next = entry ^ "_next" in
fprintf oc " __ocaml_lex_next_char lexbuf %s k\n" next;
fprintf oc "and %s lexbuf k = function " next
else
output_string oc "match __ocaml_lex_next_char lexbuf with\n";
output_moves oc has_refill move
let output_automata oc has_refill auto =
output_auto_defs oc has_refill;
let n = Array.length auto in
output_trans "let rec" oc has_refill 0 auto.(0) ;
for i = 1 to n-1 do
output_trans "\nand" oc has_refill i auto.(i)
done ;
output_char oc '\n'
(* Output the entries *)
let output_entry ic oc has_refill tr e =
let init_num, init_moves = e.auto_initial_state in
fprintf oc "%s %alexbuf =\n __ocaml_lex_init_lexbuf lexbuf %d; %a"
e.auto_name output_args e.auto_args
e.auto_mem_size
(output_memory_actions " ") init_moves;
fprintf oc
(if has_refill
then "\n __ocaml_lex_state%d lexbuf (fun lexbuf __ocaml_lex_result ->"
else "\n let __ocaml_lex_result = __ocaml_lex_state%d lexbuf in")
init_num;
output_string oc "\
\n lexbuf.Lexing.lex_start_p <- lexbuf.Lexing.lex_curr_p;\
\n lexbuf.Lexing.lex_curr_p <- {lexbuf.Lexing.lex_curr_p with\
\n Lexing.pos_cnum = lexbuf.Lexing.lex_abs_pos+lexbuf.Lexing.lex_curr_pos};\
\n match __ocaml_lex_result with\n";
List.iter
(fun (num, env, loc) ->
fprintf oc " | ";
fprintf oc "%d ->\n" num;
output_env ic oc tr env ;
copy_chunk ic oc tr loc true;
fprintf oc "\n")
e.auto_actions;
fprintf oc " | _ -> raise (Failure \"lexing: empty token\")\n";
if has_refill then
output_string oc " )\n\n"
else
output_string oc "\n\n"
(* Main output function *)
let output_lexdef ic oc tr header rh
entry_points transitions trailer =
copy_chunk ic oc tr header false;
let has_refill = output_refill_handler ic oc tr rh in
output_automata oc has_refill transitions;
begin match entry_points with
[] -> ()
| entry1 :: entries ->
output_string oc "let rec ";
output_entry ic oc has_refill tr entry1;
List.iter
(fun e -> output_string oc "and ";
output_entry ic oc has_refill tr e)
entries;
output_string oc ";;\n\n";
end;
copy_chunk ic oc tr trailer false