ocaml/stdlib/nativeint.mli

118 lines
5.8 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Module [Nativeint]: processor-native integers *)
(* This module provides operations on the type [nativeint] of
signed 32-bit integers (on 32-bit platforms) or
signed 64-bit integers (on 64-bit platforms).
This integer type has exactly the same width as that of a [long]
integer type in the C compiler. All arithmetic operations over
[nativeint] are taken modulo $2^{32}$ or $2^{64}$ depending
on the word size of the architecture. *)
val zero: nativeint
val one: nativeint
val minus_one: nativeint
(* The native integers 0, 1, -1. *)
external neg: nativeint -> nativeint = "%nativeint_neg"
(* Unary negation. *)
external add: nativeint -> nativeint -> nativeint = "%nativeint_add"
(* Addition. *)
external sub: nativeint -> nativeint -> nativeint = "%nativeint_sub"
(* Subtraction. *)
external mul: nativeint -> nativeint -> nativeint = "%nativeint_mul"
(* Multiplication. *)
external div: nativeint -> nativeint -> nativeint = "%nativeint_div"
(* Integer division. Raise [Division_by_zero] if the second
argument is zero. *)
external rem: nativeint -> nativeint -> nativeint = "%nativeint_mod"
(* Integer remainder. If [x >= 0] and [y > 0], the result
of [Nativeint.rem x y] satisfies the following properties:
[0 <= Nativeint.rem x y < y] and
[x = Nativeint.add (Nativeint.mul (Nativeint.div x y) y) (Nativeint.rem x y)].
If [y = 0], [Nativeint.rem x y] raises [Division_by_zero].
If [x < 0] or [y < 0], the result of [Nativeint.rem x y] is
not specified and depends on the platform. *)
val succ: nativeint -> nativeint
(* Successor. [Nativeint.succ x] is [Nativeint.add x 1n]. *)
val pred: nativeint -> nativeint
(* Predecessor. [Nativeint.pred x] is [Nativeint.sub x 1n]. *)
val abs: nativeint -> nativeint
(* Return the absolute value of its argument. *)
val max: nativeint
(* The greatest representable native integer,
either $2^{31} - 1$ on a 32-bit platform,
or $2^{63} - 1$ on a 64-bit platform. *)
val min: nativeint
(* The greatest representable native integer,
either $-2^{31}$ on a 32-bit platform,
or $-2^{63}$ on a 64-bit platform. *)
external logand: nativeint -> nativeint -> nativeint = "%nativeint_and"
(* Bitwise logical and. *)
external logor: nativeint -> nativeint -> nativeint = "%nativeint_or"
(* Bitwise logical or. *)
external logxor: nativeint -> nativeint -> nativeint = "%nativeint_xor"
(* Bitwise logical exclusive or. *)
val lognot: nativeint -> nativeint
(* Bitwise logical negation *)
external shift_left: nativeint -> int -> nativeint = "%nativeint_lsl"
(* [Nativeint.shift_left x y] shifts [x] to the left by [y] bits. *)
external shift_right: nativeint -> int -> nativeint = "%nativeint_asr"
(* [Nativeint.shift_right x y] shifts [x] to the right by [y] bits.
This is an arithmetic shift: the sign bit of [x] is replicated
and inserted in the vacated bits. *)
external shift_right_logical: nativeint -> int -> nativeint = "%nativeint_lsr"
(* [Nativeint.shift_right_logical x y] shifts [x] to the right
by [y] bits.
This is a logical shift: zeroes are inserted in the vacated bits
regardless of the sign of [x]. *)
external of_int: int -> nativeint = "%nativeint_of_int"
(* Convert the given integer (type [int]) to a native integer
(type [Nativeint.nativeint]). *)
external to_int: nativeint -> int = "%nativeint_to_int"
(* Convert the given native integer (type [Nativeint.nativeint]) to an
integer (type [int]). The high-order bit is lost during
the conversion. *)
external of_int32: int32 -> nativeint = "%nativeint_of_int32"
(* Convert the given 32-bit integer (type [int32])
to a native integer. *)
external to_int32: nativeint -> int32 = "%nativeint_to_int32"
(* Convert the given native integer to a
32-bit integer (type [int32]). On 64-bit platforms,
the 64-bit native integer is taken modulo $2^{32}$,
i.e. the top 32 bits are lost. On 32-bit platforms,
the conversion is exact. *)
external of_string: string -> nativeint = "nativeint_of_string"
(* Convert the given string to a native integer.
The string is read in decimal (by default) or in hexadecimal,
octal or binary if the string begins with [0x], [0o] or [0b]
respectively.
Raise [Failure "int_of_string"] if the given string is not
a valid representation of an integer. *)
val to_string: nativeint -> string
(* Return the string representation of its argument, in decimal. *)
external format : string -> nativeint -> string = "nativeint_format"
(* [Nativeint.format fmt n] return the string representation of the
native integer [n] in the format specified by [fmt].
[fmt] is a [Printf]-style format containing exactly
one [%d], [%i], [%u], [%x], [%X] or [%o] conversion specification.
See the documentation of the [Printf] module for more information, *)