ocaml/asmcomp/i386/selection.ml

319 lines
11 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1997 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Instruction selection for the Intel x86 *)
open Misc
open Arch
open Proc
open Cmm
open Mach
(* Auxiliary for recognizing addressing modes *)
type addressing_expr =
Asymbol of string
| Alinear of expression
| Aadd of expression * expression
| Ascale of expression * int
| Ascaledadd of expression * expression * int
let rec select_addr exp =
match exp with
Cconst_symbol s ->
(Asymbol s, 0)
| Cop((Caddi | Caddv | Cadda), [arg; Cconst_int m]) ->
let (a, n) = select_addr arg in (a, n + m)
| Cop(Csubi, [arg; Cconst_int m]) ->
let (a, n) = select_addr arg in (a, n - m)
| Cop((Caddi | Caddv | Cadda), [Cconst_int m; arg]) ->
let (a, n) = select_addr arg in (a, n + m)
| Cop(Clsl, [arg; Cconst_int(1|2|3 as shift)]) ->
begin match select_addr arg with
(Alinear e, n) -> (Ascale(e, 1 lsl shift), n lsl shift)
| _ -> (Alinear exp, 0)
end
| Cop(Cmuli, [arg; Cconst_int(2|4|8 as mult)]) ->
begin match select_addr arg with
(Alinear e, n) -> (Ascale(e, mult), n * mult)
| _ -> (Alinear exp, 0)
end
| Cop(Cmuli, [Cconst_int(2|4|8 as mult); arg]) ->
begin match select_addr arg with
(Alinear e, n) -> (Ascale(e, mult), n * mult)
| _ -> (Alinear exp, 0)
end
| Cop((Caddi | Cadda | Caddv), [arg1; arg2]) ->
begin match (select_addr arg1, select_addr arg2) with
((Alinear e1, n1), (Alinear e2, n2)) ->
(Aadd(e1, e2), n1 + n2)
| ((Alinear e1, n1), (Ascale(e2, scale), n2)) ->
(Ascaledadd(e1, e2, scale), n1 + n2)
| ((Ascale(e1, scale), n1), (Alinear e2, n2)) ->
(Ascaledadd(e2, e1, scale), n1 + n2)
| (_, (Ascale(e2, scale), n2)) ->
(Ascaledadd(arg1, e2, scale), n2)
| ((Ascale(e1, scale), n1), _) ->
(Ascaledadd(arg2, e1, scale), n1)
| _ ->
(Aadd(arg1, arg2), 0)
end
| arg ->
(Alinear arg, 0)
(* C functions to be turned into Ifloatspecial instructions if -ffast-math *)
let inline_float_ops =
["atan"; "atan2"; "cos"; "log"; "log10"; "sin"; "sqrt"; "tan"]
(* Estimate number of float temporaries needed to evaluate expression
(Ershov's algorithm) *)
let rec float_needs = function
Cop((Cnegf | Cabsf), [arg]) ->
float_needs arg
| Cop((Caddf | Csubf | Cmulf | Cdivf), [arg1; arg2]) ->
let n1 = float_needs arg1 in
let n2 = float_needs arg2 in
if n1 = n2 then 1 + n1 else if n1 > n2 then n1 else n2
| Cop(Cextcall(fn, ty_res, alloc, dbg), args)
when !fast_math && List.mem fn inline_float_ops ->
begin match args with
[arg] -> float_needs arg
| [arg1; arg2] -> max (float_needs arg2 + 1) (float_needs arg1)
| _ -> assert false
end
| _ ->
1
(* Special constraints on operand and result registers *)
exception Use_default
let eax = phys_reg 0
let ecx = phys_reg 2
let edx = phys_reg 3
let tos = phys_reg 100
let pseudoregs_for_operation op arg res =
match op with
(* Two-address binary operations *)
Iintop(Iadd|Isub|Imul|Iand|Ior|Ixor) ->
([|res.(0); arg.(1)|], res, false)
(* Two-address unary operations *)
| Iintop_imm((Iadd|Isub|Imul|Iand|Ior|Ixor|Ilsl|Ilsr|Iasr), _) ->
(res, res, false)
(* For imull, first arg must be in eax, eax is clobbered, and result is in
edx. *)
| Iintop(Imulh) ->
([| eax; arg.(1) |], [| edx |], true)
(* For shifts with variable shift count, second arg must be in ecx *)
| Iintop(Ilsl|Ilsr|Iasr) ->
([|res.(0); ecx|], res, false)
(* For div and mod, first arg must be in eax, edx is clobbered,
and result is in eax or edx respectively.
Keep it simple, just force second argument in ecx. *)
| Iintop(Idiv) ->
([| eax; ecx |], [| eax |], true)
| Iintop(Imod) ->
([| eax; ecx |], [| edx |], true)
(* For floating-point operations and floating-point loads,
the result is always left at the top of the floating-point stack *)
| Iconst_float _ | Inegf | Iabsf | Iaddf | Isubf | Imulf | Idivf
| Ifloatofint | Iload((Single | Double | Double_u), _)
| Ispecific(Isubfrev | Idivfrev | Ifloatarithmem _ | Ifloatspecial _) ->
(arg, [| tos |], false) (* don't move it immediately *)
(* For storing a byte, the argument must be in eax...edx.
(But for a short, any reg will do!)
Keep it simple, just force the argument to be in edx. *)
| Istore((Byte_unsigned | Byte_signed), addr, _) ->
let newarg = Array.copy arg in
newarg.(0) <- edx;
(newarg, res, false)
(* Other instructions are regular *)
| _ -> raise Use_default
let chunk_double = function
Single -> false
| Double -> true
| Double_u -> true
| _ -> assert false
(* The selector class *)
class selector = object (self)
inherit Selectgen.selector_generic as super
method is_immediate (n : int) = true
method! is_simple_expr e =
match e with
| Cop(Cextcall(fn, _, alloc, _), args)
when !fast_math && List.mem fn inline_float_ops ->
(* inlined float ops are simple if their arguments are *)
List.for_all self#is_simple_expr args
| _ ->
super#is_simple_expr e
method select_addressing chunk exp =
match select_addr exp with
(Asymbol s, d) ->
(Ibased(s, d), Ctuple [])
| (Alinear e, d) ->
(Iindexed d, e)
| (Aadd(e1, e2), d) ->
(Iindexed2 d, Ctuple[e1; e2])
| (Ascale(e, scale), d) ->
(Iscaled(scale, d), e)
| (Ascaledadd(e1, e2, scale), d) ->
(Iindexed2scaled(scale, d), Ctuple[e1; e2])
method! select_store is_assign addr exp =
match exp with
Cconst_int n ->
(Ispecific(Istore_int(Nativeint.of_int n, addr, is_assign)), Ctuple [])
| (Cconst_natint n | Cconst_blockheader n) ->
(Ispecific(Istore_int(n, addr, is_assign)), Ctuple [])
| Cconst_pointer n ->
(Ispecific(Istore_int(Nativeint.of_int n, addr, is_assign)), Ctuple [])
| Cconst_natpointer n ->
(Ispecific(Istore_int(n, addr, is_assign)), Ctuple [])
| Cconst_symbol s ->
(Ispecific(Istore_symbol(s, addr, is_assign)), Ctuple [])
| _ ->
super#select_store is_assign addr exp
method! select_operation op args =
match op with
(* Recognize the LEA instruction *)
Caddi | Caddv | Cadda | Csubi ->
begin match self#select_addressing Word_int (Cop(op, args)) with
(Iindexed d, _) -> super#select_operation op args
| (Iindexed2 0, _) -> super#select_operation op args
| (addr, arg) -> (Ispecific(Ilea addr), [arg])
end
(* Recognize float arithmetic with memory.
In passing, apply Ershov's algorithm to reduce stack usage *)
| Caddf ->
self#select_floatarith Iaddf Iaddf Ifloatadd Ifloatadd args
| Csubf ->
self#select_floatarith Isubf (Ispecific Isubfrev) Ifloatsub Ifloatsubrev
args
| Cmulf ->
self#select_floatarith Imulf Imulf Ifloatmul Ifloatmul args
| Cdivf ->
self#select_floatarith Idivf (Ispecific Idivfrev) Ifloatdiv Ifloatdivrev
args
(* Recognize store instructions *)
| Cstore ((Word_int | Word_val) as chunk, _) ->
begin match args with
[loc; Cop(Caddi, [Cop(Cload _, [loc']); Cconst_int n])]
when loc = loc' ->
let (addr, arg) = self#select_addressing chunk loc in
(Ispecific(Ioffset_loc(n, addr)), [arg])
| _ ->
super#select_operation op args
end
(* Recognize inlined floating point operations *)
| Cextcall(fn, ty_res, false, dbg)
when !fast_math && List.mem fn inline_float_ops ->
(Ispecific(Ifloatspecial fn), args)
(* i386 does not support immediate operands for multiply high signed *)
| Cmulhi ->
(Iintop Imulh, args)
(* Default *)
| _ -> super#select_operation op args
(* Recognize float arithmetic with mem *)
method select_floatarith regular_op reversed_op mem_op mem_rev_op args =
match args with
[arg1; Cop(Cload chunk, [loc2])] ->
let (addr, arg2) = self#select_addressing chunk loc2 in
(Ispecific(Ifloatarithmem(chunk_double chunk, mem_op, addr)),
[arg1; arg2])
| [Cop(Cload chunk, [loc1]); arg2] ->
let (addr, arg1) = self#select_addressing chunk loc1 in
(Ispecific(Ifloatarithmem(chunk_double chunk, mem_rev_op, addr)),
[arg2; arg1])
| [arg1; arg2] ->
(* Evaluate bigger subexpression first to minimize stack usage.
Because of right-to-left evaluation, rightmost arg is evaluated
first *)
if float_needs arg1 <= float_needs arg2
then (regular_op, [arg1; arg2])
else (reversed_op, [arg2; arg1])
| _ ->
fatal_error "Proc_i386: select_floatarith"
(* Deal with register constraints *)
method! insert_op_debug op dbg rs rd =
try
let (rsrc, rdst, move_res) = pseudoregs_for_operation op rs rd in
self#insert_moves rs rsrc;
self#insert_debug (Iop op) dbg rsrc rdst;
if move_res then begin
self#insert_moves rdst rd;
rd
end else
rdst
with Use_default ->
super#insert_op_debug op dbg rs rd
(* Selection of push instructions for external calls *)
method select_push exp =
match exp with
Cconst_int n -> (Ispecific(Ipush_int(Nativeint.of_int n)), Ctuple [])
| Cconst_natint n -> (Ispecific(Ipush_int n), Ctuple [])
| Cconst_pointer n -> (Ispecific(Ipush_int(Nativeint.of_int n)), Ctuple [])
| Cconst_natpointer n -> (Ispecific(Ipush_int n), Ctuple [])
| Cconst_symbol s -> (Ispecific(Ipush_symbol s), Ctuple [])
| Cop(Cload (Word_int | Word_val as chunk), [loc]) ->
let (addr, arg) = self#select_addressing chunk loc in
(Ispecific(Ipush_load addr), arg)
| Cop(Cload Double_u, [loc]) ->
let (addr, arg) = self#select_addressing Double_u loc in
(Ispecific(Ipush_load_float addr), arg)
| _ -> (Ispecific(Ipush), exp)
method! mark_c_tailcall =
Proc.contains_calls := true
method! emit_extcall_args env args =
let rec size_pushes = function
| [] -> 0
| e :: el -> Selectgen.size_expr env e + size_pushes el in
let sz1 = size_pushes args in
let sz2 = Misc.align sz1 stack_alignment in
let rec emit_pushes = function
| [] ->
if sz2 > sz1 then
self#insert (Iop (Istackoffset (sz2 - sz1))) [||] [||]
| e :: el ->
emit_pushes el;
let (op, arg) = self#select_push e in
match self#emit_expr env arg with
| None -> ()
| Some r -> self#insert (Iop op) r [||] in
emit_pushes args;
([||], sz2)
end
let fundecl f = (new selector)#emit_fundecl f