ocaml/asmcomp/selectgen.ml

894 lines
31 KiB
OCaml

(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* Selection of pseudo-instructions, assignment of pseudo-registers,
sequentialization. *)
open Misc
open Cmm
open Reg
open Mach
type environment = (Ident.t, Reg.t array) Tbl.t
(* Infer the type of the result of an operation *)
let oper_result_type = function
Capply(ty, _) -> ty
| Cextcall(s, ty, alloc, _) -> ty
| Cload c ->
begin match c with
| Word_val -> typ_val
| Single | Double | Double_u -> typ_float
| _ -> typ_int
end
| Calloc -> typ_val
| Cstore c -> typ_void
| Caddi | Csubi | Cmuli | Cmulhi | Cdivi | Cmodi |
Cand | Cor | Cxor | Clsl | Clsr | Casr |
Ccmpi _ | Ccmpa _ | Ccmpf _ -> typ_int
| Caddv -> typ_val
| Cadda -> typ_addr
| Cnegf | Cabsf | Caddf | Csubf | Cmulf | Cdivf -> typ_float
| Cfloatofint -> typ_float
| Cintoffloat -> typ_int
| Craise _ -> typ_void
| Ccheckbound _ -> typ_void
(* Infer the size in bytes of the result of a simple expression *)
let size_expr env exp =
let rec size localenv = function
Cconst_int _ | Cconst_natint _
| Cconst_blockheader _ -> Arch.size_int
| Cconst_symbol _ | Cconst_pointer _ | Cconst_natpointer _ ->
Arch.size_addr
| Cconst_float _ -> Arch.size_float
| Cvar id ->
begin try
Tbl.find id localenv
with Not_found ->
try
let regs = Tbl.find id env in
size_machtype (Array.map (fun r -> r.typ) regs)
with Not_found ->
fatal_error("Selection.size_expr: unbound var " ^
Ident.unique_name id)
end
| Ctuple el ->
List.fold_right (fun e sz -> size localenv e + sz) el 0
| Cop(op, args) ->
size_machtype(oper_result_type op)
| Clet(id, arg, body) ->
size (Tbl.add id (size localenv arg) localenv) body
| Csequence(e1, e2) ->
size localenv e2
| _ ->
fatal_error "Selection.size_expr"
in size Tbl.empty exp
(* Swap the two arguments of an integer comparison *)
let swap_intcomp = function
Isigned cmp -> Isigned(swap_comparison cmp)
| Iunsigned cmp -> Iunsigned(swap_comparison cmp)
(* Naming of registers *)
let all_regs_anonymous rv =
try
for i = 0 to Array.length rv - 1 do
if not (Reg.anonymous rv.(i)) then raise Exit
done;
true
with Exit ->
false
let name_regs id rv =
if Array.length rv = 1 then
rv.(0).raw_name <- Raw_name.create_from_ident id
else
for i = 0 to Array.length rv - 1 do
rv.(i).raw_name <- Raw_name.create_from_ident id;
rv.(i).part <- Some i
done
(* "Join" two instruction sequences, making sure they return their results
in the same registers. *)
let join opt_r1 seq1 opt_r2 seq2 =
match (opt_r1, opt_r2) with
(None, _) -> opt_r2
| (_, None) -> opt_r1
| (Some r1, Some r2) ->
let l1 = Array.length r1 in
assert (l1 = Array.length r2);
let r = Array.make l1 Reg.dummy in
for i = 0 to l1-1 do
if Reg.anonymous r1.(i) then begin
r.(i) <- r1.(i);
seq2#insert_move r2.(i) r1.(i)
end else if Reg.anonymous r2.(i) then begin
r.(i) <- r2.(i);
seq1#insert_move r1.(i) r2.(i)
end else begin
r.(i) <- Reg.create r1.(i).typ;
seq1#insert_move r1.(i) r.(i);
seq2#insert_move r2.(i) r.(i)
end
done;
Some r
(* Same, for N branches *)
let join_array rs =
let some_res = ref None in
for i = 0 to Array.length rs - 1 do
let (r, s) = rs.(i) in
if r <> None then some_res := r
done;
match !some_res with
None -> None
| Some template ->
let size_res = Array.length template in
let res = Array.make size_res Reg.dummy in
for i = 0 to size_res - 1 do
res.(i) <- Reg.create template.(i).typ
done;
for i = 0 to Array.length rs - 1 do
let (r, s) = rs.(i) in
match r with
None -> ()
| Some r -> s#insert_moves r res
done;
Some res
(* Extract debug info contained in a C-- operation *)
let debuginfo_op = function
| Capply(_, dbg) -> dbg
| Cextcall(_, _, _, dbg) -> dbg
| Craise (_, dbg) -> dbg
| Ccheckbound dbg -> dbg
| _ -> Debuginfo.none
(* Registers for catch constructs *)
let catch_regs = ref []
(* Name of function being compiled *)
let current_function_name = ref ""
(* The default instruction selection class *)
class virtual selector_generic = object (self)
(* Says if an expression is "simple". A "simple" expression has no
side-effects and its execution can be delayed until its value
is really needed. In the case of e.g. an [alloc] instruction,
the non-simple arguments are computed in right-to-left order
first, then the block is allocated, then the simple arguments are
evaluated and stored. *)
method is_simple_expr = function
Cconst_int _ -> true
| Cconst_natint _ -> true
| Cconst_blockheader _ -> true
| Cconst_float _ -> true
| Cconst_symbol _ -> true
| Cconst_pointer _ -> true
| Cconst_natpointer _ -> true
| Cvar _ -> true
| Ctuple el -> List.for_all self#is_simple_expr el
| Clet(id, arg, body) -> self#is_simple_expr arg && self#is_simple_expr body
| Csequence(e1, e2) -> self#is_simple_expr e1 && self#is_simple_expr e2
| Cop(op, args) ->
begin match op with
(* The following may have side effects *)
| Capply _ | Cextcall _ | Calloc | Cstore _ | Craise _ -> false
(* The remaining operations are simple if their args are *)
| _ ->
List.for_all self#is_simple_expr args
end
| _ -> false
(* Says whether an integer constant is a suitable immediate argument *)
method virtual is_immediate : int -> bool
(* Selection of addressing modes *)
method virtual select_addressing :
Cmm.memory_chunk -> Cmm.expression -> Arch.addressing_mode * Cmm.expression
(* Default instruction selection for stores (of words) *)
method select_store is_assign addr arg =
(Istore(Word_val, addr, is_assign), arg)
(* call marking methods, documented in selectgen.mli *)
method mark_call =
Proc.contains_calls := true
method mark_tailcall = ()
method mark_c_tailcall = ()
method mark_instr = function
| Iop (Icall_ind | Icall_imm _ | Iextcall _) ->
self#mark_call
| Iop (Itailcall_ind | Itailcall_imm _) ->
self#mark_tailcall
| Iop (Ialloc _) ->
self#mark_call (* caml_alloc*, caml_garbage_collection *)
| Iop (Iintop Icheckbound | Iintop_imm(Icheckbound, _)) ->
self#mark_c_tailcall (* caml_ml_array_bound_error *)
| Iraise raise_kind ->
begin match raise_kind with
| Lambda.Raise_notrace -> ()
| Lambda.Raise_regular | Lambda.Raise_reraise ->
if !Clflags.debug then (* PR#6239 *)
(* caml_stash_backtrace; we #mark_call rather than
#mark_c_tailcall to get a good stack backtrace *)
self#mark_call
end
| Itrywith _ ->
self#mark_call
| _ -> ()
(* Default instruction selection for operators *)
method select_operation op args =
match (op, args) with
(Capply(ty, dbg), Cconst_symbol s :: rem) -> (Icall_imm s, rem)
| (Capply(ty, dbg), _) -> (Icall_ind, args)
| (Cextcall(s, ty, alloc, dbg), _) -> (Iextcall(s, alloc), args)
| (Cload chunk, [arg]) ->
let (addr, eloc) = self#select_addressing chunk arg in
(Iload(chunk, addr), [eloc])
| (Cstore chunk, [arg1; arg2]) ->
let (addr, eloc) = self#select_addressing chunk arg1 in
if chunk = Word_int || chunk = Word_val then begin
let (op, newarg2) = self#select_store true addr arg2 in
(op, [newarg2; eloc])
end else begin
(Istore(chunk, addr, true), [arg2; eloc])
(* Inversion addr/datum in Istore *)
end
| (Calloc, _) -> (Ialloc 0, args)
| (Caddi, _) -> self#select_arith_comm Iadd args
| (Csubi, _) -> self#select_arith Isub args
| (Cmuli, _) -> self#select_arith_comm Imul args
| (Cmulhi, _) -> self#select_arith_comm Imulh args
| (Cdivi, _) -> (Iintop Idiv, args)
| (Cmodi, _) -> (Iintop Imod, args)
| (Cand, _) -> self#select_arith_comm Iand args
| (Cor, _) -> self#select_arith_comm Ior args
| (Cxor, _) -> self#select_arith_comm Ixor args
| (Clsl, _) -> self#select_shift Ilsl args
| (Clsr, _) -> self#select_shift Ilsr args
| (Casr, _) -> self#select_shift Iasr args
| (Ccmpi comp, _) -> self#select_arith_comp (Isigned comp) args
| (Caddv, _) -> self#select_arith_comm Iadd args
| (Cadda, _) -> self#select_arith_comm Iadd args
| (Ccmpa comp, _) -> self#select_arith_comp (Iunsigned comp) args
| (Cnegf, _) -> (Inegf, args)
| (Cabsf, _) -> (Iabsf, args)
| (Caddf, _) -> (Iaddf, args)
| (Csubf, _) -> (Isubf, args)
| (Cmulf, _) -> (Imulf, args)
| (Cdivf, _) -> (Idivf, args)
| (Cfloatofint, _) -> (Ifloatofint, args)
| (Cintoffloat, _) -> (Iintoffloat, args)
| (Ccheckbound _, _) -> self#select_arith Icheckbound args
| _ -> fatal_error "Selection.select_oper"
method private select_arith_comm op = function
[arg; Cconst_int n] when self#is_immediate n ->
(Iintop_imm(op, n), [arg])
| [arg; Cconst_pointer n] when self#is_immediate n ->
(Iintop_imm(op, n), [arg])
| [Cconst_int n; arg] when self#is_immediate n ->
(Iintop_imm(op, n), [arg])
| [Cconst_pointer n; arg] when self#is_immediate n ->
(Iintop_imm(op, n), [arg])
| args ->
(Iintop op, args)
method private select_arith op = function
[arg; Cconst_int n] when self#is_immediate n ->
(Iintop_imm(op, n), [arg])
| [arg; Cconst_pointer n] when self#is_immediate n ->
(Iintop_imm(op, n), [arg])
| args ->
(Iintop op, args)
method private select_shift op = function
[arg; Cconst_int n] when n >= 0 && n < Arch.size_int * 8 ->
(Iintop_imm(op, n), [arg])
| args ->
(Iintop op, args)
method private select_arith_comp cmp = function
[arg; Cconst_int n] when self#is_immediate n ->
(Iintop_imm(Icomp cmp, n), [arg])
| [arg; Cconst_pointer n] when self#is_immediate n ->
(Iintop_imm(Icomp cmp, n), [arg])
| [Cconst_int n; arg] when self#is_immediate n ->
(Iintop_imm(Icomp(swap_intcomp cmp), n), [arg])
| [Cconst_pointer n; arg] when self#is_immediate n ->
(Iintop_imm(Icomp(swap_intcomp cmp), n), [arg])
| args ->
(Iintop(Icomp cmp), args)
(* Instruction selection for conditionals *)
method select_condition = function
Cop(Ccmpi cmp, [arg1; Cconst_int n]) when self#is_immediate n ->
(Iinttest_imm(Isigned cmp, n), arg1)
| Cop(Ccmpi cmp, [Cconst_int n; arg2]) when self#is_immediate n ->
(Iinttest_imm(Isigned(swap_comparison cmp), n), arg2)
| Cop(Ccmpi cmp, [arg1; Cconst_pointer n]) when self#is_immediate n ->
(Iinttest_imm(Isigned cmp, n), arg1)
| Cop(Ccmpi cmp, [Cconst_pointer n; arg2]) when self#is_immediate n ->
(Iinttest_imm(Isigned(swap_comparison cmp), n), arg2)
| Cop(Ccmpi cmp, args) ->
(Iinttest(Isigned cmp), Ctuple args)
| Cop(Ccmpa cmp, [arg1; Cconst_pointer n]) when self#is_immediate n ->
(Iinttest_imm(Iunsigned cmp, n), arg1)
| Cop(Ccmpa cmp, [arg1; Cconst_int n]) when self#is_immediate n ->
(Iinttest_imm(Iunsigned cmp, n), arg1)
| Cop(Ccmpa cmp, [Cconst_pointer n; arg2]) when self#is_immediate n ->
(Iinttest_imm(Iunsigned(swap_comparison cmp), n), arg2)
| Cop(Ccmpa cmp, [Cconst_int n; arg2]) when self#is_immediate n ->
(Iinttest_imm(Iunsigned(swap_comparison cmp), n), arg2)
| Cop(Ccmpa cmp, args) ->
(Iinttest(Iunsigned cmp), Ctuple args)
| Cop(Ccmpf cmp, args) ->
(Ifloattest(cmp, false), Ctuple args)
| Cop(Cand, [arg; Cconst_int 1]) ->
(Ioddtest, arg)
| arg ->
(Itruetest, arg)
(* Return an array of fresh registers of the given type.
Normally implemented as Reg.createv, but some
ports (e.g. Arm) can override this definition to store float values
in pairs of integer registers. *)
method regs_for tys = Reg.createv tys
(* Buffering of instruction sequences *)
val mutable instr_seq = dummy_instr
method insert_debug desc dbg arg res =
instr_seq <- instr_cons_debug desc arg res dbg instr_seq
method insert desc arg res =
instr_seq <- instr_cons desc arg res instr_seq
method extract =
let rec extract res i =
if i == dummy_instr
then res
else extract {i with next = res} i.next in
extract (end_instr()) instr_seq
(* Insert a sequence of moves from one pseudoreg set to another. *)
method insert_move src dst =
if src.stamp <> dst.stamp then
self#insert (Iop Imove) [|src|] [|dst|]
method insert_moves src dst =
for i = 0 to min (Array.length src) (Array.length dst) - 1 do
self#insert_move src.(i) dst.(i)
done
(* Adjust the types of destination pseudoregs for a [Cassign] assignment.
The type inferred at [let] binding might be [Int] while we assign
something of type [Val] (PR#6501). *)
method adjust_type src dst =
let ts = src.typ and td = dst.typ in
if ts <> td then
match ts, td with
| Val, Int -> dst.typ <- Val
| Int, Val -> ()
| _, _ -> fatal_error("Selection.adjust_type: bad assignment to "
^ Reg.name dst)
method adjust_types src dst =
for i = 0 to min (Array.length src) (Array.length dst) - 1 do
self#adjust_type src.(i) dst.(i)
done
(* Insert moves and stack offsets for function arguments and results *)
method insert_move_args arg loc stacksize =
if stacksize <> 0 then self#insert (Iop(Istackoffset stacksize)) [||] [||];
self#insert_moves arg loc
method insert_move_results loc res stacksize =
if stacksize <> 0 then self#insert(Iop(Istackoffset(-stacksize))) [||] [||];
self#insert_moves loc res
(* Add an Iop opcode. Can be overridden by processor description
to insert moves before and after the operation, i.e. for two-address
instructions, or instructions using dedicated registers. *)
method insert_op_debug op dbg rs rd =
self#insert_debug (Iop op) dbg rs rd;
rd
method insert_op op rs rd =
self#insert_op_debug op Debuginfo.none rs rd
(* Add the instructions for the given expression
at the end of the self sequence *)
method emit_expr env exp =
match exp with
Cconst_int n ->
let r = self#regs_for typ_int in
Some(self#insert_op (Iconst_int(Nativeint.of_int n)) [||] r)
| Cconst_natint n ->
let r = self#regs_for typ_int in
Some(self#insert_op (Iconst_int n) [||] r)
| Cconst_blockheader n ->
let r = self#regs_for typ_int in
Some(self#insert_op (Iconst_blockheader n) [||] r)
| Cconst_float n ->
let r = self#regs_for typ_float in
Some(self#insert_op (Iconst_float n) [||] r)
| Cconst_symbol n ->
let r = self#regs_for typ_val in
Some(self#insert_op (Iconst_symbol n) [||] r)
| Cconst_pointer n ->
let r = self#regs_for typ_val in (* integer as Caml value *)
Some(self#insert_op (Iconst_int(Nativeint.of_int n)) [||] r)
| Cconst_natpointer n ->
let r = self#regs_for typ_val in (* integer as Caml value *)
Some(self#insert_op (Iconst_int n) [||] r)
| Cvar v ->
begin try
Some(Tbl.find v env)
with Not_found ->
fatal_error("Selection.emit_expr: unbound var " ^ Ident.unique_name v)
end
| Clet(v, e1, e2) ->
begin match self#emit_expr env e1 with
None -> None
| Some r1 -> self#emit_expr (self#bind_let env v r1) e2
end
| Cassign(v, e1) ->
let rv =
try
Tbl.find v env
with Not_found ->
fatal_error ("Selection.emit_expr: unbound var " ^ Ident.name v) in
begin match self#emit_expr env e1 with
None -> None
| Some r1 -> self#adjust_types r1 rv; self#insert_moves r1 rv; Some [||]
end
| Ctuple [] ->
Some [||]
| Ctuple exp_list ->
begin match self#emit_parts_list env exp_list with
None -> None
| Some(simple_list, ext_env) ->
Some(self#emit_tuple ext_env simple_list)
end
| Cop(Craise (k, dbg), [arg]) ->
begin match self#emit_expr env arg with
None -> None
| Some r1 ->
let rd = [|Proc.loc_exn_bucket|] in
self#insert (Iop Imove) r1 rd;
self#insert_debug (Iraise k) dbg rd [||];
None
end
| Cop(Ccmpf comp, args) ->
self#emit_expr env (Cifthenelse(exp, Cconst_int 1, Cconst_int 0))
| Cop(op, args) ->
begin match self#emit_parts_list env args with
None -> None
| Some(simple_args, env) ->
let ty = oper_result_type op in
let (new_op, new_args) = self#select_operation op simple_args in
let dbg = debuginfo_op op in
match new_op with
Icall_ind ->
let r1 = self#emit_tuple env new_args in
let rarg = Array.sub r1 1 (Array.length r1 - 1) in
let rd = self#regs_for ty in
let (loc_arg, stack_ofs) = Proc.loc_arguments rarg in
let loc_res = Proc.loc_results rd in
self#insert_move_args rarg loc_arg stack_ofs;
self#insert_debug (Iop Icall_ind) dbg
(Array.append [|r1.(0)|] loc_arg) loc_res;
self#insert_move_results loc_res rd stack_ofs;
Some rd
| Icall_imm lbl ->
let r1 = self#emit_tuple env new_args in
let rd = self#regs_for ty in
let (loc_arg, stack_ofs) = Proc.loc_arguments r1 in
let loc_res = Proc.loc_results rd in
self#insert_move_args r1 loc_arg stack_ofs;
self#insert_debug (Iop(Icall_imm lbl)) dbg loc_arg loc_res;
self#insert_move_results loc_res rd stack_ofs;
Some rd
| Iextcall(lbl, alloc) ->
let (loc_arg, stack_ofs) = self#emit_extcall_args env new_args in
let rd = self#regs_for ty in
let loc_res = self#insert_op_debug (Iextcall(lbl, alloc)) dbg
loc_arg (Proc.loc_external_results rd) in
self#insert_move_results loc_res rd stack_ofs;
Some rd
| Ialloc _ ->
let rd = self#regs_for typ_val in
let size = size_expr env (Ctuple new_args) in
self#insert (Iop(Ialloc size)) [||] rd;
self#emit_stores env new_args rd;
Some rd
| op ->
let r1 = self#emit_tuple env new_args in
let rd = self#regs_for ty in
Some (self#insert_op_debug op dbg r1 rd)
end
| Csequence(e1, e2) ->
begin match self#emit_expr env e1 with
None -> None
| Some r1 -> self#emit_expr env e2
end
| Cifthenelse(econd, eif, eelse) ->
let (cond, earg) = self#select_condition econd in
begin match self#emit_expr env earg with
None -> None
| Some rarg ->
let (rif, sif) = self#emit_sequence env eif in
let (relse, selse) = self#emit_sequence env eelse in
let r = join rif sif relse selse in
self#insert (Iifthenelse(cond, sif#extract, selse#extract))
rarg [||];
r
end
| Cswitch(esel, index, ecases) ->
begin match self#emit_expr env esel with
None -> None
| Some rsel ->
let rscases = Array.map (self#emit_sequence env) ecases in
let r = join_array rscases in
self#insert (Iswitch(index,
Array.map (fun (r, s) -> s#extract) rscases))
rsel [||];
r
end
| Cloop(ebody) ->
let (rarg, sbody) = self#emit_sequence env ebody in
self#insert (Iloop(sbody#extract)) [||] [||];
Some [||]
| Ccatch(nfail, ids, e1, e2) ->
let rs =
List.map
(fun id ->
let r = self#regs_for typ_val in name_regs id r; r)
ids in
catch_regs := (nfail, Array.concat rs) :: !catch_regs ;
let (r1, s1) = self#emit_sequence env e1 in
catch_regs := List.tl !catch_regs ;
let new_env =
List.fold_left
(fun env (id,r) -> Tbl.add id r env)
env (List.combine ids rs) in
let (r2, s2) = self#emit_sequence new_env e2 in
let r = join r1 s1 r2 s2 in
self#insert (Icatch(nfail, s1#extract, s2#extract)) [||] [||];
r
| Cexit (nfail,args) ->
begin match self#emit_parts_list env args with
None -> None
| Some (simple_list, ext_env) ->
let src = self#emit_tuple ext_env simple_list in
let dest =
try List.assoc nfail !catch_regs
with Not_found ->
Misc.fatal_error
("Selectgen.emit_expr, on exit("^string_of_int nfail^")") in
self#insert_moves src dest ;
self#insert (Iexit nfail) [||] [||];
None
end
| Ctrywith(e1, v, e2) ->
let (r1, s1) = self#emit_sequence env e1 in
let rv = self#regs_for typ_val in
let (r2, s2) = self#emit_sequence (Tbl.add v rv env) e2 in
let r = join r1 s1 r2 s2 in
self#insert
(Itrywith(s1#extract,
instr_cons (Iop Imove) [|Proc.loc_exn_bucket|] rv
(s2#extract)))
[||] [||];
r
method private emit_sequence env exp =
let s = {< instr_seq = dummy_instr >} in
let r = s#emit_expr env exp in
(r, s)
method private bind_let env v r1 =
if all_regs_anonymous r1 then begin
name_regs v r1;
Tbl.add v r1 env
end else begin
let rv = Reg.createv_like r1 in
name_regs v rv;
self#insert_moves r1 rv;
Tbl.add v rv env
end
method private emit_parts env exp =
if self#is_simple_expr exp then
Some (exp, env)
else begin
match self#emit_expr env exp with
None -> None
| Some r ->
if Array.length r = 0 then
Some (Ctuple [], env)
else begin
(* The normal case *)
let id = Ident.create "bind" in
if all_regs_anonymous r then
(* r is an anonymous, unshared register; use it directly *)
Some (Cvar id, Tbl.add id r env)
else begin
(* Introduce a fresh temp to hold the result *)
let tmp = Reg.createv_like r in
self#insert_moves r tmp;
Some (Cvar id, Tbl.add id tmp env)
end
end
end
method private emit_parts_list env exp_list =
match exp_list with
[] -> Some ([], env)
| exp :: rem ->
(* This ensures right-to-left evaluation, consistent with the
bytecode compiler *)
match self#emit_parts_list env rem with
None -> None
| Some(new_rem, new_env) ->
match self#emit_parts new_env exp with
None -> None
| Some(new_exp, fin_env) -> Some(new_exp :: new_rem, fin_env)
method private emit_tuple_not_flattened env exp_list =
let rec emit_list = function
[] -> []
| exp :: rem ->
(* Again, force right-to-left evaluation *)
let loc_rem = emit_list rem in
match self#emit_expr env exp with
None -> assert false (* should have been caught in emit_parts *)
| Some loc_exp -> loc_exp :: loc_rem
in
emit_list exp_list
method private emit_tuple env exp_list =
Array.concat (self#emit_tuple_not_flattened env exp_list)
method emit_extcall_args env args =
let args = self#emit_tuple_not_flattened env args in
let arg_hard_regs, stack_ofs =
Proc.loc_external_arguments (Array.of_list args)
in
(* Flattening [args] and [arg_hard_regs] causes parts of values split
across multiple registers to line up correctly, by virtue of the
semantics of [split_int64_for_32bit_target] in cmmgen.ml, and the
required semantics of [loc_external_arguments] (see proc.mli). *)
let args = Array.concat args in
let arg_hard_regs = Array.concat (Array.to_list arg_hard_regs) in
self#insert_move_args args arg_hard_regs stack_ofs;
arg_hard_regs, stack_ofs
method emit_stores env data regs_addr =
let a =
ref (Arch.offset_addressing Arch.identity_addressing (-Arch.size_int)) in
List.iter
(fun e ->
let (op, arg) = self#select_store false !a e in
match self#emit_expr env arg with
None -> assert false
| Some regs ->
match op with
Istore(_, _, _) ->
for i = 0 to Array.length regs - 1 do
let r = regs.(i) in
let kind = if r.typ = Float then Double_u else Word_val in
self#insert (Iop(Istore(kind, !a, false)))
(Array.append [|r|] regs_addr) [||];
a := Arch.offset_addressing !a (size_component r.typ)
done
| _ ->
self#insert (Iop op) (Array.append regs regs_addr) [||];
a := Arch.offset_addressing !a (size_expr env e))
data
(* Same, but in tail position *)
method private emit_return env exp =
match self#emit_expr env exp with
None -> ()
| Some r ->
let loc = Proc.loc_results r in
self#insert_moves r loc;
self#insert Ireturn loc [||]
method emit_tail env exp =
match exp with
Clet(v, e1, e2) ->
begin match self#emit_expr env e1 with
None -> ()
| Some r1 -> self#emit_tail (self#bind_let env v r1) e2
end
| Cop(Capply(ty, dbg) as op, args) ->
begin match self#emit_parts_list env args with
None -> ()
| Some(simple_args, env) ->
let (new_op, new_args) = self#select_operation op simple_args in
match new_op with
Icall_ind ->
let r1 = self#emit_tuple env new_args in
let rarg = Array.sub r1 1 (Array.length r1 - 1) in
let (loc_arg, stack_ofs) = Proc.loc_arguments rarg in
if stack_ofs = 0 then begin
self#insert_moves rarg loc_arg;
self#insert (Iop Itailcall_ind)
(Array.append [|r1.(0)|] loc_arg) [||]
end else begin
let rd = self#regs_for ty in
let loc_res = Proc.loc_results rd in
self#insert_move_args rarg loc_arg stack_ofs;
self#insert_debug (Iop Icall_ind) dbg
(Array.append [|r1.(0)|] loc_arg) loc_res;
self#insert(Iop(Istackoffset(-stack_ofs))) [||] [||];
self#insert Ireturn loc_res [||]
end
| Icall_imm lbl ->
let r1 = self#emit_tuple env new_args in
let (loc_arg, stack_ofs) = Proc.loc_arguments r1 in
if stack_ofs = 0 then begin
self#insert_moves r1 loc_arg;
self#insert (Iop(Itailcall_imm lbl)) loc_arg [||]
end else if lbl = !current_function_name then begin
let loc_arg' = Proc.loc_parameters r1 in
self#insert_moves r1 loc_arg';
self#insert (Iop(Itailcall_imm lbl)) loc_arg' [||]
end else begin
let rd = self#regs_for ty in
let loc_res = Proc.loc_results rd in
self#insert_move_args r1 loc_arg stack_ofs;
self#insert_debug (Iop(Icall_imm lbl)) dbg loc_arg loc_res;
self#insert(Iop(Istackoffset(-stack_ofs))) [||] [||];
self#insert Ireturn loc_res [||]
end
| _ -> fatal_error "Selection.emit_tail"
end
| Csequence(e1, e2) ->
begin match self#emit_expr env e1 with
None -> ()
| Some r1 -> self#emit_tail env e2
end
| Cifthenelse(econd, eif, eelse) ->
let (cond, earg) = self#select_condition econd in
begin match self#emit_expr env earg with
None -> ()
| Some rarg ->
self#insert (Iifthenelse(cond, self#emit_tail_sequence env eif,
self#emit_tail_sequence env eelse))
rarg [||]
end
| Cswitch(esel, index, ecases) ->
begin match self#emit_expr env esel with
None -> ()
| Some rsel ->
self#insert
(Iswitch(index, Array.map (self#emit_tail_sequence env) ecases))
rsel [||]
end
| Ccatch(nfail, ids, e1, e2) ->
let rs =
List.map
(fun id ->
let r = self#regs_for typ_val in
name_regs id r ;
r)
ids in
catch_regs := (nfail, Array.concat rs) :: !catch_regs ;
let s1 = self#emit_tail_sequence env e1 in
catch_regs := List.tl !catch_regs ;
let new_env =
List.fold_left
(fun env (id,r) -> Tbl.add id r env)
env (List.combine ids rs) in
let s2 = self#emit_tail_sequence new_env e2 in
self#insert (Icatch(nfail, s1, s2)) [||] [||]
| Ctrywith(e1, v, e2) ->
let (opt_r1, s1) = self#emit_sequence env e1 in
let rv = self#regs_for typ_val in
let s2 = self#emit_tail_sequence (Tbl.add v rv env) e2 in
self#insert
(Itrywith(s1#extract,
instr_cons (Iop Imove) [|Proc.loc_exn_bucket|] rv s2))
[||] [||];
begin match opt_r1 with
None -> ()
| Some r1 ->
let loc = Proc.loc_results r1 in
self#insert_moves r1 loc;
self#insert Ireturn loc [||]
end
| _ ->
self#emit_return env exp
method private emit_tail_sequence env exp =
let s = {< instr_seq = dummy_instr >} in
s#emit_tail env exp;
s#extract
(* Sequentialization of a function definition *)
method emit_fundecl f =
Proc.contains_calls := false;
current_function_name := f.Cmm.fun_name;
let rargs =
List.map
(fun (id, ty) -> let r = self#regs_for ty in name_regs id r; r)
f.Cmm.fun_args in
let rarg = Array.concat rargs in
let loc_arg = Proc.loc_parameters rarg in
let env =
List.fold_right2
(fun (id, ty) r env -> Tbl.add id r env)
f.Cmm.fun_args rargs Tbl.empty in
self#insert_moves loc_arg rarg;
self#emit_tail env f.Cmm.fun_body;
let body = self#extract in
instr_iter (fun instr -> self#mark_instr instr.Mach.desc) body;
{ fun_name = f.Cmm.fun_name;
fun_args = loc_arg;
fun_body = body;
fun_fast = f.Cmm.fun_fast;
fun_dbg = f.Cmm.fun_dbg }
end
(* Tail call criterion (estimated). Assumes:
- all arguments are of type "int" (always the case for OCaml function calls)
- one extra argument representing the closure environment (conservative).
*)
let is_tail_call nargs =
assert (Reg.dummy.typ = Int);
let args = Array.make (nargs + 1) Reg.dummy in
let (loc_arg, stack_ofs) = Proc.loc_arguments args in
stack_ofs = 0
let _ =
Simplif.is_tail_native_heuristic := is_tail_call
let reset () =
catch_regs := [];
current_function_name := ""