ocaml/asmcomp/linearize.ml

337 lines
13 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Transformation of Mach code into a list of pseudo-instructions. *)
open Linear
(* Cons a simple instruction (arg, res, live empty) *)
let cons_instr d n =
{ desc = d; next = n; arg = [||]; res = [||];
dbg = Debuginfo.none; live = Reg.Set.empty }
(* Build an instruction with arg, res, dbg, live taken from
the given Mach.instruction *)
let copy_instr d i n =
{ desc = d; next = n;
arg = i.Mach.arg; res = i.Mach.res;
dbg = i.Mach.dbg; live = i.Mach.live }
(*
Label the beginning of the given instruction sequence.
- If the sequence starts with a branch, jump over it.
- If the sequence is the end, (tail call position), just do nothing
*)
let get_label n = match n.desc with
Lbranch lbl -> (lbl, n)
| Llabel lbl -> (lbl, n)
| Lend -> (-1, n)
| _ -> let lbl = Cmm.new_label() in (lbl, cons_instr (Llabel lbl) n)
(* Check the fallthrough label *)
let check_label n = match n.desc with
| Lbranch lbl -> lbl
| Llabel lbl -> lbl
| _ -> -1
(* Add pseudo-instruction Ladjust_trap_depth in front of a continuation
to notify assembler generation about updates to the stack as a result
of differences in exception trap depths.
The argument delta is the number of trap frames (not bytes). *)
let rec adjust_trap_depth delta_traps next =
(* Simplify by merging and eliminating Ladjust_trap_depth instructions
whenever possible. *)
match next.desc with
| Ladjust_trap_depth { delta_traps = k } ->
adjust_trap_depth (delta_traps + k) next.next
| _ ->
if delta_traps = 0 then next
else cons_instr (Ladjust_trap_depth { delta_traps }) next
(* Discard all instructions up to the next label.
This function is to be called before adding a non-terminating
instruction. *)
let rec discard_dead_code n =
let adjust trap_depth =
adjust_trap_depth trap_depth (discard_dead_code n.next)
in
match n.desc with
Lend -> n
| Llabel _ -> n
(* Do not discard Lpoptrap/Lpushtrap/Ladjust_trap_depth
or Istackoffset instructions, as this may cause a stack imbalance
later during assembler generation. Replace them
with pseudo-instruction Ladjust_trap_depth with the corresponding
stack offset and eliminate dead instructions after them. *)
| Lpoptrap -> adjust (-1)
| Lpushtrap _ -> adjust (+1)
| Ladjust_trap_depth { delta_traps } -> adjust delta_traps
| Lop(Istackoffset _) ->
(* This dead instruction cannot be replaced by Ladjust_trap_depth,
because the units don't match: the argument of Istackoffset is in bytes,
whereas the argument of Ladjust_trap_depth is in trap frames,
and the size of trap frames is machine-dependant and therefore not
available here. *)
{ n with next = discard_dead_code n.next; }
| _ -> discard_dead_code n.next
(*
Add a branch in front of a continuation.
Discard dead code in the continuation.
Does not insert anything if we're just falling through
or if we jump to dead code after the end of function (lbl=-1)
*)
let add_branch lbl n =
if lbl >= 0 then
let n1 = discard_dead_code n in
match n1.desc with
| Llabel lbl1 when lbl1 = lbl -> n1
| _ -> cons_instr (Lbranch lbl) n1
else
discard_dead_code n
let try_depth = ref 0
(* Association list: exit handler -> (handler label, try-nesting factor) *)
let exit_label = ref []
let find_exit_label_try_depth k =
try
List.assoc k !exit_label
with
| Not_found -> Misc.fatal_error "Linearize.find_exit_label"
let find_exit_label k =
let (label, t) = find_exit_label_try_depth k in
assert(t = !try_depth);
label
let is_next_catch n = match !exit_label with
| (n0,(_,t))::_ when n0=n && t = !try_depth -> true
| _ -> false
let local_exit k =
snd (find_exit_label_try_depth k) = !try_depth
(* Linearize an instruction [i]: add it in front of the continuation [n] *)
let linear i n contains_calls =
let rec linear i n =
match i.Mach.desc with
Iend -> n
| Iop(Itailcall_ind _ | Itailcall_imm _ as op) ->
copy_instr (Lop op) i (discard_dead_code n)
| Iop(Imove | Ireload | Ispill)
when i.Mach.arg.(0).loc = i.Mach.res.(0).loc ->
linear i.Mach.next n
| Iop op ->
copy_instr (Lop op) i (linear i.Mach.next n)
| Ireturn ->
let n1 = copy_instr Lreturn i (discard_dead_code n) in
if contains_calls
then cons_instr Lreloadretaddr n1
else n1
| Iifthenelse(test, ifso, ifnot) ->
let n1 = linear i.Mach.next n in
begin match (ifso.Mach.desc, ifnot.Mach.desc, n1.desc) with
Iend, _, Lbranch lbl ->
copy_instr (Lcondbranch(test, lbl)) i (linear ifnot n1)
| _, Iend, Lbranch lbl ->
copy_instr (Lcondbranch(invert_test test, lbl)) i (linear ifso n1)
| Iexit nfail1, Iexit nfail2, _
when is_next_catch nfail1 && local_exit nfail2 ->
let lbl2 = find_exit_label nfail2 in
copy_instr
(Lcondbranch (invert_test test, lbl2)) i (linear ifso n1)
| Iexit nfail, _, _ when local_exit nfail ->
let n2 = linear ifnot n1
and lbl = find_exit_label nfail in
copy_instr (Lcondbranch(test, lbl)) i n2
| _, Iexit nfail, _ when local_exit nfail ->
let n2 = linear ifso n1 in
let lbl = find_exit_label nfail in
copy_instr (Lcondbranch(invert_test test, lbl)) i n2
| Iend, _, _ ->
let (lbl_end, n2) = get_label n1 in
copy_instr (Lcondbranch(test, lbl_end)) i (linear ifnot n2)
| _, Iend, _ ->
let (lbl_end, n2) = get_label n1 in
copy_instr (Lcondbranch(invert_test test, lbl_end)) i
(linear ifso n2)
| _, _, _ ->
(* Should attempt branch prediction here *)
let (lbl_end, n2) = get_label n1 in
let (lbl_else, nelse) = get_label (linear ifnot n2) in
copy_instr (Lcondbranch(invert_test test, lbl_else)) i
(linear ifso (add_branch lbl_end nelse))
end
| Iswitch(index, cases) ->
let lbl_cases = Array.make (Array.length cases) 0 in
let (lbl_end, n1) = get_label(linear i.Mach.next n) in
let n2 = ref (discard_dead_code n1) in
for i = Array.length cases - 1 downto 0 do
let (lbl_case, ncase) =
get_label(linear cases.(i) (add_branch lbl_end !n2)) in
lbl_cases.(i) <- lbl_case;
n2 := discard_dead_code ncase
done;
(* Switches with 1 and 2 branches have been eliminated earlier.
Here, we do something for switches with 3 branches. *)
if Array.length index = 3 then begin
let fallthrough_lbl = check_label !n2 in
let find_label n =
let lbl = lbl_cases.(index.(n)) in
if lbl = fallthrough_lbl then None else Some lbl in
copy_instr (Lcondbranch3(find_label 0, find_label 1, find_label 2))
i !n2
end else
copy_instr (Lswitch(Array.map (fun n -> lbl_cases.(n)) index)) i !n2
| Icatch(_rec_flag, handlers, body) ->
let (lbl_end, n1) = get_label(linear i.Mach.next n) in
(* CR mshinwell for pchambart:
1. rename "io"
2. Make sure the test cases cover the "Iend" cases too *)
let labels_at_entry_to_handlers = List.map (fun (_nfail, handler) ->
match handler.Mach.desc with
| Iend -> lbl_end
| _ -> Cmm.new_label ())
handlers in
let exit_label_add = List.map2
(fun (nfail, _) lbl -> (nfail, (lbl, !try_depth)))
handlers labels_at_entry_to_handlers in
let previous_exit_label = !exit_label in
exit_label := exit_label_add @ !exit_label;
let n2 = List.fold_left2 (fun n (_nfail, handler) lbl_handler ->
match handler.Mach.desc with
| Iend -> n
| _ -> cons_instr (Llabel lbl_handler)
(linear handler (add_branch lbl_end n)))
n1 handlers labels_at_entry_to_handlers
in
let n3 = linear body (add_branch lbl_end n2) in
exit_label := previous_exit_label;
n3
| Iexit nfail ->
let lbl, t = find_exit_label_try_depth nfail in
assert (i.Mach.next.desc = Mach.Iend);
let delta_traps = !try_depth - t in
let n1 = adjust_trap_depth delta_traps n in
let rec loop i tt =
if t = tt then i
else loop (cons_instr Lpoptrap i) (tt - 1)
in
loop (add_branch lbl n1) !try_depth
| Itrywith(body, handler) ->
let (lbl_join, n1) = get_label (linear i.Mach.next n) in
let (lbl_handler, n2) =
get_label (cons_instr Lentertrap (linear handler n1))
in
incr try_depth;
assert (i.Mach.arg = [| |]);
let n3 = cons_instr (Lpushtrap { lbl_handler; })
(linear body
(cons_instr
Lpoptrap
(add_branch lbl_join n2))) in
decr try_depth;
n3
| Iraise k ->
copy_instr (Lraise k) i (discard_dead_code n)
in linear i n
let add_prologue first_insn prologue_required =
(* The prologue needs to come after any [Iname_for_debugger] operations that
refer to parameters. (Such operations always come in a contiguous
block, cf. [Selectgen].) *)
let rec skip_naming_ops (insn : instruction) : label * instruction =
match insn.desc with
| Lop (Iname_for_debugger _) ->
let tailrec_entry_point_label, next = skip_naming_ops insn.next in
tailrec_entry_point_label, { insn with next; }
| _ ->
let tailrec_entry_point_label = Cmm.new_label () in
let tailrec_entry_point =
{ desc = Llabel tailrec_entry_point_label;
next = insn;
arg = [| |];
res = [| |];
dbg = insn.dbg;
live = insn.live;
}
in
(* We expect [Lprologue] to expand to at least one instruction---as such,
if no prologue is required, we avoid adding the instruction here.
The reason is subtle: an empty expansion of [Lprologue] can cause
two labels, one either side of the [Lprologue], to point at the same
location. This means that we lose the property (cf. [Coalesce_labels])
that we can check if two labels point at the same location by
comparing them for equality. This causes trouble when the function
whose prologue is in question lands at the top of the object file
and we are emitting DWARF debugging information:
foo_code_begin:
foo:
.L1:
; empty prologue
.L2:
...
If we were to emit a location list entry from L1...L2, not realising
that they point at the same location, then the beginning and ending
points of the range would be both equal to each other and (relative to
"foo_code_begin") equal to zero. This appears to confuse objdump,
which seemingly misinterprets the entry as an end-of-list entry
(which is encoded with two zero words), then complaining about a
"hole in location list" (as it ignores any remaining list entries
after the misinterpreted entry). *)
if prologue_required then
let prologue =
{ desc = Lprologue;
next = tailrec_entry_point;
arg = [| |];
res = [| |];
dbg = tailrec_entry_point.dbg;
live = Reg.Set.empty; (* will not be used *)
}
in
tailrec_entry_point_label, prologue
else
tailrec_entry_point_label, tailrec_entry_point
in
skip_naming_ops first_insn
let fundecl f =
let fun_prologue_required = Proc.prologue_required f in
let contains_calls = f.Mach.fun_contains_calls in
let fun_tailrec_entry_point_label, fun_body =
add_prologue (linear f.Mach.fun_body end_instr contains_calls)
fun_prologue_required
in
{ fun_name = f.Mach.fun_name;
fun_body;
fun_fast = not (List.mem Cmm.Reduce_code_size f.Mach.fun_codegen_options);
fun_dbg = f.Mach.fun_dbg;
fun_tailrec_entry_point_label;
fun_contains_calls = contains_calls;
fun_num_stack_slots = f.Mach.fun_num_stack_slots;
fun_frame_required = Proc.frame_required f;
fun_prologue_required;
}