266 lines
8.3 KiB
OCaml
266 lines
8.3 KiB
OCaml
(***********************************************************************)
|
|
(* *)
|
|
(* Objective Caml *)
|
|
(* *)
|
|
(* Damien Doligez, projet Para, INRIA Rocquencourt *)
|
|
(* *)
|
|
(* Copyright 1996 Institut National de Recherche en Informatique et *)
|
|
(* en Automatique. All rights reserved. This file is distributed *)
|
|
(* under the terms of the GNU Library General Public License, with *)
|
|
(* the special exception on linking described in file ../LICENSE. *)
|
|
(* *)
|
|
(***********************************************************************)
|
|
|
|
(* $Id$ *)
|
|
|
|
(* "Linear feedback shift register" pseudo-random number generator. *)
|
|
(* References: Robert Sedgewick, "Algorithms", Addison-Wesley *)
|
|
|
|
(* The PRNG is a linear feedback shift register.
|
|
It is seeded by a MD5-based PRNG.
|
|
*)
|
|
|
|
external random_seed: unit -> int = "sys_random_seed";;
|
|
|
|
module State = struct
|
|
|
|
type t = { st : int array; mutable idx : int };;
|
|
|
|
let new_state () = { st = Array.make 55 0; idx = 0 };;
|
|
let assign st1 st2 =
|
|
Array.blit st2.st 0 st1.st 0 55;
|
|
st1.idx <- st2.idx;
|
|
;;
|
|
|
|
let full_init s seed =
|
|
let combine accu x = Digest.string (accu ^ string_of_int x) in
|
|
let extract d =
|
|
(Char.code d.[0] + (Char.code d.[1] lsl 8) + (Char.code d.[2] lsl 16))
|
|
lxor (Char.code d.[3] lsl 22)
|
|
in
|
|
let l = Array.length seed in
|
|
for i = 0 to 54 do
|
|
s.st.(i) <- i;
|
|
done;
|
|
let accu = ref "x" in
|
|
for i = 0 to 54 + max 55 l do
|
|
let j = i mod 55 in
|
|
let k = i mod l in
|
|
accu := combine !accu seed.(k);
|
|
s.st.(j) <- s.st.(j) lxor extract !accu;
|
|
done;
|
|
s.idx <- 0;
|
|
;;
|
|
|
|
let make seed =
|
|
let result = new_state () in
|
|
full_init result seed;
|
|
result
|
|
;;
|
|
|
|
let make_self_init () = make [| random_seed () |];;
|
|
|
|
let copy s =
|
|
let result = new_state () in
|
|
assign result s;
|
|
result
|
|
;;
|
|
|
|
(* Returns 30 random bits as an integer 0 <= x < 1073741824 *)
|
|
let bits s =
|
|
s.idx <- (s.idx + 1) mod 55;
|
|
let newval = (s.st.((s.idx + 24) mod 55) + s.st.(s.idx)) land 0x3FFFFFFF in
|
|
s.st.(s.idx) <- newval;
|
|
newval
|
|
;;
|
|
|
|
let rec intaux s n =
|
|
let r = bits s in
|
|
if r >= n then intaux s n else r
|
|
;;
|
|
let int s bound =
|
|
if bound > 0x3FFFFFFF || bound <= 0
|
|
then invalid_arg "Random.int"
|
|
else (intaux s (0x3FFFFFFF / bound * bound)) mod bound
|
|
;;
|
|
|
|
let rec int32aux s n =
|
|
let b1 = Int32.of_int (bits s) in
|
|
let b2 = Int32.shift_left (Int32.of_int (bits s land 1)) 30 in
|
|
let r = Int32.logor b1 b2 in
|
|
if r >= n then int32aux s n else r
|
|
;;
|
|
let int32 s bound =
|
|
if bound <= 0l then
|
|
invalid_arg "Random.int32"
|
|
else
|
|
let rb = Int32.mul bound (Int32.div Int32.max_int bound) in
|
|
Int32.rem (int32aux s rb) bound
|
|
;;
|
|
|
|
let rec int64aux s n =
|
|
let b1 = Int64.of_int (bits s) in
|
|
let b2 = Int64.shift_left (Int64.of_int (bits s)) 30 in
|
|
let b3 = Int64.shift_left (Int64.of_int (bits s land 7)) 60 in
|
|
let r = Int64.logor b1 (Int64.logor b2 b3) in
|
|
if r >= n then int64aux s n else r
|
|
;;
|
|
let int64 s bound =
|
|
if bound <= 0L then
|
|
invalid_arg "Random.int64"
|
|
else
|
|
let rb = Int64.mul bound (Int64.div Int64.max_int bound) in
|
|
Int64.rem (int64aux s rb) bound
|
|
;;
|
|
|
|
let nativeint =
|
|
if Nativeint.size = 32
|
|
then fun s bound -> Nativeint.of_int32 (int32 s (Nativeint.to_int32 bound))
|
|
else fun s bound -> Int64.to_nativeint (int64 s (Int64.of_nativeint bound))
|
|
;;
|
|
|
|
(* Returns a float 0 <= x < 1 with at most 90 bits of precision. *)
|
|
let rawfloat s =
|
|
let scale = 1073741824.0
|
|
and r0 = Pervasives.float (bits s)
|
|
and r1 = Pervasives.float (bits s)
|
|
and r2 = Pervasives.float (bits s)
|
|
in ((r0 /. scale +. r1) /. scale +. r2) /. scale
|
|
;;
|
|
|
|
let float s bound = rawfloat s *. bound;;
|
|
|
|
let bool s = (bits s land 1 = 0);;
|
|
|
|
end;;
|
|
|
|
(* This is the state you get with [init 27182818] on a 32-bit machine. *)
|
|
let default = {
|
|
State.st = [|
|
|
509760043; 399328820; 99941072; 112282318; 611886020; 516451399;
|
|
626288598; 337482183; 748548471; 808894867; 657927153; 386437385;
|
|
42355480; 977713532; 311548488; 13857891; 307938721; 93724463;
|
|
1041159001; 444711218; 1040610926; 233671814; 664494626; 1071756703;
|
|
188709089; 420289414; 969883075; 513442196; 275039308; 918830973;
|
|
598627151; 134083417; 823987070; 619204222; 81893604; 871834315;
|
|
398384680; 475117924; 520153386; 324637501; 38588599; 435158812;
|
|
168033706; 585877294; 328347186; 293179100; 671391820; 846150845;
|
|
283985689; 502873302; 718642511; 938465128; 962756406; 107944131;
|
|
192910970;
|
|
|];
|
|
State.idx = 0;
|
|
};;
|
|
|
|
let bits () = State.bits default;;
|
|
let int bound = State.int default bound;;
|
|
let int32 bound = State.int32 default bound;;
|
|
let nativeint bound = State.nativeint default bound;;
|
|
let int64 bound = State.int64 default bound;;
|
|
let float scale = State.float default scale;;
|
|
let bool () = State.bool default;;
|
|
|
|
let full_init seed = State.full_init default seed;;
|
|
let init seed = State.full_init default [| seed |];;
|
|
let self_init () = init (random_seed());;
|
|
|
|
(* Manipulating the current state. *)
|
|
|
|
let get_state () = State.copy default;;
|
|
let set_state s = State.assign default s;;
|
|
|
|
(********************
|
|
|
|
(* Test functions. Not included in the library.
|
|
The [chisquare] function should be called with n > 10r.
|
|
It returns a triple (low, actual, high).
|
|
If low <= actual <= high, the [g] function passed the test,
|
|
otherwise it failed.
|
|
|
|
Some results:
|
|
|
|
init 27182818; chisquare int 100000 1000;;
|
|
init 27182818; chisquare int 100000 100;;
|
|
init 27182818; chisquare int 100000 5000;;
|
|
init 27182818; chisquare int 1000000 1000;;
|
|
init 27182818; chisquare int 100000 1024;;
|
|
init 299792643; chisquare int 100000 1024;;
|
|
init 14142136; chisquare int 100000 1024;;
|
|
init 27182818; init_diff 1024; chisquare diff 100000 1024;;
|
|
init 27182818; init_diff 100; chisquare diff 100000 100;;
|
|
init 27182818; init_diff2 1024; chisquare diff2 100000 1024;;
|
|
init 27182818; init_diff2 100; chisquare diff2 100000 100;;
|
|
init 14142136; init_diff2 100; chisquare diff2 100000 100;;
|
|
init 299792643; init_diff2 100; chisquare diff2 100000 100;;
|
|
- : float * float * float = (936.754446796632465, 1032., 1063.24555320336754)
|
|
# - : float * float * float = (80., 91.3699999999953434, 120.)
|
|
# - : float * float * float = (4858.57864376269026, 4982., 5141.42135623730974)
|
|
# - : float * float * float =
|
|
(936.754446796632465, 1017.99399999994785, 1063.24555320336754)
|
|
# - : float * float * float = (960., 984.565759999997681, 1088.)
|
|
# - : float * float * float = (960., 1003.40735999999742, 1088.)
|
|
# - : float * float * float = (960., 1035.23328000000038, 1088.)
|
|
# - : float * float * float = (960., 1026.79551999999967, 1088.)
|
|
# - : float * float * float = (80., 110.194000000003143, 120.)
|
|
# - : float * float * float = (960., 1067.98080000000482, 1088.)
|
|
# - : float * float * float = (80., 107.292000000001281, 120.)
|
|
# - : float * float * float = (80., 85.1180000000022119, 120.)
|
|
# - : float * float * float = (80., 86.614000000001397, 120.)
|
|
|
|
*)
|
|
|
|
(* Return the sum of the squares of v[i0,i1[ *)
|
|
let rec sumsq v i0 i1 =
|
|
if i0 >= i1 then 0.0
|
|
else if i1 = i0 + 1 then Pervasives.float v.(i0) *. Pervasives.float v.(i0)
|
|
else sumsq v i0 ((i0+i1)/2) +. sumsq v ((i0+i1)/2) i1
|
|
;;
|
|
|
|
let chisquare g n r =
|
|
if n <= 10 * r then invalid_arg "chisquare";
|
|
let f = Array.make r 0 in
|
|
for i = 1 to n do
|
|
let t = g r in
|
|
f.(t) <- f.(t) + 1
|
|
done;
|
|
let t = sumsq f 0 r
|
|
and r = Pervasives.float r
|
|
and n = Pervasives.float n in
|
|
let sr = 2.0 *. sqrt r in
|
|
(r -. sr, (r *. t /. n) -. n, r +. sr)
|
|
;;
|
|
|
|
(* This is to test for linear dependencies between successive random numbers.
|
|
*)
|
|
let st = ref 0;;
|
|
let init_diff r = st := int r;;
|
|
let diff r =
|
|
let x1 = !st
|
|
and x2 = int r
|
|
in
|
|
st := x2;
|
|
if x1 >= x2 then
|
|
x1 - x2
|
|
else
|
|
r + x1 - x2
|
|
;;
|
|
|
|
let st1 = ref 0
|
|
and st2 = ref 0
|
|
;;
|
|
|
|
(* This is to test for quadratic dependencies between successive random
|
|
numbers.
|
|
*)
|
|
let init_diff2 r = st1 := int r; st2 := int r;;
|
|
let diff2 r =
|
|
let x1 = !st1
|
|
and x2 = !st2
|
|
and x3 = int r
|
|
in
|
|
st1 := x2;
|
|
st2 := x3;
|
|
(x3 - x2 - x2 + x1 + 2*r) mod r
|
|
;;
|
|
|
|
********************)
|