ocaml/typing/includemod.ml

625 lines
22 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Inclusion checks for the module language *)
open Misc
open Path
open Typedtree
open Types
type symptom =
Missing_field of Ident.t * Location.t * string (* kind *)
| Value_descriptions of Ident.t * value_description * value_description
| Type_declarations of Ident.t * type_declaration
* type_declaration * Includecore.type_mismatch list
| Extension_constructors of
Ident.t * extension_constructor * extension_constructor
| Module_types of module_type * module_type
| Modtype_infos of Ident.t * modtype_declaration * modtype_declaration
| Modtype_permutation
| Interface_mismatch of string * string
| Class_type_declarations of
Ident.t * class_type_declaration * class_type_declaration *
Ctype.class_match_failure list
| Class_declarations of
Ident.t * class_declaration * class_declaration *
Ctype.class_match_failure list
| Unbound_modtype_path of Path.t
| Unbound_module_path of Path.t
| Invalid_module_alias of Path.t
type pos =
Module of Ident.t | Modtype of Ident.t | Arg of Ident.t | Body of Ident.t
type error = pos list * Env.t * symptom
exception Error of error list
(* All functions "blah env x1 x2" check that x1 is included in x2,
i.e. that x1 is the type of an implementation that fulfills the
specification x2. If not, Error is raised with a backtrace of the error. *)
(* Inclusion between value descriptions *)
let value_descriptions env cxt subst id vd1 vd2 =
Cmt_format.record_value_dependency vd1 vd2;
Env.mark_value_used env (Ident.name id) vd1;
let vd2 = Subst.value_description subst vd2 in
try
Includecore.value_descriptions env vd1 vd2
with Includecore.Dont_match ->
raise(Error[cxt, env, Value_descriptions(id, vd1, vd2)])
(* Inclusion between type declarations *)
let type_declarations env ?(old_env=env) cxt subst id decl1 decl2 =
Env.mark_type_used env (Ident.name id) decl1;
let decl2 = Subst.type_declaration subst decl2 in
let err = Includecore.type_declarations env (Ident.name id) decl1 id decl2 in
if err <> [] then
raise(Error[cxt, old_env, Type_declarations(id, decl1, decl2, err)])
(* Inclusion between extension constructors *)
let extension_constructors env cxt subst id ext1 ext2 =
let ext2 = Subst.extension_constructor subst ext2 in
if Includecore.extension_constructors env id ext1 ext2
then ()
else raise(Error[cxt, env, Extension_constructors(id, ext1, ext2)])
(* Inclusion between class declarations *)
let class_type_declarations ~old_env env cxt subst id decl1 decl2 =
let decl2 = Subst.cltype_declaration subst decl2 in
match Includeclass.class_type_declarations env decl1 decl2 with
[] -> ()
| reason ->
raise(Error[cxt, old_env,
Class_type_declarations(id, decl1, decl2, reason)])
let class_declarations ~old_env env cxt subst id decl1 decl2 =
let decl2 = Subst.class_declaration subst decl2 in
match Includeclass.class_declarations env decl1 decl2 with
[] -> ()
| reason ->
raise(Error[cxt, old_env, Class_declarations(id, decl1, decl2, reason)])
(* Expand a module type identifier when possible *)
exception Dont_match
let may_expand_module_path env path =
try ignore (Env.find_modtype_expansion path env); true
with Not_found -> false
let expand_module_path env cxt path =
try
Env.find_modtype_expansion path env
with Not_found ->
raise(Error[cxt, env, Unbound_modtype_path path])
let expand_module_alias env cxt path =
try (Env.find_module path env).md_type
with Not_found ->
raise(Error[cxt, env, Unbound_module_path path])
(*
let rec normalize_module_path env cxt path =
match expand_module_alias env cxt path with
Mty_alias path' -> normalize_module_path env cxt path'
| _ -> path
*)
(* Extract name, kind and ident from a signature item *)
type field_desc =
Field_value of string
| Field_type of string
| Field_typext of string
| Field_module of string
| Field_modtype of string
| Field_class of string
| Field_classtype of string
let kind_of_field_desc = function
| Field_value _ -> "value"
| Field_type _ -> "type"
| Field_typext _ -> "extension constructor"
| Field_module _ -> "module"
| Field_modtype _ -> "module type"
| Field_class _ -> "class"
| Field_classtype _ -> "class type"
let item_ident_name = function
Sig_value(id, d) -> (id, d.val_loc, Field_value(Ident.name id))
| Sig_type(id, d, _) -> (id, d.type_loc, Field_type(Ident.name id))
| Sig_typext(id, d, _) -> (id, d.ext_loc, Field_typext(Ident.name id))
| Sig_module(id, d, _) -> (id, d.md_loc, Field_module(Ident.name id))
| Sig_modtype(id, d) -> (id, d.mtd_loc, Field_modtype(Ident.name id))
| Sig_class(id, d, _) -> (id, d.cty_loc, Field_class(Ident.name id))
| Sig_class_type(id, d, _) -> (id, d.clty_loc, Field_classtype(Ident.name id))
let is_runtime_component = function
| Sig_value(_,{val_kind = Val_prim _})
| Sig_type(_,_,_)
| Sig_modtype(_,_)
| Sig_class_type(_,_,_) -> false
| Sig_value(_,_)
| Sig_typext(_,_,_)
| Sig_module(_,_,_)
| Sig_class(_, _,_) -> true
(* Print a coercion *)
let rec print_list pr ppf = function
[] -> ()
| [a] -> pr ppf a
| a :: l -> pr ppf a; Format.fprintf ppf ";@ "; print_list pr ppf l
let print_list pr ppf l =
Format.fprintf ppf "[@[%a@]]" (print_list pr) l
let rec print_coercion ppf c =
let pr fmt = Format.fprintf ppf fmt in
match c with
Tcoerce_none -> pr "id"
| Tcoerce_structure (fl, nl) ->
pr "@[<2>struct@ %a@ %a@]"
(print_list print_coercion2) fl
(print_list print_coercion3) nl
| Tcoerce_functor (inp, out) ->
pr "@[<2>functor@ (%a)@ (%a)@]"
print_coercion inp
print_coercion out
| Tcoerce_primitive {pc_desc; pc_env = _; pc_type} ->
pr "prim %s@ (%a)" pc_desc.Primitive.prim_name
Printtyp.raw_type_expr pc_type
| Tcoerce_alias (p, c) ->
pr "@[<2>alias %a@ (%a)@]"
Printtyp.path p
print_coercion c
and print_coercion2 ppf (n, c) =
Format.fprintf ppf "@[%d,@ %a@]" n print_coercion c
and print_coercion3 ppf (i, n, c) =
Format.fprintf ppf "@[%s, %d,@ %a@]"
(Ident.unique_name i) n print_coercion c
(* Simplify a structure coercion *)
let simplify_structure_coercion cc id_pos_list =
let rec is_identity_coercion pos = function
| [] ->
true
| (n, c) :: rem ->
n = pos && c = Tcoerce_none && is_identity_coercion (pos + 1) rem in
if is_identity_coercion 0 cc
then Tcoerce_none
else Tcoerce_structure (cc, id_pos_list)
(* Inclusion between module types.
Return the restriction that transforms a value of the smaller type
into a value of the bigger type. *)
let rec modtypes env cxt subst mty1 mty2 =
try
try_modtypes env cxt subst mty1 mty2
with
Dont_match ->
raise(Error[cxt, env, Module_types(mty1, Subst.modtype subst mty2)])
| Error reasons as err ->
match mty1, mty2 with
Mty_alias _, _
| _, Mty_alias _ -> raise err
| _ ->
raise(Error((cxt, env, Module_types(mty1, Subst.modtype subst mty2))
:: reasons))
and try_modtypes env cxt subst mty1 mty2 =
match (mty1, mty2) with
| (Mty_alias p1, Mty_alias p2) ->
if Env.is_functor_arg p2 env then
raise (Error[cxt, env, Invalid_module_alias p2]);
if Path.same p1 p2 then Tcoerce_none else
let p1 = Env.normalize_path None env p1
and p2 = Env.normalize_path None env (Subst.module_path subst p2) in
(* Should actually be Tcoerce_ignore, if it existed *)
if Path.same p1 p2 then Tcoerce_none else raise Dont_match
| (Mty_alias p1, _) ->
let p1 = try
Env.normalize_path (Some Location.none) env p1
with Env.Error (Env.Missing_module (_, _, path)) ->
raise (Error[cxt, env, Unbound_module_path path])
in
let mty1 = Mtype.strengthen env (expand_module_alias env cxt p1) p1 in
Tcoerce_alias (p1, modtypes env cxt subst mty1 mty2)
| (Mty_ident p1, _) when may_expand_module_path env p1 ->
try_modtypes env cxt subst (expand_module_path env cxt p1) mty2
| (_, Mty_ident _) ->
try_modtypes2 env cxt mty1 (Subst.modtype subst mty2)
| (Mty_signature sig1, Mty_signature sig2) ->
signatures env cxt subst sig1 sig2
| (Mty_functor(param1, None, res1), Mty_functor(_param2, None, res2)) ->
begin match modtypes env (Body param1::cxt) subst res1 res2 with
Tcoerce_none -> Tcoerce_none
| cc -> Tcoerce_functor (Tcoerce_none, cc)
end
| (Mty_functor(param1, Some arg1, res1),
Mty_functor(param2, Some arg2, res2)) ->
let arg2' = Subst.modtype subst arg2 in
let cc_arg = modtypes env (Arg param1::cxt) Subst.identity arg2' arg1 in
let cc_res =
modtypes (Env.add_module param1 arg2' env) (Body param1::cxt)
(Subst.add_module param2 (Pident param1) subst) res1 res2 in
begin match (cc_arg, cc_res) with
(Tcoerce_none, Tcoerce_none) -> Tcoerce_none
| _ -> Tcoerce_functor(cc_arg, cc_res)
end
| (_, _) ->
raise Dont_match
and try_modtypes2 env cxt mty1 mty2 =
(* mty2 is an identifier *)
match (mty1, mty2) with
(Mty_ident p1, Mty_ident p2) when Path.same p1 p2 ->
Tcoerce_none
| (_, Mty_ident p2) ->
try_modtypes env cxt Subst.identity mty1 (expand_module_path env cxt p2)
| (_, _) ->
assert false
(* Inclusion between signatures *)
and signatures env cxt subst sig1 sig2 =
(* Environment used to check inclusion of components *)
let new_env =
Env.add_signature sig1 (Env.in_signature true env) in
(* Keep ids for module aliases *)
let (id_pos_list,_) =
List.fold_left
(fun (l,pos) -> function
Sig_module (id, _, _) ->
((id,pos,Tcoerce_none)::l , pos+1)
| item -> (l, if is_runtime_component item then pos+1 else pos))
([], 0) sig1 in
(* Build a table of the components of sig1, along with their positions.
The table is indexed by kind and name of component *)
let rec build_component_table pos tbl = function
[] -> pos, tbl
| item :: rem ->
let (id, _loc, name) = item_ident_name item in
let nextpos = if is_runtime_component item then pos + 1 else pos in
build_component_table nextpos
(Tbl.add name (id, item, pos) tbl) rem in
let len1, comps1 =
build_component_table 0 Tbl.empty sig1 in
let len2 =
List.fold_left
(fun n i -> if is_runtime_component i then n + 1 else n)
0
sig2
in
(* Pair each component of sig2 with a component of sig1,
identifying the names along the way.
Return a coercion list indicating, for all run-time components
of sig2, the position of the matching run-time components of sig1
and the coercion to be applied to it. *)
let rec pair_components subst paired unpaired = function
[] ->
begin match unpaired with
[] ->
let cc =
signature_components env new_env cxt subst (List.rev paired)
in
if len1 = len2 then (* see PR#5098 *)
simplify_structure_coercion cc id_pos_list
else
Tcoerce_structure (cc, id_pos_list)
| _ -> raise(Error unpaired)
end
| item2 :: rem ->
let (id2, loc, name2) = item_ident_name item2 in
let name2, report =
match item2, name2 with
Sig_type (_, {type_manifest=None}, _), Field_type s
when let l = String.length s in
l >= 4 && String.sub s (l-4) 4 = "#row" ->
(* Do not report in case of failure,
as the main type will generate an error *)
Field_type (String.sub s 0 (String.length s - 4)), false
| _ -> name2, true
in
begin try
let (id1, item1, pos1) = Tbl.find name2 comps1 in
let new_subst =
match item2 with
Sig_type _ ->
Subst.add_type id2 (Pident id1) subst
| Sig_module _ ->
Subst.add_module id2 (Pident id1) subst
| Sig_modtype _ ->
Subst.add_modtype id2 (Mty_ident (Pident id1)) subst
| Sig_value _ | Sig_typext _
| Sig_class _ | Sig_class_type _ ->
subst
in
pair_components new_subst
((item1, item2, pos1) :: paired) unpaired rem
with Not_found ->
let unpaired =
if report then
(cxt, env, Missing_field (id2, loc, kind_of_field_desc name2)) ::
unpaired
else unpaired in
pair_components subst paired unpaired rem
end in
(* Do the pairing and checking, and return the final coercion *)
pair_components subst [] [] sig2
(* Inclusion between signature components *)
and signature_components old_env env cxt subst paired =
let comps_rec rem = signature_components old_env env cxt subst rem in
match paired with
[] -> []
| (Sig_value(id1, valdecl1), Sig_value(_id2, valdecl2), pos) :: rem ->
let cc = value_descriptions env cxt subst id1 valdecl1 valdecl2 in
begin match valdecl2.val_kind with
Val_prim _ -> comps_rec rem
| _ -> (pos, cc) :: comps_rec rem
end
| (Sig_type(id1, tydecl1, _), Sig_type(_id2, tydecl2, _), _pos) :: rem ->
type_declarations ~old_env env cxt subst id1 tydecl1 tydecl2;
comps_rec rem
| (Sig_typext(id1, ext1, _), Sig_typext(_id2, ext2, _), pos)
:: rem ->
extension_constructors env cxt subst id1 ext1 ext2;
(pos, Tcoerce_none) :: comps_rec rem
| (Sig_module(id1, mty1, _), Sig_module(_id2, mty2, _), pos) :: rem ->
let p1 = Pident id1 in
let cc =
modtypes env (Module id1::cxt) subst
(Mtype.strengthen (Env.add_functor_arg id1 env) mty1.md_type p1)
mty2.md_type in
(pos, cc) :: comps_rec rem
| (Sig_modtype(id1, info1), Sig_modtype(_id2, info2), _pos) :: rem ->
modtype_infos env cxt subst id1 info1 info2;
comps_rec rem
| (Sig_class(id1, decl1, _), Sig_class(_id2, decl2, _), pos) :: rem ->
class_declarations ~old_env env cxt subst id1 decl1 decl2;
(pos, Tcoerce_none) :: comps_rec rem
| (Sig_class_type(id1, info1, _),
Sig_class_type(_id2, info2, _), _pos) :: rem ->
class_type_declarations ~old_env env cxt subst id1 info1 info2;
comps_rec rem
| _ ->
assert false
(* Inclusion between module type specifications *)
and modtype_infos env cxt subst id info1 info2 =
let info2 = Subst.modtype_declaration subst info2 in
let cxt' = Modtype id :: cxt in
try
match (info1.mtd_type, info2.mtd_type) with
(None, None) -> ()
| (Some _, None) -> ()
| (Some mty1, Some mty2) ->
check_modtype_equiv env cxt' mty1 mty2
| (None, Some mty2) ->
check_modtype_equiv env cxt' (Mty_ident(Pident id)) mty2
with Error reasons ->
raise(Error((cxt, env, Modtype_infos(id, info1, info2)) :: reasons))
and check_modtype_equiv env cxt mty1 mty2 =
match
(modtypes env cxt Subst.identity mty1 mty2,
modtypes env cxt Subst.identity mty2 mty1)
with
(Tcoerce_none, Tcoerce_none) -> ()
| (_c1, _c2) ->
(* Format.eprintf "@[c1 = %a@ c2 = %a@]@."
print_coercion _c1 print_coercion _c2; *)
raise(Error [cxt, env, Modtype_permutation])
(* Simplified inclusion check between module types (for Env) *)
let check_modtype_inclusion env mty1 path1 mty2 =
try
ignore(modtypes env [] Subst.identity
(Mtype.strengthen env mty1 path1) mty2)
with Error _ ->
raise Not_found
let _ = Env.check_modtype_inclusion := check_modtype_inclusion
(* Check that an implementation of a compilation unit meets its
interface. *)
let compunit env impl_name impl_sig intf_name intf_sig =
try
signatures env [] Subst.identity impl_sig intf_sig
with Error reasons ->
raise(Error(([], Env.empty,Interface_mismatch(impl_name, intf_name))
:: reasons))
(* Hide the context and substitution parameters to the outside world *)
let modtypes env mty1 mty2 = modtypes env [] Subst.identity mty1 mty2
let signatures env sig1 sig2 = signatures env [] Subst.identity sig1 sig2
let type_declarations env id decl1 decl2 =
type_declarations env [] Subst.identity id decl1 decl2
(*
let modtypes env m1 m2 =
let c = modtypes env m1 m2 in
Format.eprintf "@[<2>modtypes@ %a@ %a =@ %a@]@."
Printtyp.modtype m1 Printtyp.modtype m2
print_coercion c;
c
*)
(* Error report *)
open Format
open Printtyp
let show_loc msg ppf loc =
let pos = loc.Location.loc_start in
if List.mem pos.Lexing.pos_fname [""; "_none_"; "//toplevel//"] then ()
else fprintf ppf "@\n@[<2>%a:@ %s@]" Location.print_loc loc msg
let show_locs ppf (loc1, loc2) =
show_loc "Expected declaration" ppf loc2;
show_loc "Actual declaration" ppf loc1
let include_err ppf = function
| Missing_field (id, loc, kind) ->
fprintf ppf "The %s `%a' is required but not provided" kind ident id;
show_loc "Expected declaration" ppf loc
| Value_descriptions(id, d1, d2) ->
fprintf ppf
"@[<hv 2>Values do not match:@ %a@;<1 -2>is not included in@ %a@]"
(value_description id) d1 (value_description id) d2;
show_locs ppf (d1.val_loc, d2.val_loc);
| Type_declarations(id, d1, d2, errs) ->
fprintf ppf "@[<v>@[<hv>%s:@;<1 2>%a@ %s@;<1 2>%a@]%a%a@]"
"Type declarations do not match"
(type_declaration id) d1
"is not included in"
(type_declaration id) d2
show_locs (d1.type_loc, d2.type_loc)
(Includecore.report_type_mismatch
"the first" "the second" "declaration") errs
| Extension_constructors(id, x1, x2) ->
fprintf ppf
"@[<hv 2>Extension declarations do not match:@ \
%a@;<1 -2>is not included in@ %a@]"
(extension_constructor id) x1
(extension_constructor id) x2;
show_locs ppf (x1.ext_loc, x2.ext_loc)
| Module_types(mty1, mty2)->
fprintf ppf
"@[<hv 2>Modules do not match:@ \
%a@;<1 -2>is not included in@ %a@]"
modtype mty1
modtype mty2
| Modtype_infos(id, d1, d2) ->
fprintf ppf
"@[<hv 2>Module type declarations do not match:@ \
%a@;<1 -2>does not match@ %a@]"
(modtype_declaration id) d1
(modtype_declaration id) d2
| Modtype_permutation ->
fprintf ppf "Illegal permutation of structure fields"
| Interface_mismatch(impl_name, intf_name) ->
fprintf ppf "@[The implementation %s@ does not match the interface %s:"
impl_name intf_name
| Class_type_declarations(id, d1, d2, reason) ->
fprintf ppf
"@[<hv 2>Class type declarations do not match:@ \
%a@;<1 -2>does not match@ %a@]@ %a"
(Printtyp.cltype_declaration id) d1
(Printtyp.cltype_declaration id) d2
Includeclass.report_error reason
| Class_declarations(id, d1, d2, reason) ->
fprintf ppf
"@[<hv 2>Class declarations do not match:@ \
%a@;<1 -2>does not match@ %a@]@ %a"
(Printtyp.class_declaration id) d1
(Printtyp.class_declaration id) d2
Includeclass.report_error reason
| Unbound_modtype_path path ->
fprintf ppf "Unbound module type %a" Printtyp.path path
| Unbound_module_path path ->
fprintf ppf "Unbound module %a" Printtyp.path path
| Invalid_module_alias path ->
fprintf ppf "Module %a cannot be aliased" Printtyp.path path
let rec context ppf = function
Module id :: rem ->
fprintf ppf "@[<2>module %a%a@]" ident id args rem
| Modtype id :: rem ->
fprintf ppf "@[<2>module type %a =@ %a@]" ident id context_mty rem
| Body x :: rem ->
fprintf ppf "functor (%s) ->@ %a" (argname x) context_mty rem
| Arg x :: rem ->
fprintf ppf "functor (%a : %a) -> ..." ident x context_mty rem
| [] ->
fprintf ppf "<here>"
and context_mty ppf = function
(Module _ | Modtype _) :: _ as rem ->
fprintf ppf "@[<2>sig@ %a@;<1 -2>end@]" context rem
| cxt -> context ppf cxt
and args ppf = function
Body x :: rem ->
fprintf ppf "(%s)%a" (argname x) args rem
| Arg x :: rem ->
fprintf ppf "(%a :@ %a) : ..." ident x context_mty rem
| cxt ->
fprintf ppf " :@ %a" context_mty cxt
and argname x =
let s = Ident.name x in
if s = "*" then "" else s
let path_of_context = function
Module id :: rem ->
let rec subm path = function
[] -> path
| Module id :: rem -> subm (Pdot (path, Ident.name id, -1)) rem
| _ -> assert false
in subm (Pident id) rem
| _ -> assert false
let context ppf cxt =
if cxt = [] then () else
if List.for_all (function Module _ -> true | _ -> false) cxt then
fprintf ppf "In module %a:@ " path (path_of_context cxt)
else
fprintf ppf "@[<hv 2>At position@ %a@]@ " context cxt
let include_err ppf (cxt, env, err) =
Printtyp.wrap_printing_env env (fun () ->
fprintf ppf "@[<v>%a%a@]" context (List.rev cxt) include_err err)
let buffer = ref Bytes.empty
let is_big obj =
let size = !Clflags.error_size in
size > 0 &&
begin
if Bytes.length !buffer < size then buffer := Bytes.create size;
try ignore (Marshal.to_buffer !buffer 0 size obj []); false
with _ -> true
end
let report_error ppf errs =
if errs = [] then () else
let (errs , err) = split_last errs in
let pe = ref true in
let include_err' ppf (_,_,obj as err) =
if not (is_big obj) then fprintf ppf "%a@ " include_err err
else if !pe then (fprintf ppf "...@ "; pe := false)
in
let print_errs ppf = List.iter (include_err' ppf) in
fprintf ppf "@[<v>%a%a@]" print_errs errs include_err err
(* We could do a better job to split the individual error items
as sub-messages of the main interface mismatch on the whole unit. *)
let () =
Location.register_error_of_exn
(function
| Error err -> Some (Location.error_of_printer_file report_error err)
| _ -> None
)