ocaml/typing/parmatch.ml

2281 lines
71 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Detection of partial matches and unused match cases. *)
open Misc
open Asttypes
open Types
open Typedtree
(*************************************)
(* Utilities for building patterns *)
(*************************************)
let make_pat desc ty tenv =
{pat_desc = desc; pat_loc = Location.none; pat_extra = [];
pat_type = ty ; pat_env = tenv;
pat_attributes = [];
}
let omega = make_pat Tpat_any Ctype.none Env.empty
let extra_pat =
make_pat
(Tpat_var (Ident.create "+", mknoloc "+"))
Ctype.none Env.empty
let rec omegas i =
if i <= 0 then [] else omega :: omegas (i-1)
let omega_list l = List.map (fun _ -> omega) l
let zero = make_pat (Tpat_constant (Const_int 0)) Ctype.none Env.empty
(***********************)
(* Compatibility check *)
(***********************)
(* p and q compatible means, there exists V that matches both *)
let is_absent tag row = Btype.row_field tag !row = Rabsent
let is_absent_pat p = match p.pat_desc with
| Tpat_variant (tag, _, row) -> is_absent tag row
| _ -> false
let const_compare x y =
match x,y with
| Const_float f1, Const_float f2 ->
Pervasives.compare (float_of_string f1) (float_of_string f2)
| Const_string (s1, _), Const_string (s2, _) ->
String.compare s1 s2
| _, _ -> Pervasives.compare x y
let records_args l1 l2 =
(* Invariant: fields are already sorted by Typecore.type_label_a_list *)
let rec combine r1 r2 l1 l2 = match l1,l2 with
| [],[] -> List.rev r1, List.rev r2
| [],(_,_,p2)::rem2 -> combine (omega::r1) (p2::r2) [] rem2
| (_,_,p1)::rem1,[] -> combine (p1::r1) (omega::r2) rem1 []
| (_,lbl1,p1)::rem1, ( _,lbl2,p2)::rem2 ->
if lbl1.lbl_pos < lbl2.lbl_pos then
combine (p1::r1) (omega::r2) rem1 l2
else if lbl1.lbl_pos > lbl2.lbl_pos then
combine (omega::r1) (p2::r2) l1 rem2
else (* same label on both sides *)
combine (p1::r1) (p2::r2) rem1 rem2 in
combine [] [] l1 l2
let rec compat p q =
match p.pat_desc,q.pat_desc with
| Tpat_alias (p,_,_),_ -> compat p q
| _,Tpat_alias (q,_,_) -> compat p q
| (Tpat_any|Tpat_var _),_ -> true
| _,(Tpat_any|Tpat_var _) -> true
| Tpat_or (p1,p2,_),_ -> compat p1 q || compat p2 q
| _,Tpat_or (q1,q2,_) -> compat p q1 || compat p q2
| Tpat_constant c1, Tpat_constant c2 -> const_compare c1 c2 = 0
| Tpat_tuple ps, Tpat_tuple qs -> compats ps qs
| Tpat_lazy p, Tpat_lazy q -> compat p q
| Tpat_construct (_, c1,ps1), Tpat_construct (_, c2,ps2) ->
c1.cstr_tag = c2.cstr_tag && compats ps1 ps2
| Tpat_variant(l1,Some p1, _r1), Tpat_variant(l2,Some p2,_) ->
l1=l2 && compat p1 p2
| Tpat_variant (l1,None, _r1), Tpat_variant(l2,None,_) ->
l1 = l2
| Tpat_variant (_, None, _), Tpat_variant (_,Some _, _) -> false
| Tpat_variant (_, Some _, _), Tpat_variant (_, None, _) -> false
| Tpat_record (l1,_),Tpat_record (l2,_) ->
let ps,qs = records_args l1 l2 in
compats ps qs
| Tpat_array ps, Tpat_array qs ->
List.length ps = List.length qs &&
compats ps qs
| _,_ ->
assert false
and compats ps qs = match ps,qs with
| [], [] -> true
| p::ps, q::qs -> compat p q && compats ps qs
| _,_ -> assert false
exception Empty (* Empty pattern *)
(****************************************)
(* Utilities for retrieving type paths *)
(****************************************)
(* May need a clean copy, cf. PR#4745 *)
let clean_copy ty =
if ty.level = Btype.generic_level then ty
else Subst.type_expr Subst.identity ty
let get_type_path ty tenv =
let ty = Ctype.repr (Ctype.expand_head tenv (clean_copy ty)) in
match ty.desc with
| Tconstr (path,_,_) -> path
| _ -> fatal_error "Parmatch.get_type_path"
(*************************************)
(* Values as patterns pretty printer *)
(*************************************)
open Format
;;
let is_cons = function
| {cstr_name = "::"} -> true
| _ -> false
let pretty_const c = match c with
| Const_int i -> Printf.sprintf "%d" i
| Const_char c -> Printf.sprintf "%C" c
| Const_string (s, _) -> Printf.sprintf "%S" s
| Const_float f -> Printf.sprintf "%s" f
| Const_int32 i -> Printf.sprintf "%ldl" i
| Const_int64 i -> Printf.sprintf "%LdL" i
| Const_nativeint i -> Printf.sprintf "%ndn" i
let rec pretty_val ppf v =
match v.pat_extra with
(cstr, _loc, _attrs) :: rem ->
begin match cstr with
| Tpat_unpack ->
fprintf ppf "@[(module %a)@]" pretty_val { v with pat_extra = rem }
| Tpat_constraint _ ->
fprintf ppf "@[(%a : _)@]" pretty_val { v with pat_extra = rem }
| Tpat_type _ ->
fprintf ppf "@[(# %a)@]" pretty_val { v with pat_extra = rem }
end
| [] ->
match v.pat_desc with
| Tpat_any -> fprintf ppf "_"
| Tpat_var (x,_) -> Ident.print ppf x
| Tpat_constant c -> fprintf ppf "%s" (pretty_const c)
| Tpat_tuple vs ->
fprintf ppf "@[(%a)@]" (pretty_vals ",") vs
| Tpat_construct (_, cstr, []) ->
fprintf ppf "%s" cstr.cstr_name
| Tpat_construct (_, cstr, [w]) ->
fprintf ppf "@[<2>%s@ %a@]" cstr.cstr_name pretty_arg w
| Tpat_construct (_, cstr, vs) ->
let name = cstr.cstr_name in
begin match (name, vs) with
("::", [v1;v2]) ->
fprintf ppf "@[%a::@,%a@]" pretty_car v1 pretty_cdr v2
| _ ->
fprintf ppf "@[<2>%s@ @[(%a)@]@]" name (pretty_vals ",") vs
end
| Tpat_variant (l, None, _) ->
fprintf ppf "`%s" l
| Tpat_variant (l, Some w, _) ->
fprintf ppf "@[<2>`%s@ %a@]" l pretty_arg w
| Tpat_record (lvs,_) ->
fprintf ppf "@[{%a}@]"
pretty_lvals
(List.filter
(function
| (_,_,{pat_desc=Tpat_any}) -> false (* do not show lbl=_ *)
| _ -> true) lvs)
| Tpat_array vs ->
fprintf ppf "@[[| %a |]@]" (pretty_vals " ;") vs
| Tpat_lazy v ->
fprintf ppf "@[<2>lazy@ %a@]" pretty_arg v
| Tpat_alias (v, x,_) ->
fprintf ppf "@[(%a@ as %a)@]" pretty_val v Ident.print x
| Tpat_or (v,w,_) ->
fprintf ppf "@[(%a|@,%a)@]" pretty_or v pretty_or w
and pretty_car ppf v = match v.pat_desc with
| Tpat_construct (_,cstr, [_ ; _])
when is_cons cstr ->
fprintf ppf "(%a)" pretty_val v
| _ -> pretty_val ppf v
and pretty_cdr ppf v = match v.pat_desc with
| Tpat_construct (_,cstr, [v1 ; v2])
when is_cons cstr ->
fprintf ppf "%a::@,%a" pretty_car v1 pretty_cdr v2
| _ -> pretty_val ppf v
and pretty_arg ppf v = match v.pat_desc with
| Tpat_construct (_,_,_::_)
| Tpat_variant (_, Some _, _) -> fprintf ppf "(%a)" pretty_val v
| _ -> pretty_val ppf v
and pretty_or ppf v = match v.pat_desc with
| Tpat_or (v,w,_) ->
fprintf ppf "%a|@,%a" pretty_or v pretty_or w
| _ -> pretty_val ppf v
and pretty_vals sep ppf = function
| [] -> ()
| [v] -> pretty_val ppf v
| v::vs ->
fprintf ppf "%a%s@ %a" pretty_val v sep (pretty_vals sep) vs
and pretty_lvals ppf = function
| [] -> ()
| [_,lbl,v] ->
fprintf ppf "%s=%a" lbl.lbl_name pretty_val v
| (_, lbl,v)::rest ->
fprintf ppf "%s=%a;@ %a"
lbl.lbl_name pretty_val v pretty_lvals rest
let top_pretty ppf v =
fprintf ppf "@[%a@]@?" pretty_val v
let pretty_pat p =
top_pretty Format.str_formatter p ;
prerr_string (Format.flush_str_formatter ())
type matrix = pattern list list
let pretty_line ps =
List.iter
(fun p ->
top_pretty Format.str_formatter p ;
prerr_string " <" ;
prerr_string (Format.flush_str_formatter ()) ;
prerr_string ">")
ps
let pretty_matrix (pss : matrix) =
prerr_endline "begin matrix" ;
List.iter
(fun ps ->
pretty_line ps ;
prerr_endline "")
pss ;
prerr_endline "end matrix"
(****************************)
(* Utilities for matching *)
(****************************)
(* Check top matching *)
let simple_match p1 p2 =
match p1.pat_desc, p2.pat_desc with
| Tpat_construct(_, c1, _), Tpat_construct(_, c2, _) ->
c1.cstr_tag = c2.cstr_tag
| Tpat_variant(l1, _, _), Tpat_variant(l2, _, _) ->
l1 = l2
| Tpat_constant(c1), Tpat_constant(c2) -> const_compare c1 c2 = 0
| Tpat_tuple _, Tpat_tuple _ -> true
| Tpat_lazy _, Tpat_lazy _ -> true
| Tpat_record _ , Tpat_record _ -> true
| Tpat_array p1s, Tpat_array p2s -> List.length p1s = List.length p2s
| _, (Tpat_any | Tpat_var(_)) -> true
| _, _ -> false
(* extract record fields as a whole *)
let record_arg p = match p.pat_desc with
| Tpat_any -> []
| Tpat_record (args,_) -> args
| _ -> fatal_error "Parmatch.as_record"
(* Raise Not_found when pos is not present in arg *)
let get_field pos arg =
let _,_, p = List.find (fun (_,lbl,_) -> pos = lbl.lbl_pos) arg in
p
let extract_fields omegas arg =
List.map
(fun (_,lbl,_) ->
try
get_field lbl.lbl_pos arg
with Not_found -> omega)
omegas
let all_record_args lbls = match lbls with
| (_,{lbl_all=lbl_all},_)::_ ->
let t =
Array.map
(fun lbl -> mknoloc (Longident.Lident "?temp?"), lbl,omega)
lbl_all in
List.iter
(fun ((_, lbl,_) as x) -> t.(lbl.lbl_pos) <- x)
lbls ;
Array.to_list t
| _ -> fatal_error "Parmatch.all_record_args"
(* Build argument list when p2 >= p1, where p1 is a simple pattern *)
let rec simple_match_args p1 p2 = match p2.pat_desc with
| Tpat_alias (p2,_,_) -> simple_match_args p1 p2
| Tpat_construct(_, _, args) -> args
| Tpat_variant(_, Some arg, _) -> [arg]
| Tpat_tuple(args) -> args
| Tpat_record(args,_) -> extract_fields (record_arg p1) args
| Tpat_array(args) -> args
| Tpat_lazy arg -> [arg]
| (Tpat_any | Tpat_var(_)) ->
begin match p1.pat_desc with
Tpat_construct(_, _,args) -> omega_list args
| Tpat_variant(_, Some _, _) -> [omega]
| Tpat_tuple(args) -> omega_list args
| Tpat_record(args,_) -> omega_list args
| Tpat_array(args) -> omega_list args
| Tpat_lazy _ -> [omega]
| _ -> []
end
| _ -> []
(*
Normalize a pattern ->
all arguments are omega (simple pattern) and no more variables
*)
let rec normalize_pat q = match q.pat_desc with
| Tpat_any | Tpat_constant _ -> q
| Tpat_var _ -> make_pat Tpat_any q.pat_type q.pat_env
| Tpat_alias (p,_,_) -> normalize_pat p
| Tpat_tuple (args) ->
make_pat (Tpat_tuple (omega_list args)) q.pat_type q.pat_env
| Tpat_construct (lid, c,args) ->
make_pat
(Tpat_construct (lid, c,omega_list args))
q.pat_type q.pat_env
| Tpat_variant (l, arg, row) ->
make_pat (Tpat_variant (l, may_map (fun _ -> omega) arg, row))
q.pat_type q.pat_env
| Tpat_array (args) ->
make_pat (Tpat_array (omega_list args)) q.pat_type q.pat_env
| Tpat_record (largs, closed) ->
make_pat
(Tpat_record (List.map (fun (lid,lbl,_) ->
lid, lbl,omega) largs, closed))
q.pat_type q.pat_env
| Tpat_lazy _ ->
make_pat (Tpat_lazy omega) q.pat_type q.pat_env
| Tpat_or _ -> fatal_error "Parmatch.normalize_pat"
(*
Build normalized (cf. supra) discriminating pattern,
in the non-data type case
*)
let discr_pat q pss =
let rec acc_pat acc pss = match pss with
({pat_desc = Tpat_alias (p,_,_)}::ps)::pss ->
acc_pat acc ((p::ps)::pss)
| ({pat_desc = Tpat_or (p1,p2,_)}::ps)::pss ->
acc_pat acc ((p1::ps)::(p2::ps)::pss)
| ({pat_desc = (Tpat_any | Tpat_var _)}::_)::pss ->
acc_pat acc pss
| (({pat_desc = Tpat_tuple _} as p)::_)::_ -> normalize_pat p
| (({pat_desc = Tpat_lazy _} as p)::_)::_ -> normalize_pat p
| (({pat_desc = Tpat_record (largs,closed)} as p)::_)::pss ->
let new_omegas =
List.fold_right
(fun (lid, lbl,_) r ->
try
let _ = get_field lbl.lbl_pos r in
r
with Not_found ->
(lid, lbl,omega)::r)
largs (record_arg acc)
in
acc_pat
(make_pat (Tpat_record (new_omegas, closed)) p.pat_type p.pat_env)
pss
| _ -> acc in
match normalize_pat q with
| {pat_desc= (Tpat_any | Tpat_record _)} as q -> acc_pat q pss
| q -> q
(*
In case a matching value is found, set actual arguments
of the matching pattern.
*)
let rec read_args xs r = match xs,r with
| [],_ -> [],r
| _::xs, arg::rest ->
let args,rest = read_args xs rest in
arg::args,rest
| _,_ ->
fatal_error "Parmatch.read_args"
let do_set_args erase_mutable q r = match q with
| {pat_desc = Tpat_tuple omegas} ->
let args,rest = read_args omegas r in
make_pat (Tpat_tuple args) q.pat_type q.pat_env::rest
| {pat_desc = Tpat_record (omegas,closed)} ->
let args,rest = read_args omegas r in
make_pat
(Tpat_record
(List.map2 (fun (lid, lbl,_) arg ->
if
erase_mutable &&
(match lbl.lbl_mut with
| Mutable -> true | Immutable -> false)
then
lid, lbl, omega
else
lid, lbl, arg)
omegas args, closed))
q.pat_type q.pat_env::
rest
| {pat_desc = Tpat_construct (lid, c,omegas)} ->
let args,rest = read_args omegas r in
make_pat
(Tpat_construct (lid, c,args))
q.pat_type q.pat_env::
rest
| {pat_desc = Tpat_variant (l, omega, row)} ->
let arg, rest =
match omega, r with
Some _, a::r -> Some a, r
| None, r -> None, r
| _ -> assert false
in
make_pat
(Tpat_variant (l, arg, row)) q.pat_type q.pat_env::
rest
| {pat_desc = Tpat_lazy _omega} ->
begin match r with
arg::rest ->
make_pat (Tpat_lazy arg) q.pat_type q.pat_env::rest
| _ -> fatal_error "Parmatch.do_set_args (lazy)"
end
| {pat_desc = Tpat_array omegas} ->
let args,rest = read_args omegas r in
make_pat
(Tpat_array args) q.pat_type q.pat_env::
rest
| {pat_desc=Tpat_constant _|Tpat_any} ->
q::r (* case any is used in matching.ml *)
| _ -> fatal_error "Parmatch.set_args"
let set_args q r = do_set_args false q r
and set_args_erase_mutable q r = do_set_args true q r
(* filter pss acording to pattern q *)
let filter_one q pss =
let rec filter_rec = function
({pat_desc = Tpat_alias(p,_,_)}::ps)::pss ->
filter_rec ((p::ps)::pss)
| ({pat_desc = Tpat_or(p1,p2,_)}::ps)::pss ->
filter_rec ((p1::ps)::(p2::ps)::pss)
| (p::ps)::pss ->
if simple_match q p
then (simple_match_args q p @ ps) :: filter_rec pss
else filter_rec pss
| _ -> [] in
filter_rec pss
(*
Filter pss in the ``extra case''. This applies :
- According to an extra constructor (datatype case, non-complete signature).
- Acordinng to anything (all-variables case).
*)
let filter_extra pss =
let rec filter_rec = function
({pat_desc = Tpat_alias(p,_,_)}::ps)::pss ->
filter_rec ((p::ps)::pss)
| ({pat_desc = Tpat_or(p1,p2,_)}::ps)::pss ->
filter_rec ((p1::ps)::(p2::ps)::pss)
| ({pat_desc = (Tpat_any | Tpat_var(_))} :: qs) :: pss ->
qs :: filter_rec pss
| _::pss -> filter_rec pss
| [] -> [] in
filter_rec pss
(*
Pattern p0 is the discriminating pattern,
returns [(q0,pss0) ; ... ; (qn,pssn)]
where the qi's are simple patterns and the pssi's are
matched matrices.
NOTES
* (qi,[]) is impossible.
* In the case when matching is useless (all-variable case),
returns []
*)
let filter_all pat0 pss =
let rec insert q qs env =
match env with
[] ->
let q0 = normalize_pat q in
[q0, [simple_match_args q0 q @ qs]]
| ((q0,pss) as c)::env ->
if simple_match q0 q
then (q0, ((simple_match_args q0 q @ qs) :: pss)) :: env
else c :: insert q qs env in
let rec filter_rec env = function
({pat_desc = Tpat_alias(p,_,_)}::ps)::pss ->
filter_rec env ((p::ps)::pss)
| ({pat_desc = Tpat_or(p1,p2,_)}::ps)::pss ->
filter_rec env ((p1::ps)::(p2::ps)::pss)
| ({pat_desc = (Tpat_any | Tpat_var(_))}::_)::pss ->
filter_rec env pss
| (p::ps)::pss ->
filter_rec (insert p ps env) pss
| _ -> env
and filter_omega env = function
({pat_desc = Tpat_alias(p,_,_)}::ps)::pss ->
filter_omega env ((p::ps)::pss)
| ({pat_desc = Tpat_or(p1,p2,_)}::ps)::pss ->
filter_omega env ((p1::ps)::(p2::ps)::pss)
| ({pat_desc = (Tpat_any | Tpat_var(_))}::ps)::pss ->
filter_omega
(List.map (fun (q,qss) -> (q,(simple_match_args q omega @ ps) :: qss))
env)
pss
| _::pss -> filter_omega env pss
| [] -> env in
filter_omega
(filter_rec
(match pat0.pat_desc with
(Tpat_record(_) | Tpat_tuple(_) | Tpat_lazy(_)) -> [pat0,[]]
| _ -> [])
pss)
pss
(* Variant related functions *)
let rec set_last a = function
[] -> []
| [_] -> [a]
| x::l -> x :: set_last a l
(* mark constructor lines for failure when they are incomplete *)
let rec mark_partial = function
({pat_desc = Tpat_alias(p,_,_)}::ps)::pss ->
mark_partial ((p::ps)::pss)
| ({pat_desc = Tpat_or(p1,p2,_)}::ps)::pss ->
mark_partial ((p1::ps)::(p2::ps)::pss)
| ({pat_desc = (Tpat_any | Tpat_var(_))} :: _ as ps) :: pss ->
ps :: mark_partial pss
| ps::pss ->
(set_last zero ps) :: mark_partial pss
| [] -> []
let close_variant env row =
let row = Btype.row_repr row in
let nm =
List.fold_left
(fun nm (_tag,f) ->
match Btype.row_field_repr f with
| Reither(_, _, false, e) ->
(* m=false means that this tag is not explicitly matched *)
Btype.set_row_field e Rabsent;
None
| Rabsent | Reither (_, _, true, _) | Rpresent _ -> nm)
row.row_name row.row_fields in
if not row.row_closed || nm != row.row_name then begin
(* this unification cannot fail *)
Ctype.unify env row.row_more
(Btype.newgenty
(Tvariant {row with row_fields = []; row_more = Btype.newgenvar();
row_closed = true; row_name = nm}))
end
let row_of_pat pat =
match Ctype.expand_head pat.pat_env pat.pat_type with
{desc = Tvariant row} -> Btype.row_repr row
| _ -> assert false
(*
Check whether the first column of env makes up a complete signature or
not.
*)
let full_match closing env = match env with
| ({pat_desc = Tpat_construct(_,c,_)},_) :: _ ->
if c.cstr_consts < 0 then false (* extensions *)
else List.length env = c.cstr_consts + c.cstr_nonconsts
| ({pat_desc = Tpat_variant _} as p,_) :: _ ->
let fields =
List.map
(function ({pat_desc = Tpat_variant (tag, _, _)}, _) -> tag
| _ -> assert false)
env
in
let row = row_of_pat p in
if closing && not (Btype.row_fixed row) then
(* closing=true, we are considering the variant as closed *)
List.for_all
(fun (tag,f) ->
match Btype.row_field_repr f with
Rabsent | Reither(_, _, false, _) -> true
| Reither (_, _, true, _)
(* m=true, do not discard matched tags, rather warn *)
| Rpresent _ -> List.mem tag fields)
row.row_fields
else
row.row_closed &&
List.for_all
(fun (tag,f) ->
Btype.row_field_repr f = Rabsent || List.mem tag fields)
row.row_fields
| ({pat_desc = Tpat_constant(Const_char _)},_) :: _ ->
List.length env = 256
| ({pat_desc = Tpat_constant(_)},_) :: _ -> false
| ({pat_desc = Tpat_tuple(_)},_) :: _ -> true
| ({pat_desc = Tpat_record(_)},_) :: _ -> true
| ({pat_desc = Tpat_array(_)},_) :: _ -> false
| ({pat_desc = Tpat_lazy(_)},_) :: _ -> true
| _ -> fatal_error "Parmatch.full_match"
let should_extend ext env = match ext with
| None -> false
| Some ext -> match env with
| ({pat_desc =
Tpat_construct(_, {cstr_tag=(Cstr_constant _|Cstr_block _)},_)}
as p, _) :: _ ->
let path = get_type_path p.pat_type p.pat_env in
Path.same path ext
| _ -> false
(* complement constructor tags *)
let complete_tags nconsts nconstrs tags =
let seen_const = Array.make nconsts false
and seen_constr = Array.make nconstrs false in
List.iter
(function
| Cstr_constant i -> seen_const.(i) <- true
| Cstr_block i -> seen_constr.(i) <- true
| _ -> assert false)
tags ;
let r = ref [] in
for i = 0 to nconsts-1 do
if not seen_const.(i) then
r := Cstr_constant i :: !r
done ;
for i = 0 to nconstrs-1 do
if not seen_constr.(i) then
r := Cstr_block i :: !r
done ;
!r
(* build a pattern from a constructor list *)
let pat_of_constr ex_pat cstr =
{ex_pat with pat_desc =
Tpat_construct (mknoloc (Longident.Lident "?pat_of_constr?"),
cstr, omegas cstr.cstr_arity)}
let orify x y = make_pat (Tpat_or (x, y, None)) x.pat_type x.pat_env
let rec orify_many = function
| [] -> assert false
| [x] -> x
| x :: xs -> orify x (orify_many xs)
let pat_of_constrs ex_pat cstrs =
if cstrs = [] then raise Empty else
orify_many (List.map (pat_of_constr ex_pat) cstrs)
let pats_of_type ?(always=false) env ty =
let ty' = Ctype.expand_head env ty in
match ty'.desc with
| Tconstr (path, _, _) ->
begin try match (Env.find_type path env).type_kind with
| Type_variant cl when always || List.length cl = 1 ||
List.for_all (fun cd -> cd.Types.cd_res <> None) cl ->
let cstrs = fst (Env.find_type_descrs path env) in
List.map (pat_of_constr (make_pat Tpat_any ty env)) cstrs
| Type_record _ ->
let labels = snd (Env.find_type_descrs path env) in
let fields =
List.map (fun ld ->
mknoloc (Longident.Lident "?pat_of_label?"), ld, omega)
labels
in
[make_pat (Tpat_record (fields, Closed)) ty env]
| _ -> [omega]
with Not_found -> [omega]
end
| Ttuple tl ->
[make_pat (Tpat_tuple (omegas (List.length tl))) ty env]
| _ -> [omega]
let rec get_variant_constructors env ty =
match (Ctype.repr ty).desc with
| Tconstr (path,_,_) -> begin
try match Env.find_type path env with
| {type_kind=Type_variant _} ->
fst (Env.find_type_descrs path env)
| {type_manifest = Some _} ->
get_variant_constructors env
(Ctype.expand_head_once env (clean_copy ty))
| _ -> fatal_error "Parmatch.get_variant_constructors"
with Not_found ->
fatal_error "Parmatch.get_variant_constructors"
end
| _ -> fatal_error "Parmatch.get_variant_constructors"
(* Sends back a pattern that complements constructor tags all_tag *)
let complete_constrs p all_tags =
let c =
match p.pat_desc with Tpat_construct (_, c, _) -> c | _ -> assert false in
let not_tags = complete_tags c.cstr_consts c.cstr_nonconsts all_tags in
let constrs = get_variant_constructors p.pat_env c.cstr_res in
let others =
List.filter (fun cnstr -> List.mem cnstr.cstr_tag not_tags) constrs in
let const, nonconst =
List.partition (fun cnstr -> cnstr.cstr_arity = 0) others in
const @ nonconst
let build_other_constrs env p =
match p.pat_desc with
Tpat_construct (_, {cstr_tag=Cstr_constant _|Cstr_block _}, _) ->
let get_tag = function
| {pat_desc = Tpat_construct (_,c,_)} -> c.cstr_tag
| _ -> fatal_error "Parmatch.get_tag" in
let all_tags = List.map (fun (p,_) -> get_tag p) env in
pat_of_constrs p (complete_constrs p all_tags)
| _ -> extra_pat
(* Auxiliary for build_other *)
let build_other_constant proj make first next p env =
let all = List.map (fun (p, _) -> proj p.pat_desc) env in
let rec try_const i =
if List.mem i all
then try_const (next i)
else make_pat (make i) p.pat_type p.pat_env
in try_const first
(*
Builds a pattern that is incompatible with all patterns in
in the first column of env
*)
let build_other ext env = match env with
| ({pat_desc = Tpat_construct (lid,
({cstr_tag=Cstr_extension _} as c),_)},_) :: _ ->
let c = {c with cstr_name = "*extension*"} in
make_pat (Tpat_construct(lid, c, [])) Ctype.none Env.empty
| ({pat_desc = Tpat_construct _} as p,_) :: _ ->
begin match ext with
| Some ext when Path.same ext (get_type_path p.pat_type p.pat_env) ->
extra_pat
| _ ->
build_other_constrs env p
end
| ({pat_desc = Tpat_variant (_,_,r)} as p,_) :: _ ->
let tags =
List.map
(function ({pat_desc = Tpat_variant (tag, _, _)}, _) -> tag
| _ -> assert false)
env
in
let row = row_of_pat p in
let make_other_pat tag const =
let arg = if const then None else Some omega in
make_pat (Tpat_variant(tag, arg, r)) p.pat_type p.pat_env in
begin match
List.fold_left
(fun others (tag,f) ->
if List.mem tag tags then others else
match Btype.row_field_repr f with
Rabsent (* | Reither _ *) -> others
(* This one is called after erasing pattern info *)
| Reither (c, _, _, _) -> make_other_pat tag c :: others
| Rpresent arg -> make_other_pat tag (arg = None) :: others)
[] row.row_fields
with
[] ->
make_other_pat "AnyExtraTag" true
| pat::other_pats ->
List.fold_left
(fun p_res pat ->
make_pat (Tpat_or (pat, p_res, None)) p.pat_type p.pat_env)
pat other_pats
end
| ({pat_desc = Tpat_constant(Const_char _)} as p,_) :: _ ->
let all_chars =
List.map
(fun (p,_) -> match p.pat_desc with
| Tpat_constant (Const_char c) -> c
| _ -> assert false)
env in
let rec find_other i imax =
if i > imax then raise Not_found
else
let ci = Char.chr i in
if List.mem ci all_chars then
find_other (i+1) imax
else
make_pat (Tpat_constant (Const_char ci)) p.pat_type p.pat_env in
let rec try_chars = function
| [] -> omega
| (c1,c2) :: rest ->
try
find_other (Char.code c1) (Char.code c2)
with
| Not_found -> try_chars rest in
try_chars
[ 'a', 'z' ; 'A', 'Z' ; '0', '9' ;
' ', '~' ; Char.chr 0 , Char.chr 255]
| ({pat_desc=(Tpat_constant (Const_int _))} as p,_) :: _ ->
build_other_constant
(function Tpat_constant(Const_int i) -> i | _ -> assert false)
(function i -> Tpat_constant(Const_int i))
0 succ p env
| ({pat_desc=(Tpat_constant (Const_int32 _))} as p,_) :: _ ->
build_other_constant
(function Tpat_constant(Const_int32 i) -> i | _ -> assert false)
(function i -> Tpat_constant(Const_int32 i))
0l Int32.succ p env
| ({pat_desc=(Tpat_constant (Const_int64 _))} as p,_) :: _ ->
build_other_constant
(function Tpat_constant(Const_int64 i) -> i | _ -> assert false)
(function i -> Tpat_constant(Const_int64 i))
0L Int64.succ p env
| ({pat_desc=(Tpat_constant (Const_nativeint _))} as p,_) :: _ ->
build_other_constant
(function Tpat_constant(Const_nativeint i) -> i | _ -> assert false)
(function i -> Tpat_constant(Const_nativeint i))
0n Nativeint.succ p env
| ({pat_desc=(Tpat_constant (Const_string _))} as p,_) :: _ ->
build_other_constant
(function Tpat_constant(Const_string (s, _)) -> String.length s
| _ -> assert false)
(function i -> Tpat_constant(Const_string(String.make i '*', None)))
0 succ p env
| ({pat_desc=(Tpat_constant (Const_float _))} as p,_) :: _ ->
build_other_constant
(function Tpat_constant(Const_float f) -> float_of_string f
| _ -> assert false)
(function f -> Tpat_constant(Const_float (string_of_float f)))
0.0 (fun f -> f +. 1.0) p env
| ({pat_desc = Tpat_array _} as p,_)::_ ->
let all_lengths =
List.map
(fun (p,_) -> match p.pat_desc with
| Tpat_array args -> List.length args
| _ -> assert false)
env in
let rec try_arrays l =
if List.mem l all_lengths then try_arrays (l+1)
else
make_pat
(Tpat_array (omegas l))
p.pat_type p.pat_env in
try_arrays 0
| [] -> omega
| _ -> omega
(*
Core function :
Is the last row of pattern matrix pss + qs satisfiable ?
That is :
Does there exists at least one value vector, es such that :
1- for all ps in pss ps # es (ps and es are not compatible)
2- qs <= es (es matches qs)
*)
let rec has_instance p = match p.pat_desc with
| Tpat_variant (l,_,r) when is_absent l r -> false
| Tpat_any | Tpat_var _ | Tpat_constant _ | Tpat_variant (_,None,_) -> true
| Tpat_alias (p,_,_) | Tpat_variant (_,Some p,_) -> has_instance p
| Tpat_or (p1,p2,_) -> has_instance p1 || has_instance p2
| Tpat_construct (_,_,ps) | Tpat_tuple ps | Tpat_array ps ->
has_instances ps
| Tpat_record (lps,_) -> has_instances (List.map (fun (_,_,x) -> x) lps)
| Tpat_lazy p
-> has_instance p
and has_instances = function
| [] -> true
| q::rem -> has_instance q && has_instances rem
let rec satisfiable pss qs = match pss with
| [] -> has_instances qs
| _ ->
match qs with
| [] -> false
| {pat_desc = Tpat_or(q1,q2,_)}::qs ->
satisfiable pss (q1::qs) || satisfiable pss (q2::qs)
| {pat_desc = Tpat_alias(q,_,_)}::qs ->
satisfiable pss (q::qs)
| {pat_desc = (Tpat_any | Tpat_var(_))}::qs ->
let q0 = discr_pat omega pss in
begin match filter_all q0 pss with
(* first column of pss is made of variables only *)
| [] -> satisfiable (filter_extra pss) qs
| constrs ->
if full_match false constrs then
List.exists
(fun (p,pss) ->
not (is_absent_pat p) &&
satisfiable pss (simple_match_args p omega @ qs))
constrs
else
satisfiable (filter_extra pss) qs
end
| {pat_desc=Tpat_variant (l,_,r)}::_ when is_absent l r -> false
| q::qs ->
let q0 = discr_pat q pss in
satisfiable (filter_one q0 pss) (simple_match_args q0 q @ qs)
(* Also return the remaining cases, to enable GADT handling *)
let rec satisfiables pss qs = match pss with
| [] -> if has_instances qs then [qs] else []
| _ ->
match qs with
| [] -> []
| {pat_desc = Tpat_or(q1,q2,_)}::qs ->
satisfiables pss (q1::qs) @ satisfiables pss (q2::qs)
| {pat_desc = Tpat_alias(q,_,_)}::qs ->
satisfiables pss (q::qs)
| {pat_desc = (Tpat_any | Tpat_var(_))}::qs ->
let q0 = discr_pat omega pss in
let wild p =
List.map (fun qs -> p::qs) (satisfiables (filter_extra pss) qs) in
begin match filter_all q0 pss with
(* first column of pss is made of variables only *)
| [] ->
wild omega
| (p,_)::_ as constrs ->
let for_constrs () =
List.flatten (
List.map
(fun (p,pss) ->
if is_absent_pat p then [] else
List.map (set_args p)
(satisfiables pss (simple_match_args p omega @ qs)))
constrs )
in
if full_match false constrs then for_constrs () else
match p.pat_desc with
Tpat_construct _ ->
(* activate this code for checking non-gadt constructors *)
wild (build_other_constrs constrs p) @ for_constrs ()
| _ ->
wild omega
end
| {pat_desc=Tpat_variant (l,_,r)}::_ when is_absent l r -> []
| q::qs ->
let q0 = discr_pat q pss in
List.map (set_args q0)
(satisfiables (filter_one q0 pss) (simple_match_args q0 q @ qs))
(*
Now another satisfiable function that additionally
supplies an example of a matching value.
This function should be called for exhaustiveness check only.
*)
type 'a result =
| Rnone (* No matching value *)
| Rsome of 'a (* This matching value *)
(*
let rec try_many f = function
| [] -> Rnone
| (p,pss)::rest ->
match f (p,pss) with
| Rnone -> try_many f rest
| r -> r
*)
let rappend r1 r2 =
match r1, r2 with
| Rnone, _ -> r2
| _, Rnone -> r1
| Rsome l1, Rsome l2 -> Rsome (l1 @ l2)
let rec try_many_gadt f = function
| [] -> Rnone
| (p,pss)::rest ->
rappend (f (p, pss)) (try_many_gadt f rest)
(*
let rec exhaust ext pss n = match pss with
| [] -> Rsome (omegas n)
| []::_ -> Rnone
| pss ->
let q0 = discr_pat omega pss in
begin match filter_all q0 pss with
(* first column of pss is made of variables only *)
| [] ->
begin match exhaust ext (filter_extra pss) (n-1) with
| Rsome r -> Rsome (q0::r)
| r -> r
end
| constrs ->
let try_non_omega (p,pss) =
if is_absent_pat p then
Rnone
else
match
exhaust
ext pss (List.length (simple_match_args p omega) + n - 1)
with
| Rsome r -> Rsome (set_args p r)
| r -> r in
if
full_match true false constrs && not (should_extend ext constrs)
then
try_many try_non_omega constrs
else
(*
D = filter_extra pss is the default matrix
as it is included in pss, one can avoid
recursive calls on specialized matrices,
Essentially :
* D exhaustive => pss exhaustive
* D non-exhaustive => we have a non-filtered value
*)
let r = exhaust ext (filter_extra pss) (n-1) in
match r with
| Rnone -> Rnone
| Rsome r ->
try
Rsome (build_other ext constrs::r)
with
(* cannot occur, since constructors don't make a full signature *)
| Empty -> fatal_error "Parmatch.exhaust"
end
let combinations f lst lst' =
let rec iter2 x =
function
[] -> []
| y :: ys ->
f x y :: iter2 x ys
in
let rec iter =
function
[] -> []
| x :: xs -> iter2 x lst' @ iter xs
in
iter lst
*)
(*
let print_pat pat =
let rec string_of_pat pat =
match pat.pat_desc with
Tpat_var _ -> "v"
| Tpat_any -> "_"
| Tpat_alias (p, x) -> Printf.sprintf "(%s) as ?" (string_of_pat p)
| Tpat_constant n -> "0"
| Tpat_construct (_, lid, _) ->
Printf.sprintf "%s" (String.concat "." (Longident.flatten lid.txt))
| Tpat_lazy p ->
Printf.sprintf "(lazy %s)" (string_of_pat p)
| Tpat_or (p1,p2,_) ->
Printf.sprintf "(%s | %s)" (string_of_pat p1) (string_of_pat p2)
| Tpat_tuple list ->
Printf.sprintf "(%s)" (String.concat "," (List.map string_of_pat list))
| Tpat_variant (_, _, _) -> "variant"
| Tpat_record (_, _) -> "record"
| Tpat_array _ -> "array"
in
Printf.fprintf stderr "PAT[%s]\n%!" (string_of_pat pat)
*)
(* strictly more powerful than exhaust; however, exhaust
was kept for backwards compatibility *)
let rec exhaust_gadt (ext:Path.t option) pss n = match pss with
| [] -> Rsome [omegas n]
| []::_ -> Rnone
| pss ->
let q0 = discr_pat omega pss in
begin match filter_all q0 pss with
(* first column of pss is made of variables only *)
| [] ->
begin match exhaust_gadt ext (filter_extra pss) (n-1) with
| Rsome r -> Rsome (List.map (fun row -> q0::row) r)
| r -> r
end
| constrs ->
let try_non_omega (p,pss) =
if is_absent_pat p then
Rnone
else
match
exhaust_gadt
ext pss (List.length (simple_match_args p omega) + n - 1)
with
| Rsome r -> Rsome (List.map (fun row -> (set_args p row)) r)
| r -> r in
let before = try_many_gadt try_non_omega constrs in
if
full_match false constrs && not (should_extend ext constrs)
then
before
else
(*
D = filter_extra pss is the default matrix
as it is included in pss, one can avoid
recursive calls on specialized matrices,
Essentially :
* D exhaustive => pss exhaustive
* D non-exhaustive => we have a non-filtered value
*)
let r = exhaust_gadt ext (filter_extra pss) (n-1) in
match r with
| Rnone -> before
| Rsome r ->
try
let p = build_other ext constrs in
let dug = List.map (fun tail -> p :: tail) r in
match before with
| Rnone -> Rsome dug
| Rsome x -> Rsome (x @ dug)
with
(* cannot occur, since constructors don't make a full signature *)
| Empty -> fatal_error "Parmatch.exhaust"
end
let exhaust_gadt ext pss n =
let ret = exhaust_gadt ext pss n in
match ret with
Rnone -> Rnone
| Rsome lst ->
(* The following line is needed to compile stdlib/printf.ml *)
if lst = [] then Rsome (omegas n) else
let singletons =
List.map
(function
[x] -> x
| _ -> assert false)
lst
in
Rsome [orify_many singletons]
(*
Another exhaustiveness check, enforcing variant typing.
Note that it does not check exact exhaustiveness, but whether a
matching could be made exhaustive by closing all variant types.
When this is true of all other columns, the current column is left
open (even if it means that the whole matching is not exhaustive as
a result).
When this is false for the matrix minus the current column, and the
current column is composed of variant tags, we close the variant
(even if it doesn't help in making the matching exhaustive).
*)
let rec pressure_variants tdefs = function
| [] -> false
| []::_ -> true
| pss ->
let q0 = discr_pat omega pss in
begin match filter_all q0 pss with
[] -> pressure_variants tdefs (filter_extra pss)
| constrs ->
let rec try_non_omega = function
(_p,pss) :: rem ->
let ok = pressure_variants tdefs pss in
try_non_omega rem && ok
| [] -> true
in
if full_match (tdefs=None) constrs then
try_non_omega constrs
else if tdefs = None then
pressure_variants None (filter_extra pss)
else
let full = full_match true constrs in
let ok =
if full then try_non_omega constrs
else try_non_omega (filter_all q0 (mark_partial pss))
in
begin match constrs, tdefs with
({pat_desc=Tpat_variant _} as p,_):: _, Some env ->
let row = row_of_pat p in
if Btype.row_fixed row
|| pressure_variants None (filter_extra pss) then ()
else close_variant env row
| _ -> ()
end;
ok
end
(* Yet another satisfiable fonction *)
(*
This time every_satisfiable pss qs checks the
utility of every expansion of qs.
Expansion means expansion of or-patterns inside qs
*)
type answer =
| Used (* Useful pattern *)
| Unused (* Useless pattern *)
| Upartial of Typedtree.pattern list (* Mixed, with list of useless ones *)
(* this row type enable column processing inside the matrix
- left -> elements not to be processed,
- right -> elements to be processed
*)
type 'a row = {no_ors : 'a list ; ors : 'a list ; active : 'a list}
(*
let pretty_row {ors=ors ; no_ors=no_ors; active=active} =
pretty_line ors ; prerr_string " *" ;
pretty_line no_ors ; prerr_string " *" ;
pretty_line active
let pretty_rows rs =
prerr_endline "begin matrix" ;
List.iter
(fun r ->
pretty_row r ;
prerr_endline "")
rs ;
prerr_endline "end matrix"
*)
(* Initial build *)
let make_row ps = {ors=[] ; no_ors=[]; active=ps}
let make_rows pss = List.map make_row pss
(* Useful to detect and expand or pats inside as pats *)
let rec unalias p = match p.pat_desc with
| Tpat_alias (p,_,_) -> unalias p
| _ -> p
let is_var p = match (unalias p).pat_desc with
| Tpat_any|Tpat_var _ -> true
| _ -> false
let is_var_column rs =
List.for_all
(fun r -> match r.active with
| p::_ -> is_var p
| [] -> assert false)
rs
(* Standard or-args for left-to-right matching *)
let rec or_args p = match p.pat_desc with
| Tpat_or (p1,p2,_) -> p1,p2
| Tpat_alias (p,_,_) -> or_args p
| _ -> assert false
(* Just remove current column *)
let remove r = match r.active with
| _::rem -> {r with active=rem}
| [] -> assert false
let remove_column rs = List.map remove rs
(* Current column has been processed *)
let push_no_or r = match r.active with
| p::rem -> { r with no_ors = p::r.no_ors ; active=rem}
| [] -> assert false
let push_or r = match r.active with
| p::rem -> { r with ors = p::r.ors ; active=rem}
| [] -> assert false
let push_or_column rs = List.map push_or rs
and push_no_or_column rs = List.map push_no_or rs
(* Those are adaptations of the previous homonymous functions that
work on the current column, instead of the first column
*)
let discr_pat q rs =
discr_pat q (List.map (fun r -> r.active) rs)
let filter_one q rs =
let rec filter_rec rs = match rs with
| [] -> []
| r::rem ->
match r.active with
| [] -> assert false
| {pat_desc = Tpat_alias(p,_,_)}::ps ->
filter_rec ({r with active = p::ps}::rem)
| {pat_desc = Tpat_or(p1,p2,_)}::ps ->
filter_rec
({r with active = p1::ps}::
{r with active = p2::ps}::
rem)
| p::ps ->
if simple_match q p then
{r with active=simple_match_args q p @ ps} :: filter_rec rem
else
filter_rec rem in
filter_rec rs
(* Back to normal matrices *)
let make_vector r = r.no_ors
let make_matrix rs = List.map make_vector rs
(* Standard union on answers *)
let union_res r1 r2 = match r1, r2 with
| (Unused,_)
| (_, Unused) -> Unused
| Used,_ -> r2
| _, Used -> r1
| Upartial u1, Upartial u2 -> Upartial (u1@u2)
(* propose or pats for expansion *)
let extract_elements qs =
let rec do_rec seen = function
| [] -> []
| q::rem ->
{no_ors= List.rev_append seen rem @ qs.no_ors ;
ors=[] ;
active = [q]}::
do_rec (q::seen) rem in
do_rec [] qs.ors
(* idem for matrices *)
let transpose rs = match rs with
| [] -> assert false
| r::rem ->
let i = List.map (fun x -> [x]) r in
List.fold_left
(List.map2 (fun r x -> x::r))
i rem
let extract_columns pss qs = match pss with
| [] -> List.map (fun _ -> []) qs.ors
| _ ->
let rows = List.map extract_elements pss in
transpose rows
(* Core function
The idea is to first look for or patterns (recursive case), then
check or-patterns argument usefulness (terminal case)
*)
let rec every_satisfiables pss qs = match qs.active with
| [] ->
(* qs is now partitionned, check usefulness *)
begin match qs.ors with
| [] -> (* no or-patterns *)
if satisfiable (make_matrix pss) (make_vector qs) then
Used
else
Unused
| _ -> (* n or-patterns -> 2n expansions *)
List.fold_right2
(fun pss qs r -> match r with
| Unused -> Unused
| _ ->
match qs.active with
| [q] ->
let q1,q2 = or_args q in
let r_loc = every_both pss qs q1 q2 in
union_res r r_loc
| _ -> assert false)
(extract_columns pss qs) (extract_elements qs)
Used
end
| q::rem ->
let uq = unalias q in
begin match uq.pat_desc with
| Tpat_any | Tpat_var _ ->
if is_var_column pss then
(* forget about ``all-variable'' columns now *)
every_satisfiables (remove_column pss) (remove qs)
else
(* otherwise this is direct food for satisfiable *)
every_satisfiables (push_no_or_column pss) (push_no_or qs)
| Tpat_or (q1,q2,_) ->
if
q1.pat_loc.Location.loc_ghost &&
q2.pat_loc.Location.loc_ghost
then
(* syntactically generated or-pats should not be expanded *)
every_satisfiables (push_no_or_column pss) (push_no_or qs)
else
(* this is a real or-pattern *)
every_satisfiables (push_or_column pss) (push_or qs)
| Tpat_variant (l,_,r) when is_absent l r -> (* Ah Jacques... *)
Unused
| _ ->
(* standard case, filter matrix *)
let q0 = discr_pat q pss in
every_satisfiables
(filter_one q0 pss)
{qs with active=simple_match_args q0 q @ rem}
end
(*
This function ``every_both'' performs the usefulness check
of or-pat q1|q2.
The trick is to call every_satisfied twice with
current active columns restricted to q1 and q2,
That way,
- others orpats in qs.ors will not get expanded.
- all matching work performed on qs.no_ors is not performed again.
*)
and every_both pss qs q1 q2 =
let qs1 = {qs with active=[q1]}
and qs2 = {qs with active=[q2]} in
let r1 = every_satisfiables pss qs1
and r2 = every_satisfiables (if compat q1 q2 then qs1::pss else pss) qs2 in
match r1 with
| Unused ->
begin match r2 with
| Unused -> Unused
| Used -> Upartial [q1]
| Upartial u2 -> Upartial (q1::u2)
end
| Used ->
begin match r2 with
| Unused -> Upartial [q2]
| _ -> r2
end
| Upartial u1 ->
begin match r2 with
| Unused -> Upartial (u1@[q2])
| Used -> r1
| Upartial u2 -> Upartial (u1 @ u2)
end
(* le_pat p q means, forall V, V matches q implies V matches p *)
let rec le_pat p q =
match (p.pat_desc, q.pat_desc) with
| (Tpat_var _|Tpat_any),_ -> true
| Tpat_alias(p,_,_), _ -> le_pat p q
| _, Tpat_alias(q,_,_) -> le_pat p q
| Tpat_constant(c1), Tpat_constant(c2) -> const_compare c1 c2 = 0
| Tpat_construct(_,c1,ps), Tpat_construct(_,c2,qs) ->
c1.cstr_tag = c2.cstr_tag && le_pats ps qs
| Tpat_variant(l1,Some p1,_), Tpat_variant(l2,Some p2,_) ->
(l1 = l2 && le_pat p1 p2)
| Tpat_variant(l1,None,_r1), Tpat_variant(l2,None,_) ->
l1 = l2
| Tpat_variant(_,_,_), Tpat_variant(_,_,_) -> false
| Tpat_tuple(ps), Tpat_tuple(qs) -> le_pats ps qs
| Tpat_lazy p, Tpat_lazy q -> le_pat p q
| Tpat_record (l1,_), Tpat_record (l2,_) ->
let ps,qs = records_args l1 l2 in
le_pats ps qs
| Tpat_array(ps), Tpat_array(qs) ->
List.length ps = List.length qs && le_pats ps qs
(* In all other cases, enumeration is performed *)
| _,_ -> not (satisfiable [[p]] [q])
and le_pats ps qs =
match ps,qs with
p::ps, q::qs -> le_pat p q && le_pats ps qs
| _, _ -> true
let get_mins le ps =
let rec select_rec r = function
[] -> r
| p::ps ->
if List.exists (fun p0 -> le p0 p) ps
then select_rec r ps
else select_rec (p::r) ps in
select_rec [] (select_rec [] ps)
(*
lub p q is a pattern that matches all values matched by p and q
may raise Empty, when p and q are not compatible
*)
let rec lub p q = match p.pat_desc,q.pat_desc with
| Tpat_alias (p,_,_),_ -> lub p q
| _,Tpat_alias (q,_,_) -> lub p q
| (Tpat_any|Tpat_var _),_ -> q
| _,(Tpat_any|Tpat_var _) -> p
| Tpat_or (p1,p2,_),_ -> orlub p1 p2 q
| _,Tpat_or (q1,q2,_) -> orlub q1 q2 p (* Thanks god, lub is commutative *)
| Tpat_constant c1, Tpat_constant c2 when const_compare c1 c2 = 0 -> p
| Tpat_tuple ps, Tpat_tuple qs ->
let rs = lubs ps qs in
make_pat (Tpat_tuple rs) p.pat_type p.pat_env
| Tpat_lazy p, Tpat_lazy q ->
let r = lub p q in
make_pat (Tpat_lazy r) p.pat_type p.pat_env
| Tpat_construct (lid, c1,ps1), Tpat_construct (_,c2,ps2)
when c1.cstr_tag = c2.cstr_tag ->
let rs = lubs ps1 ps2 in
make_pat (Tpat_construct (lid, c1,rs))
p.pat_type p.pat_env
| Tpat_variant(l1,Some p1,row), Tpat_variant(l2,Some p2,_)
when l1=l2 ->
let r=lub p1 p2 in
make_pat (Tpat_variant (l1,Some r,row)) p.pat_type p.pat_env
| Tpat_variant (l1,None,_row), Tpat_variant(l2,None,_)
when l1 = l2 -> p
| Tpat_record (l1,closed),Tpat_record (l2,_) ->
let rs = record_lubs l1 l2 in
make_pat (Tpat_record (rs, closed)) p.pat_type p.pat_env
| Tpat_array ps, Tpat_array qs
when List.length ps = List.length qs ->
let rs = lubs ps qs in
make_pat (Tpat_array rs) p.pat_type p.pat_env
| _,_ ->
raise Empty
and orlub p1 p2 q =
try
let r1 = lub p1 q in
try
{q with pat_desc=(Tpat_or (r1,lub p2 q,None))}
with
| Empty -> r1
with
| Empty -> lub p2 q
and record_lubs l1 l2 =
let rec lub_rec l1 l2 = match l1,l2 with
| [],_ -> l2
| _,[] -> l1
| (lid1, lbl1,p1)::rem1, (lid2, lbl2,p2)::rem2 ->
if lbl1.lbl_pos < lbl2.lbl_pos then
(lid1, lbl1,p1)::lub_rec rem1 l2
else if lbl2.lbl_pos < lbl1.lbl_pos then
(lid2, lbl2,p2)::lub_rec l1 rem2
else
(lid1, lbl1,lub p1 p2)::lub_rec rem1 rem2 in
lub_rec l1 l2
and lubs ps qs = match ps,qs with
| p::ps, q::qs -> lub p q :: lubs ps qs
| _,_ -> []
(******************************)
(* Exported variant closing *)
(******************************)
(* Apply pressure to variants *)
let pressure_variants tdefs patl =
let pss = List.map (fun p -> [p;omega]) patl in
ignore (pressure_variants (Some tdefs) pss)
(*****************************)
(* Utilities for diagnostics *)
(*****************************)
(*
Build up a working pattern matrix by forgetting
about guarded patterns
*)
let rec initial_matrix = function
[] -> []
| {c_guard=Some _} :: rem -> initial_matrix rem
| {c_guard=None; c_lhs=p} :: rem -> [p] :: initial_matrix rem
(******************************************)
(* Look for a row that matches some value *)
(******************************************)
(*
Useful for seeing if the example of
non-matched value can indeed be matched
(by a guarded clause)
*)
exception NoGuard
let rec initial_all no_guard = function
| [] ->
if no_guard then
raise NoGuard
else
[]
| {c_lhs=pat; c_guard; _} :: rem ->
([pat], pat.pat_loc) :: initial_all (no_guard && c_guard = None) rem
let rec do_filter_var = function
| (_::ps,loc)::rem -> (ps,loc)::do_filter_var rem
| _ -> []
let do_filter_one q pss =
let rec filter_rec = function
| ({pat_desc = Tpat_alias(p,_,_)}::ps,loc)::pss ->
filter_rec ((p::ps,loc)::pss)
| ({pat_desc = Tpat_or(p1,p2,_)}::ps,loc)::pss ->
filter_rec ((p1::ps,loc)::(p2::ps,loc)::pss)
| (p::ps,loc)::pss ->
if simple_match q p
then (simple_match_args q p @ ps, loc) :: filter_rec pss
else filter_rec pss
| _ -> [] in
filter_rec pss
let rec do_match pss qs = match qs with
| [] ->
begin match pss with
| ([],loc)::_ -> Some loc
| _ -> None
end
| q::qs -> match q with
| {pat_desc = Tpat_or (q1,q2,_)} ->
begin match do_match pss (q1::qs) with
| None -> do_match pss (q2::qs)
| r -> r
end
| {pat_desc = Tpat_any} ->
do_match (do_filter_var pss) qs
| _ ->
let q0 = normalize_pat q in
do_match (do_filter_one q0 pss) (simple_match_args q0 q @ qs)
let check_partial_all v casel =
try
let pss = initial_all true casel in
do_match pss [v]
with
| NoGuard -> None
(************************)
(* Exhaustiveness check *)
(************************)
(* conversion from Typedtree.pattern to Parsetree.pattern list *)
module Conv = struct
open Parsetree
let mkpat desc = Ast_helper.Pat.mk desc
let name_counter = ref 0
let fresh name =
let current = !name_counter in
name_counter := !name_counter + 1;
"#$" ^ name ^ string_of_int current
let conv typed =
let constrs = Hashtbl.create 7 in
let labels = Hashtbl.create 7 in
let rec loop pat =
match pat.pat_desc with
Tpat_or (pa,pb,_) ->
mkpat (Ppat_or (loop pa, loop pb))
| Tpat_any
| Tpat_var _ ->
mkpat Ppat_any
| Tpat_constant c ->
mkpat (Ppat_constant (Untypeast.constant c))
| Tpat_alias (p,_,_) -> loop p
| Tpat_tuple lst ->
mkpat (Ppat_tuple (List.map loop lst))
| Tpat_construct (cstr_lid, cstr, lst) ->
let id = fresh cstr.cstr_name in
let lid = { cstr_lid with txt = Longident.Lident id } in
Hashtbl.add constrs id cstr;
let arg =
match List.map loop lst with
| [] -> None
| [p] -> Some p
| lst -> Some (mkpat (Ppat_tuple lst))
in
mkpat (Ppat_construct(lid, arg))
| Tpat_variant(label,p_opt,_row_desc) ->
let arg = Misc.may_map loop p_opt in
mkpat (Ppat_variant(label, arg))
| Tpat_record (subpatterns, _closed_flag) ->
let fields =
List.map
(fun (_, lbl, p) ->
let id = fresh lbl.lbl_name in
Hashtbl.add labels id lbl;
(mknoloc (Longident.Lident id), loop p))
subpatterns
in
mkpat (Ppat_record (fields, Open))
| Tpat_array lst ->
mkpat (Ppat_array (List.map loop lst))
| Tpat_lazy p ->
mkpat (Ppat_lazy (loop p))
in
let ps = loop typed in
(ps, constrs, labels)
end
(* Whether the counter-example contains an extension pattern *)
let contains_extension pat =
let r = ref false in
let rec loop = function
{pat_desc=Tpat_construct(_, {cstr_name="*extension*"}, _)} ->
r := true
| p -> Typedtree.iter_pattern_desc loop p.pat_desc
in loop pat; !r
(* Build an untyped or-pattern from its expected type *)
let ppat_of_type env ty =
match pats_of_type env ty with
[{pat_desc = Tpat_any}] ->
(Conv.mkpat Parsetree.Ppat_any, Hashtbl.create 0, Hashtbl.create 0)
| pats ->
Conv.conv (orify_many pats)
let do_check_partial ?pred exhaust loc casel pss = match pss with
| [] ->
(*
This can occur
- For empty matches generated by ocamlp4 (no warning)
- when all patterns have guards (then, casel <> [])
(specific warning)
Then match MUST be considered non-exhaustive,
otherwise compilation of PM is broken.
*)
begin match casel with
| [] -> ()
| _ -> Location.prerr_warning loc Warnings.All_clauses_guarded
end ;
Partial
| ps::_ ->
begin match exhaust None pss (List.length ps) with
| Rnone -> Total
| Rsome [u] ->
let v =
match pred with
| Some pred ->
if false then Some u else
let (pattern,constrs,labels) = Conv.conv u in
pred constrs labels pattern
| None -> Some u
in
begin match v with
None -> Total
| Some v ->
let errmsg =
try
let buf = Buffer.create 16 in
let fmt = formatter_of_buffer buf in
top_pretty fmt v;
begin match check_partial_all v casel with
| None -> ()
| Some _ ->
(* This is 'Some loc', where loc is the location of
a possibly matching clause.
Forget about loc, because printing two locations
is a pain in the top-level *)
Buffer.add_string buf
"\n(However, some guarded clause may match this value.)"
end;
if contains_extension v then
Buffer.add_string buf
"\nMatching over values of extensible variant types \
(the *extension* above)\n\
must include a wild card pattern in order to be exhaustive."
;
Buffer.contents buf
with _ ->
""
in
Location.prerr_warning loc (Warnings.Partial_match errmsg) ;
Partial
end
| _ ->
fatal_error "Parmatch.check_partial"
end
(*
let do_check_partial_normal loc casel pss =
do_check_partial exhaust loc casel pss
*)
let do_check_partial_gadt pred loc casel pss =
do_check_partial ~pred exhaust_gadt loc casel pss
(*****************)
(* Fragile check *)
(*****************)
(* Collect all data types in a pattern *)
let rec add_path path = function
| [] -> [path]
| x::rem as paths ->
if Path.same path x then paths
else x::add_path path rem
let extendable_path path =
not
(Path.same path Predef.path_bool ||
Path.same path Predef.path_list ||
Path.same path Predef.path_unit ||
Path.same path Predef.path_option)
let rec collect_paths_from_pat r p = match p.pat_desc with
| Tpat_construct(_, {cstr_tag=(Cstr_constant _|Cstr_block _)},ps) ->
let path = get_type_path p.pat_type p.pat_env in
List.fold_left
collect_paths_from_pat
(if extendable_path path then add_path path r else r)
ps
| Tpat_any|Tpat_var _|Tpat_constant _| Tpat_variant (_,None,_) -> r
| Tpat_tuple ps | Tpat_array ps
| Tpat_construct (_, {cstr_tag=Cstr_extension _}, ps)->
List.fold_left collect_paths_from_pat r ps
| Tpat_record (lps,_) ->
List.fold_left
(fun r (_, _, p) -> collect_paths_from_pat r p)
r lps
| Tpat_variant (_, Some p, _) | Tpat_alias (p,_,_) -> collect_paths_from_pat r p
| Tpat_or (p1,p2,_) ->
collect_paths_from_pat (collect_paths_from_pat r p1) p2
| Tpat_lazy p
->
collect_paths_from_pat r p
(*
Actual fragile check
1. Collect data types in the patterns of the match.
2. One exhautivity check per datatype, considering that
the type is extended.
*)
let do_check_fragile_param exhaust loc casel pss =
let exts =
List.fold_left
(fun r c -> collect_paths_from_pat r c.c_lhs)
[] casel in
match exts with
| [] -> ()
| _ -> match pss with
| [] -> ()
| ps::_ ->
List.iter
(fun ext ->
match exhaust (Some ext) pss (List.length ps) with
| Rnone ->
Location.prerr_warning
loc
(Warnings.Fragile_match (Path.name ext))
| Rsome _ -> ())
exts
(*let do_check_fragile_normal = do_check_fragile_param exhaust*)
let do_check_fragile_gadt = do_check_fragile_param exhaust_gadt
(********************************)
(* Exported unused clause check *)
(********************************)
let check_unused pred casel =
if Warnings.is_active Warnings.Unused_match
|| List.exists (fun c -> c.c_rhs.exp_desc = Texp_unreachable) casel then
let rec do_rec pref = function
| [] -> ()
| {c_lhs=q; c_guard; c_rhs} :: rem ->
let qs = [q] in
begin try
let pss =
get_mins le_pats (List.filter (compats qs) pref) in
(* First look for redundant or partially redundant patterns *)
let r = every_satisfiables (make_rows pss) (make_row qs) in
let refute = (c_rhs.exp_desc = Texp_unreachable) in
(* Do not warn for unused [pat -> .] *)
if r = Unused && refute then () else
let r =
(* Do not refine if there are no other lines *)
let skip =
r = Unused || (not refute && pref = []) ||
not(refute || Warnings.is_active Warnings.Unreachable_case) in
if skip then r else
(* Then look for empty patterns *)
let sfs = satisfiables pss qs in
if sfs = [] then Unused else
let sfs =
List.map (function [u] -> u | _ -> assert false) sfs in
let u = orify_many sfs in
(*Format.eprintf "%a@." pretty_val u;*)
let (pattern,constrs,labels) = Conv.conv u in
let pattern = {pattern with Parsetree.ppat_loc = q.pat_loc} in
match pred refute constrs labels pattern with
None when not refute ->
Location.prerr_warning q.pat_loc Warnings.Unreachable_case;
Used
| _ -> r
in
match r with
| Unused ->
Location.prerr_warning
q.pat_loc Warnings.Unused_match
| Upartial ps ->
List.iter
(fun p ->
Location.prerr_warning
p.pat_loc Warnings.Unused_pat)
ps
| Used -> ()
with Empty | Not_found | NoGuard -> assert false
end ;
if c_guard <> None then
do_rec pref rem
else
do_rec ([q]::pref) rem in
do_rec [] casel
(*********************************)
(* Exported irrefutability tests *)
(*********************************)
let irrefutable pat = le_pat pat omega
(* An inactive pattern is a pattern whose matching needs only
trivial computations (tag/equality tests).
Patterns containing (lazy _) subpatterns are active. *)
let rec inactive pat = match pat with
| Tpat_lazy _ ->
false
| Tpat_any | Tpat_var _ | Tpat_constant _ | Tpat_variant (_, None, _) ->
true
| Tpat_tuple ps | Tpat_construct (_, _, ps) | Tpat_array ps ->
List.for_all (fun p -> inactive p.pat_desc) ps
| Tpat_alias (p,_,_) | Tpat_variant (_, Some p, _) ->
inactive p.pat_desc
| Tpat_record (ldps,_) ->
List.exists (fun (_, _, p) -> inactive p.pat_desc) ldps
| Tpat_or (p,q,_) ->
inactive p.pat_desc && inactive q.pat_desc
(* A `fluid' pattern is both irrefutable and inactive *)
let fluid pat = irrefutable pat && inactive pat.pat_desc
(********************************)
(* Exported exhustiveness check *)
(********************************)
(*
Fragile check is performed when required and
on exhaustive matches only.
*)
let check_partial_param do_check_partial do_check_fragile loc casel =
if Warnings.is_active (Warnings.Partial_match "") then begin
let pss = initial_matrix casel in
let pss = get_mins le_pats pss in
let total = do_check_partial loc casel pss in
if
total = Total && Warnings.is_active (Warnings.Fragile_match "")
then begin
do_check_fragile loc casel pss
end ;
total
end else
Partial
(*let check_partial =
check_partial_param
do_check_partial_normal
do_check_fragile_normal*)
let check_partial_gadt pred loc casel =
check_partial_param (do_check_partial_gadt pred)
do_check_fragile_gadt loc casel
(*************************************)
(* Ambiguous variable in or-patterns *)
(*************************************)
(* Specification: ambiguous variables in or-patterns.
The semantics of or-patterns in OCaml is specified with
a left-to-right bias: a value [v] matches the pattern [p | q] if it
matches [p] or [q], but if it matches both, the environment
captured by the match is the environment captured by [p], never the
one captured by [q].
While this property is generally well-understood, one specific case
where users expect a different semantics is when a pattern is
followed by a when-guard: [| p when g -> e]. Consider for example:
| ((Const x, _) | (_, Const x)) when is_neutral x -> branch
The semantics is clear: match the scrutinee against the pattern, if
it matches, test the guard, and if the guard passes, take the
branch.
However, consider the input [(Const a, Const b)], where [a] fails
the test [is_neutral f], while [b] passes the test [is_neutral
b]. With the left-to-right semantics, the clause above is *not*
taken by its input: matching [(Const a, Const b)] against the
or-pattern succeeds in the left branch, it returns the environment
[x -> a], and then the guard [is_neutral a] is tested and fails,
the branch is not taken. Most users, however, intuitively expect
that any pair that has one side passing the test will take the
branch. They assume it is equivalent to the following:
| (Const x, _) when is_neutral x -> branch
| (_, Const x) when is_neutral x -> branch
while it is not.
The code below is dedicated to finding these confusing cases: the
cases where a guard uses "ambiguous" variables, that are bound to
different parts of the scrutinees by different sides of
a or-pattern. In other words, it finds the cases where the
specified left-to-right semantics is not equivalent to
a non-deterministic semantics (any branch can be taken) relatively
to a specific guard.
*)
module IdSet = Set.Make(Ident)
let pattern_vars p = IdSet.of_list (Typedtree.pat_bound_idents p)
(* Row for ambiguous variable search,
unseen is the traditional pattern row,
seen is a list of position bindings *)
type amb_row = { unseen : pattern list ; seen : IdSet.t list; }
(* Push binding variables now *)
let rec do_push r p ps seen k = match p.pat_desc with
| Tpat_alias (p,x,_) -> do_push (IdSet.add x r) p ps seen k
| Tpat_var (x,_) ->
(omega,{ unseen = ps; seen=IdSet.add x r::seen; })::k
| Tpat_or (p1,p2,_) ->
do_push r p1 ps seen (do_push r p2 ps seen k)
| _ ->
(p,{ unseen = ps; seen = r::seen; })::k
let rec push_vars = function
| [] -> []
| { unseen = [] }::_ -> assert false
| { unseen = p::ps; seen; }::rem ->
do_push IdSet.empty p ps seen (push_vars rem)
let collect_stable = function
| [] -> assert false
| { seen=xss; _}::rem ->
let rec c_rec xss = function
| [] -> xss
| {seen=yss; _}::rem ->
let xss = List.map2 IdSet.inter xss yss in
c_rec xss rem in
let inters = c_rec xss rem in
List.fold_left IdSet.union IdSet.empty inters
(*********************************************)
(* Filtering utilities for our specific rows *)
(*********************************************)
(* Take a pattern matrix as a list (rows) of lists (columns) of patterns
| p1, p2, .., pn
| q1, q2, .., qn
| r1, r2, .., rn
| ...
We split this matrix into a list of sub-matrices, one for each head
constructor appearing in the leftmost column. For each row whose
left column starts with a head constructor, remove this head
column, prepend one column for each argument of the constructor,
and add the resulting row in the sub-matrix corresponding to this
head constructor.
Rows whose left column is omega (the Any pattern _) may match any
head constructor, so they are added to all groups.
The list of sub-matrices is represented as a list of pair
(head constructor, submatrix)
*)
let filter_all =
(* the head constructor (as a pattern with omega arguments) of
a pattern *)
let discr_head pat =
match pat.pat_desc with
| Tpat_record (lbls, closed) ->
(* a partial record pattern { f1 = p1; f2 = p2; _ }
needs to be expanded, otherwise matching against this head
would drop the pattern arguments for non-mentioned fields *)
let lbls = all_record_args lbls in
normalize_pat { pat with pat_desc = Tpat_record (lbls, closed) }
| _ -> normalize_pat pat
in
(* insert a row of head [p] and rest [r] into the right group *)
let rec insert p r env = match env with
| [] ->
(* if no group matched this row, it has a head constructor that
was never seen before; add a new sub-matrix for this head *)
let p0 = discr_head p in
[p0,[{ r with unseen = simple_match_args p0 p @ r.unseen }]]
| (q0,rs) as bd::env ->
if simple_match q0 p then begin
let r = { r with unseen = simple_match_args q0 p@r.unseen; } in
(q0,r::rs)::env
end
else bd::insert p r env in
(* insert a row of head omega into all groups *)
let insert_omega r env =
List.map
(fun (q0,rs) ->
let r =
{ r with unseen = simple_match_args q0 omega @ r.unseen; } in
(q0,r::rs))
env
in
let rec filter_rec env = function
| [] -> env
| ({pat_desc=(Tpat_var _|Tpat_alias _|Tpat_or _)},_)::_ -> assert false
| ({pat_desc=Tpat_any}, _)::rs -> filter_rec env rs
| (p,r)::rs -> filter_rec (insert p r env) rs in
let rec filter_omega env = function
| [] -> env
| ({pat_desc=(Tpat_var _|Tpat_alias _|Tpat_or _)},_)::_ -> assert false
| ({pat_desc=Tpat_any},r)::rs -> filter_omega (insert_omega r env) rs
| _::rs -> filter_omega env rs in
fun rs ->
(* first insert the rows with head constructors,
to get the definitive list of groups *)
let env = filter_rec [] rs in
(* then add the omega rows to all groups *)
filter_omega env rs
(* Compute stable bindings *)
let rec do_stable rs = match rs with
| [] -> assert false (* No empty matrix *)
| { unseen=[]; _ }::_ ->
collect_stable rs
| _ ->
let rs = push_vars rs in
match filter_all rs with
| [] ->
do_stable (List.map snd rs)
| (_,rs)::env ->
List.fold_left
(fun xs (_,rs) -> IdSet.inter xs (do_stable rs))
(do_stable rs) env
let stable p = do_stable [{unseen=[p]; seen=[];}]
(* All identifier paths that appear in an expression that occurs
as a clause right hand side or guard.
The function is rather complex due to the compilation of
unpack patterns by introducing code in rhs expressions
and **guards**.
For pattern (module M:S) -> e the code is
let module M_mod = unpack M .. in e
Hence M is "free" in e iff M_mod is free in e.
Not doing so will yield excessive warning in
(module (M:S) } ...) when true -> ....
as M is always present in
let module M_mod = unpack M .. in true
*)
let all_rhs_idents exp =
let ids = ref IdSet.empty in
let module Iterator = TypedtreeIter.MakeIterator(struct
include TypedtreeIter.DefaultIteratorArgument
let enter_expression exp = match exp.exp_desc with
| Texp_ident (path, _lid, _descr) ->
List.iter
(fun id -> ids := IdSet.add id !ids)
(Path.heads path)
| _ -> ()
(* Very hackish, detect unpack pattern compilation
and perfom "indirect check for them" *)
let is_unpack exp =
List.exists
(fun (attr, _) -> attr.txt = "#modulepat") exp.exp_attributes
let leave_expression exp =
if is_unpack exp then begin match exp.exp_desc with
| Texp_letmodule
(id_mod,_,
{mod_desc=
Tmod_unpack ({exp_desc=Texp_ident (Path.Pident id_exp,_,_)},_)},
_) ->
assert (IdSet.mem id_exp !ids) ;
if not (IdSet.mem id_mod !ids) then begin
ids := IdSet.remove id_exp !ids
end
| _ -> assert false
end
end) in
Iterator.iter_expression exp;
!ids
let check_ambiguous_bindings =
let open Warnings in
let warn0 = Ambiguous_pattern [] in
fun cases ->
if is_active warn0 then
List.iter
(fun case -> match case with
| { c_guard=None ; _} -> ()
| { c_lhs=p; c_guard=Some g; _} ->
let all =
IdSet.inter (pattern_vars p) (all_rhs_idents g) in
if not (IdSet.is_empty all) then begin
let st = stable p in
let ambiguous = IdSet.diff all st in
if not (IdSet.is_empty ambiguous) then begin
let pps = IdSet.elements ambiguous |> List.map Ident.name in
let warn = Ambiguous_pattern pps in
Location.prerr_warning p.pat_loc warn
end
end)
cases