ocaml/typing/env.ml

2024 lines
65 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Environment handling *)
open Cmi_format
open Config
open Misc
open Asttypes
open Longident
open Path
open Types
open Btype
let add_delayed_check_forward = ref (fun _ -> assert false)
let value_declarations : ((string * Location.t), (unit -> unit)) Hashtbl.t =
Hashtbl.create 16
(* This table is used to usage of value declarations. A declaration is
identified with its name and location. The callback attached to a
declaration is called whenever the value is used explicitly
(lookup_value) or implicitly (inclusion test between signatures,
cf Includemod.value_descriptions). *)
let type_declarations = Hashtbl.create 16
type constructor_usage = Positive | Pattern | Privatize
type constructor_usages =
{
mutable cu_positive: bool;
mutable cu_pattern: bool;
mutable cu_privatize: bool;
}
let add_constructor_usage cu = function
| Positive -> cu.cu_positive <- true
| Pattern -> cu.cu_pattern <- true
| Privatize -> cu.cu_privatize <- true
let constructor_usages () =
{cu_positive = false; cu_pattern = false; cu_privatize = false}
let used_constructors :
(string * Location.t * string, (constructor_usage -> unit)) Hashtbl.t
= Hashtbl.create 16
let prefixed_sg = Hashtbl.create 113
type error =
| Illegal_renaming of string * string * string
| Inconsistent_import of string * string * string
| Need_recursive_types of string * string
| Missing_module of Location.t * Path.t * Path.t
| Illegal_value_name of Location.t * string
exception Error of error
let error err = raise (Error err)
module EnvLazy : sig
type ('a,'b) t
val force : ('a -> 'b) -> ('a,'b) t -> 'b
val create : 'a -> ('a,'b) t
val get_arg : ('a,'b) t -> 'a option
end = struct
type ('a,'b) t = ('a,'b) eval ref
and ('a,'b) eval =
Done of 'b
| Raise of exn
| Thunk of 'a
let force f x =
match !x with
Done x -> x
| Raise e -> raise e
| Thunk e ->
try
let y = f e in
x := Done y;
y
with e ->
x := Raise e;
raise e
let get_arg x =
match !x with Thunk a -> Some a | _ -> None
let create x =
ref (Thunk x)
end
type summary =
Env_empty
| Env_value of summary * Ident.t * value_description
| Env_type of summary * Ident.t * type_declaration
| Env_extension of summary * Ident.t * extension_constructor
| Env_module of summary * Ident.t * module_declaration
| Env_modtype of summary * Ident.t * modtype_declaration
| Env_class of summary * Ident.t * class_declaration
| Env_cltype of summary * Ident.t * class_type_declaration
| Env_open of summary * Path.t
| Env_functor_arg of summary * Ident.t
module EnvTbl =
struct
(* A table indexed by identifier, with an extra slot to record usage. *)
type 'a t = ('a * (unit -> unit)) Ident.tbl
let empty = Ident.empty
let nothing = fun () -> ()
let already_defined wrap s tbl x =
wrap (try Some (fst (Ident.find_name s tbl), x) with Not_found -> None)
let add slot wrap id x tbl ref_tbl =
let slot =
match slot with
| None -> nothing
| Some f ->
(fun () ->
let s = Ident.name id in
f s (already_defined wrap s ref_tbl x)
)
in
Ident.add id (x, slot) tbl
let find_same_not_using id tbl =
fst (Ident.find_same id tbl)
let find_same id tbl =
let (x, slot) = Ident.find_same id tbl in
slot ();
x
let find_name s tbl =
let (x, slot) = Ident.find_name s tbl in
slot ();
x
let find_all s tbl =
Ident.find_all s tbl
let fold_name f = Ident.fold_name (fun k (d,_) -> f k d)
let keys tbl = Ident.fold_all (fun k _ accu -> k::accu) tbl []
end
type type_descriptions =
constructor_description list * label_description list
let in_signature_flag = 0x01
let implicit_coercion_flag = 0x02
type t = {
values: (Path.t * value_description) EnvTbl.t;
constrs: constructor_description EnvTbl.t;
labels: label_description EnvTbl.t;
types: (Path.t * (type_declaration * type_descriptions)) EnvTbl.t;
modules: (Path.t * module_declaration) EnvTbl.t;
modtypes: (Path.t * modtype_declaration) EnvTbl.t;
components: (Path.t * module_components) EnvTbl.t;
classes: (Path.t * class_declaration) EnvTbl.t;
cltypes: (Path.t * class_type_declaration) EnvTbl.t;
functor_args: unit Ident.tbl;
summary: summary;
local_constraints: bool;
gadt_instances: (int * TypeSet.t ref) list;
flags: int;
}
and module_components =
{
deprecated: string option;
comps: (t * Subst.t * Path.t * Types.module_type, module_components_repr)
EnvLazy.t;
}
and module_components_repr =
Structure_comps of structure_components
| Functor_comps of functor_components
and structure_components = {
mutable comp_values: (string, (value_description * int)) Tbl.t;
mutable comp_constrs: (string, (constructor_description * int) list) Tbl.t;
mutable comp_labels: (string, (label_description * int) list) Tbl.t;
mutable comp_types:
(string, ((type_declaration * type_descriptions) * int)) Tbl.t;
mutable comp_modules:
(string, ((Subst.t * Types.module_type,module_type) EnvLazy.t * int)) Tbl.t;
mutable comp_modtypes: (string, (modtype_declaration * int)) Tbl.t;
mutable comp_components: (string, (module_components * int)) Tbl.t;
mutable comp_classes: (string, (class_declaration * int)) Tbl.t;
mutable comp_cltypes: (string, (class_type_declaration * int)) Tbl.t
}
and functor_components = {
fcomp_param: Ident.t; (* Formal parameter *)
fcomp_arg: module_type option; (* Argument signature *)
fcomp_res: module_type; (* Result signature *)
fcomp_cache: (Path.t, module_components) Hashtbl.t; (* For memoization *)
fcomp_subst_cache: (Path.t, module_type) Hashtbl.t
}
let same_constr = ref (fun _ _ _ -> assert false)
(* Helper to decide whether to report an identifier shadowing
by some 'open'. For labels and constructors, we do not report
if the two elements are from the same re-exported declaration.
Later, one could also interpret some attributes on value and
type declarations to silence the shadowing warnings. *)
let check_shadowing env = function
| `Constructor (Some (c1, c2))
when not (!same_constr env c1.cstr_res c2.cstr_res) ->
Some "constructor"
| `Label (Some (l1, l2))
when not (!same_constr env l1.lbl_res l2.lbl_res) ->
Some "label"
| `Value (Some _) -> Some "value"
| `Type (Some _) -> Some "type"
| `Module (Some _) | `Component (Some _) -> Some "module"
| `Module_type (Some _) -> Some "module type"
| `Class (Some _) -> Some "class"
| `Class_type (Some _) -> Some "class type"
| `Constructor _ | `Label _
| `Value None | `Type None | `Module None | `Module_type None
| `Class None | `Class_type None | `Component None ->
None
let subst_modtype_maker (subst, mty) = Subst.modtype subst mty
let empty = {
values = EnvTbl.empty; constrs = EnvTbl.empty;
labels = EnvTbl.empty; types = EnvTbl.empty;
modules = EnvTbl.empty; modtypes = EnvTbl.empty;
components = EnvTbl.empty; classes = EnvTbl.empty;
cltypes = EnvTbl.empty;
summary = Env_empty; local_constraints = false; gadt_instances = [];
flags = 0;
functor_args = Ident.empty;
}
let in_signature b env =
let flags =
if b then env.flags lor in_signature_flag
else env.flags land (lnot in_signature_flag)
in
{env with flags}
let implicit_coercion env =
{env with flags = env.flags lor implicit_coercion_flag}
let is_in_signature env = env.flags land in_signature_flag <> 0
let is_implicit_coercion env = env.flags land implicit_coercion_flag <> 0
let diff_keys is_local tbl1 tbl2 =
let keys2 = EnvTbl.keys tbl2 in
List.filter
(fun id ->
is_local (EnvTbl.find_same_not_using id tbl2) &&
try ignore (EnvTbl.find_same_not_using id tbl1); false
with Not_found -> true)
keys2
let is_ident = function
Pident _ -> true
| Pdot _ | Papply _ -> false
let is_local (p, _) = is_ident p
let is_local_ext = function
| {cstr_tag = Cstr_extension(p, _)} -> is_ident p
| _ -> false
let diff env1 env2 =
diff_keys is_local env1.values env2.values @
diff_keys is_local_ext env1.constrs env2.constrs @
diff_keys is_local env1.modules env2.modules @
diff_keys is_local env1.classes env2.classes
(* Forward declarations *)
let components_of_module' =
ref ((fun ~deprecated:_ _env _sub _path _mty -> assert false) :
deprecated:string option -> t -> Subst.t -> Path.t -> module_type ->
module_components)
let components_of_module_maker' =
ref ((fun (_env, _sub, _path, _mty) -> assert false) :
t * Subst.t * Path.t * module_type -> module_components_repr)
let components_of_functor_appl' =
ref ((fun _f _env _p1 _p2 -> assert false) :
functor_components -> t -> Path.t -> Path.t -> module_components)
let check_modtype_inclusion =
(* to be filled with Includemod.check_modtype_inclusion *)
ref ((fun _env _mty1 _path1 _mty2 -> assert false) :
t -> module_type -> Path.t -> module_type -> unit)
let strengthen =
(* to be filled with Mtype.strengthen *)
ref ((fun _env _mty _path -> assert false) :
t -> module_type -> Path.t -> module_type)
let md md_type =
{md_type; md_attributes=[]; md_loc=Location.none}
let get_components c =
EnvLazy.force !components_of_module_maker' c.comps
(* The name of the compilation unit currently compiled.
"" if outside a compilation unit. *)
let current_unit = ref ""
(* Persistent structure descriptions *)
type pers_struct =
{ ps_name: string;
ps_sig: signature Lazy.t;
ps_comps: module_components;
ps_crcs: (string * Digest.t option) list;
ps_filename: string;
ps_flags: pers_flags list }
let persistent_structures =
(Hashtbl.create 17 : (string, pers_struct option) Hashtbl.t)
(* Consistency between persistent structures *)
let crc_units = Consistbl.create()
module StringSet =
Set.Make(struct type t = string let compare = String.compare end)
let imported_units = ref StringSet.empty
let add_import s =
imported_units := StringSet.add s !imported_units
let imported_opaque_units = ref StringSet.empty
let add_imported_opaque s =
imported_opaque_units := StringSet.add s !imported_opaque_units
let clear_imports () =
Consistbl.clear crc_units;
imported_units := StringSet.empty;
imported_opaque_units := StringSet.empty
let check_consistency ps =
try
List.iter
(fun (name, crco) ->
match crco with
None -> ()
| Some crc ->
add_import name;
Consistbl.check crc_units name crc ps.ps_filename)
ps.ps_crcs;
with Consistbl.Inconsistency(name, source, auth) ->
error (Inconsistent_import(name, auth, source))
(* Reading persistent structures from .cmi files *)
let save_pers_struct crc ps =
let modname = ps.ps_name in
Hashtbl.add persistent_structures modname (Some ps);
List.iter
(function
| Rectypes -> ()
| Deprecated _ -> ()
| Opaque -> add_imported_opaque modname)
ps.ps_flags;
Consistbl.set crc_units modname crc ps.ps_filename;
add_import modname
let read_pers_struct check modname filename =
add_import modname;
let cmi = read_cmi filename in
let name = cmi.cmi_name in
let sign = cmi.cmi_sign in
let crcs = cmi.cmi_crcs in
let flags = cmi.cmi_flags in
let deprecated =
List.fold_left (fun acc -> function Deprecated s -> Some s | _ -> acc) None
flags
in
let comps =
!components_of_module' ~deprecated empty Subst.identity
(Pident(Ident.create_persistent name))
(Mty_signature sign)
in
let ps = { ps_name = name;
ps_sig = lazy (Subst.signature Subst.identity sign);
ps_comps = comps;
ps_crcs = crcs;
ps_filename = filename;
ps_flags = flags;
} in
if ps.ps_name <> modname then
error (Illegal_renaming(modname, ps.ps_name, filename));
List.iter
(function
| Rectypes ->
if not !Clflags.recursive_types then
error (Need_recursive_types(ps.ps_name, !current_unit))
| Deprecated _ -> ()
| Opaque -> add_imported_opaque modname)
ps.ps_flags;
if check then check_consistency ps;
Hashtbl.add persistent_structures modname (Some ps);
ps
let find_pers_struct check name =
if name = "*predef*" then raise Not_found;
match Hashtbl.find persistent_structures name with
| Some ps -> ps
| None -> raise Not_found
| exception Not_found ->
let filename =
try
find_in_path_uncap !load_path (name ^ ".cmi")
with Not_found ->
Hashtbl.add persistent_structures name None;
raise Not_found
in
read_pers_struct check name filename
(* Emits a warning if there is no valid cmi for name *)
let check_pers_struct name =
try
ignore (find_pers_struct false name)
with
| Not_found ->
let warn = Warnings.No_cmi_file(name, None) in
Location.prerr_warning Location.none warn
| Cmi_format.Error err ->
let msg = Format.asprintf "%a" Cmi_format.report_error err in
let warn = Warnings.No_cmi_file(name, Some msg) in
Location.prerr_warning Location.none warn
| Error err ->
let msg =
match err with
| Illegal_renaming(name, ps_name, filename) ->
Format.asprintf
" %a@ contains the compiled interface for @ \
%s when %s was expected"
Location.print_filename filename ps_name name
| Inconsistent_import _ -> assert false
| Need_recursive_types(name, _) ->
Format.sprintf
"%s uses recursive types"
name
| Missing_module _ -> assert false
| Illegal_value_name _ -> assert false
in
let warn = Warnings.No_cmi_file(name, Some msg) in
Location.prerr_warning Location.none warn
let read_pers_struct modname filename =
read_pers_struct true modname filename
let find_pers_struct name =
find_pers_struct true name
let check_pers_struct name =
if not (Hashtbl.mem persistent_structures name) then begin
(* PR#6843: record the weak dependency ([add_import]) regardless of
whether the check suceeds, to help make builds more
deterministic. *)
add_import name;
if (Warnings.is_active (Warnings.No_cmi_file("", None))) then
!add_delayed_check_forward
(fun () -> check_pers_struct name)
end
let reset_cache () =
current_unit := "";
Hashtbl.clear persistent_structures;
clear_imports ();
Hashtbl.clear value_declarations;
Hashtbl.clear type_declarations;
Hashtbl.clear used_constructors;
Hashtbl.clear prefixed_sg
let reset_cache_toplevel () =
(* Delete 'missing cmi' entries from the cache. *)
let l =
Hashtbl.fold
(fun name r acc -> if r = None then name :: acc else acc)
persistent_structures []
in
List.iter (Hashtbl.remove persistent_structures) l;
Hashtbl.clear value_declarations;
Hashtbl.clear type_declarations;
Hashtbl.clear used_constructors;
Hashtbl.clear prefixed_sg
let set_unit_name name =
current_unit := name
let get_unit_name () =
!current_unit
(* Lookup by identifier *)
let rec find_module_descr path env =
match path with
Pident id ->
begin try
let (_p, desc) = EnvTbl.find_same id env.components
in desc
with Not_found ->
if Ident.persistent id && not (Ident.name id = !current_unit)
then (find_pers_struct (Ident.name id)).ps_comps
else raise Not_found
end
| Pdot(p, s, _pos) ->
begin match get_components (find_module_descr p env) with
Structure_comps c ->
let (descr, _pos) = Tbl.find s c.comp_components in
descr
| Functor_comps _ ->
raise Not_found
end
| Papply(p1, p2) ->
begin match get_components (find_module_descr p1 env) with
Functor_comps f ->
!components_of_functor_appl' f env p1 p2
| Structure_comps _ ->
raise Not_found
end
let find proj1 proj2 path env =
match path with
Pident id ->
let (_p, data) = EnvTbl.find_same id (proj1 env)
in data
| Pdot(p, s, _pos) ->
begin match get_components (find_module_descr p env) with
Structure_comps c ->
let (data, _pos) = Tbl.find s (proj2 c) in data
| Functor_comps _ ->
raise Not_found
end
| Papply _ ->
raise Not_found
let find_value =
find (fun env -> env.values) (fun sc -> sc.comp_values)
and find_type_full =
find (fun env -> env.types) (fun sc -> sc.comp_types)
and find_modtype =
find (fun env -> env.modtypes) (fun sc -> sc.comp_modtypes)
and find_class =
find (fun env -> env.classes) (fun sc -> sc.comp_classes)
and find_cltype =
find (fun env -> env.cltypes) (fun sc -> sc.comp_cltypes)
let type_of_cstr path = function
| {cstr_inlined = Some d; _} ->
(d, ([], List.map snd (Datarepr.labels_of_type path d)))
| _ ->
assert false
let find_type_full path env =
match Path.constructor_typath path with
| Regular p -> find_type_full p env
| Cstr (ty_path, s) ->
let (_, (cstrs, _)) =
try find_type_full ty_path env
with Not_found -> assert false
in
let cstr =
try List.find (fun cstr -> cstr.cstr_name = s) cstrs
with Not_found -> assert false
in
type_of_cstr path cstr
| LocalExt id ->
let cstr =
try EnvTbl.find_same id env.constrs
with Not_found -> assert false
in
type_of_cstr path cstr
| Ext (mod_path, s) ->
let comps =
try find_module_descr mod_path env
with Not_found -> assert false
in
let comps =
match get_components comps with
| Structure_comps c -> c
| Functor_comps _ -> assert false
in
let exts =
List.filter
(function ({cstr_tag=Cstr_extension _}, _) -> true | _ -> false)
(try Tbl.find s comps.comp_constrs
with Not_found -> assert false)
in
match exts with
| [(cstr, _)] -> type_of_cstr path cstr
| _ -> assert false
let find_type p env =
fst (find_type_full p env)
let find_type_descrs p env =
snd (find_type_full p env)
let find_module ~alias path env =
match path with
Pident id ->
begin try
let (_p, data) = EnvTbl.find_same id env.modules
in data
with Not_found ->
if Ident.persistent id && not (Ident.name id = !current_unit) then
let ps = find_pers_struct (Ident.name id) in
md (Mty_signature(Lazy.force ps.ps_sig))
else raise Not_found
end
| Pdot(p, s, _pos) ->
begin match get_components (find_module_descr p env) with
Structure_comps c ->
let (data, _pos) = Tbl.find s c.comp_modules in
md (EnvLazy.force subst_modtype_maker data)
| Functor_comps _ ->
raise Not_found
end
| Papply(p1, p2) ->
let desc1 = find_module_descr p1 env in
begin match get_components desc1 with
Functor_comps f ->
md begin match f.fcomp_res with
| Mty_alias _ as mty -> mty
| mty ->
if alias then mty else
try
Hashtbl.find f.fcomp_subst_cache p2
with Not_found ->
let mty =
Subst.modtype
(Subst.add_module f.fcomp_param p2 Subst.identity)
f.fcomp_res in
Hashtbl.add f.fcomp_subst_cache p2 mty;
mty
end
| Structure_comps _ ->
raise Not_found
end
let required_globals = ref []
let reset_required_globals () = required_globals := []
let get_required_globals () = !required_globals
let add_required_global id =
if Ident.global id && not !Clflags.transparent_modules
&& not (List.exists (Ident.same id) !required_globals)
then required_globals := id :: !required_globals
let rec normalize_path lax env path =
let path =
match path with
Pdot(p, s, pos) ->
Pdot(normalize_path lax env p, s, pos)
| Papply(p1, p2) ->
Papply(normalize_path lax env p1, normalize_path true env p2)
| _ -> path
in
try match find_module ~alias:true path env with
{md_type=Mty_alias path1} ->
let path' = normalize_path lax env path1 in
if lax || !Clflags.transparent_modules then path' else
let id = Path.head path in
if Ident.global id && not (Ident.same id (Path.head path'))
then add_required_global id;
path'
| _ -> path
with Not_found when lax
|| (match path with Pident id -> not (Ident.persistent id) | _ -> true) ->
path
let normalize_path oloc env path =
try normalize_path (oloc = None) env path
with Not_found ->
match oloc with None -> assert false
| Some loc ->
raise (Error(Missing_module(loc, path, normalize_path true env path)))
let find_module = find_module ~alias:false
(* Find the manifest type associated to a type when appropriate:
- the type should be public or should have a private row,
- the type should have an associated manifest type. *)
let find_type_expansion path env =
let decl = find_type path env in
match decl.type_manifest with
| Some body when decl.type_private = Public
|| decl.type_kind <> Type_abstract
|| Btype.has_constr_row body ->
(decl.type_params, body, may_map snd decl.type_newtype_level)
(* The manifest type of Private abstract data types without
private row are still considered unknown to the type system.
Hence, this case is caught by the following clause that also handles
purely abstract data types without manifest type definition. *)
| _ ->
(* another way to expand is to normalize the path itself *)
let path' = normalize_path None env path in
if Path.same path path' then raise Not_found else
(decl.type_params,
newgenty (Tconstr (path', decl.type_params, ref Mnil)),
may_map snd decl.type_newtype_level)
(* Find the manifest type information associated to a type, i.e.
the necessary information for the compiler's type-based optimisations.
In particular, the manifest type associated to a private abstract type
is revealed for the sake of compiler's type-based optimisations. *)
let find_type_expansion_opt path env =
let decl = find_type path env in
match decl.type_manifest with
(* The manifest type of Private abstract data types can still get
an approximation using their manifest type. *)
| Some body -> (decl.type_params, body, may_map snd decl.type_newtype_level)
| _ ->
let path' = normalize_path None env path in
if Path.same path path' then raise Not_found else
(decl.type_params,
newgenty (Tconstr (path', decl.type_params, ref Mnil)),
may_map snd decl.type_newtype_level)
let find_modtype_expansion path env =
match (find_modtype path env).mtd_type with
| None -> raise Not_found
| Some mty -> mty
let rec is_functor_arg path env =
match path with
Pident id ->
begin try Ident.find_same id env.functor_args; true
with Not_found -> false
end
| Pdot (p, _s, _) -> is_functor_arg p env
| Papply _ -> true
(* Lookup by name *)
exception Recmodule
let report_deprecated ?loc p deprecated =
match loc, deprecated with
| Some loc, Some txt ->
let txt = if txt = "" then "" else "\n" ^ txt in
Location.prerr_warning loc
(Warnings.Deprecated (Printf.sprintf "module %s%s"
(Path.name p) txt))
| _ -> ()
let rec lookup_module_descr_aux ?loc lid env =
match lid with
Lident s ->
begin try
EnvTbl.find_name s env.components
with Not_found ->
if s = !current_unit then raise Not_found;
let ps = find_pers_struct s in
(Pident(Ident.create_persistent s), ps.ps_comps)
end
| Ldot(l, s) ->
let (p, descr) = lookup_module_descr ?loc l env in
begin match get_components descr with
Structure_comps c ->
let (descr, pos) = Tbl.find s c.comp_components in
(Pdot(p, s, pos), descr)
| Functor_comps _ ->
raise Not_found
end
| Lapply(l1, l2) ->
let (p1, desc1) = lookup_module_descr ?loc l1 env in
let p2 = lookup_module ~load:true ?loc l2 env in
let {md_type=mty2} = find_module p2 env in
begin match get_components desc1 with
Functor_comps f ->
Misc.may (!check_modtype_inclusion env mty2 p2) f.fcomp_arg;
(Papply(p1, p2), !components_of_functor_appl' f env p1 p2)
| Structure_comps _ ->
raise Not_found
end
and lookup_module_descr ?loc lid env =
let (p, comps) as res = lookup_module_descr_aux ?loc lid env in
report_deprecated ?loc p comps.deprecated;
res
and lookup_module ~load ?loc lid env : Path.t =
match lid with
Lident s ->
begin try
let (p, {md_type; md_attributes}) = EnvTbl.find_name s env.modules in
begin match md_type with
| Mty_ident (Path.Pident id) when Ident.name id = "#recmod#" ->
(* see #5965 *)
raise Recmodule
| _ -> ()
end;
report_deprecated ?loc p
(Builtin_attributes.deprecated_of_attrs md_attributes);
p
with Not_found ->
if s = !current_unit then raise Not_found;
let p = Pident(Ident.create_persistent s) in
if !Clflags.transparent_modules && not load then check_pers_struct s
else begin
let ps = find_pers_struct s in
report_deprecated ?loc p ps.ps_comps.deprecated
end;
p
end
| Ldot(l, s) ->
let (p, descr) = lookup_module_descr ?loc l env in
begin match get_components descr with
Structure_comps c ->
let (_data, pos) = Tbl.find s c.comp_modules in
let (comps, _) = Tbl.find s c.comp_components in
let p = Pdot(p, s, pos) in
report_deprecated ?loc p comps.deprecated;
p
| Functor_comps _ ->
raise Not_found
end
| Lapply(l1, l2) ->
let (p1, desc1) = lookup_module_descr ?loc l1 env in
let p2 = lookup_module ~load:true ?loc l2 env in
let {md_type=mty2} = find_module p2 env in
let p = Papply(p1, p2) in
begin match get_components desc1 with
Functor_comps f ->
Misc.may (!check_modtype_inclusion env mty2 p2) f.fcomp_arg;
p
| Structure_comps _ ->
raise Not_found
end
let lookup proj1 proj2 ?loc lid env =
match lid with
Lident s ->
EnvTbl.find_name s (proj1 env)
| Ldot(l, s) ->
let (p, desc) = lookup_module_descr ?loc l env in
begin match get_components desc with
Structure_comps c ->
let (data, pos) = Tbl.find s (proj2 c) in
(Pdot(p, s, pos), data)
| Functor_comps _ ->
raise Not_found
end
| Lapply _ ->
raise Not_found
let lookup_all_simple proj1 proj2 shadow ?loc lid env =
match lid with
Lident s ->
let xl = EnvTbl.find_all s (proj1 env) in
let rec do_shadow =
function
| [] -> []
| ((x, f) :: xs) ->
(x, f) ::
(do_shadow (List.filter (fun (y, _) -> not (shadow x y)) xs))
in
do_shadow xl
| Ldot(l, s) ->
let (_p, desc) = lookup_module_descr ?loc l env in
begin match get_components desc with
Structure_comps c ->
let comps =
try Tbl.find s (proj2 c) with Not_found -> []
in
List.map
(fun (data, _pos) -> (data, (fun () -> ())))
comps
| Functor_comps _ ->
raise Not_found
end
| Lapply _ ->
raise Not_found
let has_local_constraints env = env.local_constraints
let cstr_shadow cstr1 cstr2 =
match cstr1.cstr_tag, cstr2.cstr_tag with
| Cstr_extension _, Cstr_extension _ -> true
| _ -> false
let lbl_shadow _lbl1 _lbl2 = false
let lookup_value =
lookup (fun env -> env.values) (fun sc -> sc.comp_values)
and lookup_all_constructors =
lookup_all_simple (fun env -> env.constrs) (fun sc -> sc.comp_constrs)
cstr_shadow
and lookup_all_labels =
lookup_all_simple (fun env -> env.labels) (fun sc -> sc.comp_labels)
lbl_shadow
and lookup_type =
lookup (fun env -> env.types) (fun sc -> sc.comp_types)
and lookup_modtype =
lookup (fun env -> env.modtypes) (fun sc -> sc.comp_modtypes)
and lookup_class =
lookup (fun env -> env.classes) (fun sc -> sc.comp_classes)
and lookup_cltype =
lookup (fun env -> env.cltypes) (fun sc -> sc.comp_cltypes)
let update_value s f env =
try
let ((p, vd), slot) = Ident.find_name s env.values in
match p with
| Pident id ->
let vd2 = f vd in
{env with values = Ident.add id ((p, vd2), slot) env.values;
summary = Env_value(env.summary, id, vd2)}
| _ ->
env
with Not_found ->
env
let mark_value_used env name vd =
if not (is_implicit_coercion env) then
try Hashtbl.find value_declarations (name, vd.val_loc) ()
with Not_found -> ()
let mark_type_used env name vd =
if not (is_implicit_coercion env) then
try Hashtbl.find type_declarations (name, vd.type_loc) ()
with Not_found -> ()
let mark_constructor_used usage env name vd constr =
if not (is_implicit_coercion env) then
try Hashtbl.find used_constructors (name, vd.type_loc, constr) usage
with Not_found -> ()
let mark_extension_used usage env ext name =
if not (is_implicit_coercion env) then
let ty_name = Path.last ext.ext_type_path in
try Hashtbl.find used_constructors (ty_name, ext.ext_loc, name) usage
with Not_found -> ()
let set_value_used_callback name vd callback =
let key = (name, vd.val_loc) in
try
let old = Hashtbl.find value_declarations key in
Hashtbl.replace value_declarations key (fun () -> old (); callback ())
(* this is to support cases like:
let x = let x = 1 in x in x
where the two declarations have the same location
(e.g. resulting from Camlp4 expansion of grammar entries) *)
with Not_found ->
Hashtbl.add value_declarations key callback
let set_type_used_callback name td callback =
let loc = td.type_loc in
if loc.Location.loc_ghost then ()
else let key = (name, loc) in
let old =
try Hashtbl.find type_declarations key
with Not_found -> assert false
in
Hashtbl.replace type_declarations key (fun () -> callback old)
let lookup_value ?loc lid env =
let (_, desc) as r = lookup_value ?loc lid env in
mark_value_used env (Longident.last lid) desc;
r
let lookup_type ?loc lid env =
let (path, (decl, _)) = lookup_type ?loc lid env in
mark_type_used env (Longident.last lid) decl;
(path, decl)
let mark_type_path env path =
try
let decl = find_type path env in
mark_type_used env (Path.last path) decl
with Not_found -> ()
let ty_path t =
match repr t with
| {desc=Tconstr(path, _, _)} -> path
| _ -> assert false
let lookup_constructor ?loc lid env =
match lookup_all_constructors ?loc lid env with
[] -> raise Not_found
| (desc, use) :: _ ->
mark_type_path env (ty_path desc.cstr_res);
use ();
desc
let is_lident = function
Lident _ -> true
| _ -> false
let lookup_all_constructors ?loc lid env =
try
let cstrs = lookup_all_constructors ?loc lid env in
let wrap_use desc use () =
mark_type_path env (ty_path desc.cstr_res);
use ()
in
List.map (fun (cstr, use) -> (cstr, wrap_use cstr use)) cstrs
with
Not_found when is_lident lid -> []
let mark_constructor usage env name desc =
if not (is_implicit_coercion env)
then match desc.cstr_tag with
| Cstr_extension _ ->
begin
let ty_path = ty_path desc.cstr_res in
let ty_name = Path.last ty_path in
try Hashtbl.find used_constructors (ty_name, desc.cstr_loc, name) usage
with Not_found -> ()
end
| _ ->
let ty_path = ty_path desc.cstr_res in
let ty_decl = try find_type ty_path env with Not_found -> assert false in
let ty_name = Path.last ty_path in
mark_constructor_used usage env ty_name ty_decl name
let lookup_label ?loc lid env =
match lookup_all_labels ?loc lid env with
[] -> raise Not_found
| (desc, use) :: _ ->
mark_type_path env (ty_path desc.lbl_res);
use ();
desc
let lookup_all_labels ?loc lid env =
try
let lbls = lookup_all_labels ?loc lid env in
let wrap_use desc use () =
mark_type_path env (ty_path desc.lbl_res);
use ()
in
List.map (fun (lbl, use) -> (lbl, wrap_use lbl use)) lbls
with
Not_found when is_lident lid -> []
let lookup_class ?loc lid env =
let (_, desc) as r = lookup_class ?loc lid env in
(* special support for Typeclass.unbound_class *)
if Path.name desc.cty_path = "" then ignore (lookup_type ?loc lid env)
else mark_type_path env desc.cty_path;
r
let lookup_cltype ?loc lid env =
let (_, desc) as r = lookup_cltype ?loc lid env in
if Path.name desc.clty_path = "" then ignore (lookup_type ?loc lid env)
else mark_type_path env desc.clty_path;
mark_type_path env desc.clty_path;
r
(* Iter on an environment (ignoring the body of functors and
not yet evaluated structures) *)
type iter_cont = unit -> unit
let iter_env_cont = ref []
let rec scrape_alias_for_visit env mty =
match mty with
| Mty_alias (Pident id)
when Ident.persistent id
&& not (Hashtbl.mem persistent_structures (Ident.name id)) -> false
| Mty_alias path -> (* PR#6600: find_module may raise Not_found *)
begin try scrape_alias_for_visit env (find_module path env).md_type
with Not_found -> false
end
| _ -> true
let iter_env proj1 proj2 f env () =
Ident.iter (fun id (x,_) -> f (Pident id) x) (proj1 env);
let rec iter_components path path' mcomps =
let cont () =
let visit =
match EnvLazy.get_arg mcomps.comps with
| None -> true
| Some (env, _sub, _path, mty) -> scrape_alias_for_visit env mty
in
if not visit then () else
match get_components mcomps with
Structure_comps comps ->
Tbl.iter
(fun s (d, n) -> f (Pdot (path, s, n)) (Pdot (path', s, n), d))
(proj2 comps);
Tbl.iter
(fun s (c, n) ->
iter_components (Pdot (path, s, n)) (Pdot (path', s, n)) c)
comps.comp_components
| Functor_comps _ -> ()
in iter_env_cont := (path, cont) :: !iter_env_cont
in
Hashtbl.iter
(fun s pso ->
match pso with None -> ()
| Some ps ->
let id = Pident (Ident.create_persistent s) in
iter_components id id ps.ps_comps)
persistent_structures;
Ident.iter
(fun id ((path, comps), _) -> iter_components (Pident id) path comps)
env.components
let run_iter_cont l =
iter_env_cont := [];
List.iter (fun c -> c ()) l;
let cont = List.rev !iter_env_cont in
iter_env_cont := [];
cont
let iter_types f = iter_env (fun env -> env.types) (fun sc -> sc.comp_types) f
let same_types env1 env2 =
env1.types == env2.types && env1.components == env2.components
let used_persistent () =
let r = ref Concr.empty in
Hashtbl.iter (fun s pso -> if pso != None then r := Concr.add s !r)
persistent_structures;
!r
let find_all_comps proj s (p,mcomps) =
match get_components mcomps with
Functor_comps _ -> []
| Structure_comps comps ->
try let (c,n) = Tbl.find s (proj comps) in [Pdot(p,s,n), c]
with Not_found -> []
let rec find_shadowed_comps path env =
match path with
Pident id ->
List.map fst (Ident.find_all (Ident.name id) env.components)
| Pdot (p, s, _) ->
let l = find_shadowed_comps p env in
let l' =
List.map (find_all_comps (fun comps -> comps.comp_components) s) l in
List.flatten l'
| Papply _ -> []
let find_shadowed proj1 proj2 path env =
match path with
Pident id ->
List.map fst (Ident.find_all (Ident.name id) (proj1 env))
| Pdot (p, s, _) ->
let l = find_shadowed_comps p env in
let l' = List.map (find_all_comps proj2 s) l in
List.flatten l'
| Papply _ -> []
let find_shadowed_types path env =
let l =
find_shadowed
(fun env -> env.types) (fun comps -> comps.comp_types) path env
in
List.map fst l
(* GADT instance tracking *)
let add_gadt_instance_level lv env =
{env with
gadt_instances = (lv, ref TypeSet.empty) :: env.gadt_instances}
let is_Tlink = function {desc = Tlink _} -> true | _ -> false
let gadt_instance_level env t =
let rec find_instance = function
[] -> None
| (lv, r) :: rem ->
if TypeSet.exists is_Tlink !r then
(* Should we use set_typeset ? *)
r := TypeSet.fold (fun ty -> TypeSet.add (repr ty)) !r TypeSet.empty;
if TypeSet.mem t !r then Some lv else find_instance rem
in find_instance env.gadt_instances
let add_gadt_instances env lv tl =
let r =
try List.assoc lv env.gadt_instances with Not_found -> assert false in
(* Format.eprintf "Added";
List.iter (fun ty -> Format.eprintf "@ %a" !Btype.print_raw ty) tl;
Format.eprintf "@."; *)
set_typeset r (List.fold_right TypeSet.add tl !r)
(* Only use this after expand_head! *)
let add_gadt_instance_chain env lv t =
let r =
try List.assoc lv env.gadt_instances with Not_found -> assert false in
let rec add_instance t =
let t = repr t in
if not (TypeSet.mem t !r) then begin
(* Format.eprintf "@ %a" !Btype.print_raw t; *)
set_typeset r (TypeSet.add t !r);
match t.desc with
Tconstr (p, _, memo) ->
may add_instance (find_expans Private p !memo)
| _ -> ()
end
in
(* Format.eprintf "Added chain"; *)
add_instance t
(* Format.eprintf "@." *)
(* Expand manifest module type names at the top of the given module type *)
let rec scrape_alias env ?path mty =
match mty, path with
Mty_ident p, _ ->
begin try
scrape_alias env (find_modtype_expansion p env) ?path
with Not_found ->
mty
end
| Mty_alias path, _ ->
begin try
scrape_alias env (find_module path env).md_type ~path
with Not_found ->
(*Location.prerr_warning Location.none
(Warnings.No_cmi_file (Path.name path));*)
mty
end
| mty, Some path ->
!strengthen env mty path
| _ -> mty
let scrape_alias env mty = scrape_alias env mty
(* Given a signature and a root path, prefix all idents in the signature
by the root path and build the corresponding substitution. *)
let rec prefix_idents root pos sub = function
[] -> ([], sub)
| Sig_value(id, decl) :: rem ->
let p = Pdot(root, Ident.name id, pos) in
let nextpos = match decl.val_kind with Val_prim _ -> pos | _ -> pos+1 in
let (pl, final_sub) = prefix_idents root nextpos sub rem in
(p::pl, final_sub)
| Sig_type(id, _, _) :: rem ->
let p = Pdot(root, Ident.name id, nopos) in
let (pl, final_sub) =
prefix_idents root pos (Subst.add_type id p sub) rem in
(p::pl, final_sub)
| Sig_typext(id, _, _) :: rem ->
let p = Pdot(root, Ident.name id, pos) in
(* we extend the substitution in case of an inlined record *)
let (pl, final_sub) =
prefix_idents root (pos+1) (Subst.add_type id p sub) rem in
(p::pl, final_sub)
| Sig_module(id, _, _) :: rem ->
let p = Pdot(root, Ident.name id, pos) in
let (pl, final_sub) =
prefix_idents root (pos+1) (Subst.add_module id p sub) rem in
(p::pl, final_sub)
| Sig_modtype(id, _) :: rem ->
let p = Pdot(root, Ident.name id, nopos) in
let (pl, final_sub) =
prefix_idents root pos
(Subst.add_modtype id (Mty_ident p) sub) rem in
(p::pl, final_sub)
| Sig_class(id, _, _) :: rem ->
(* pretend this is a type, cf. PR#6650 *)
let p = Pdot(root, Ident.name id, pos) in
let (pl, final_sub) =
prefix_idents root (pos + 1) (Subst.add_type id p sub) rem in
(p::pl, final_sub)
| Sig_class_type(id, _, _) :: rem ->
let p = Pdot(root, Ident.name id, nopos) in
let (pl, final_sub) =
prefix_idents root pos (Subst.add_type id p sub) rem in
(p::pl, final_sub)
let subst_signature sub sg =
List.map
(fun item ->
match item with
| Sig_value(id, decl) ->
Sig_value (id, Subst.value_description sub decl)
| Sig_type(id, decl, x) ->
Sig_type(id, Subst.type_declaration sub decl, x)
| Sig_typext(id, ext, es) ->
Sig_typext (id, Subst.extension_constructor sub ext, es)
| Sig_module(id, mty, x) ->
Sig_module(id, Subst.module_declaration sub mty,x)
| Sig_modtype(id, decl) ->
Sig_modtype(id, Subst.modtype_declaration sub decl)
| Sig_class(id, decl, x) ->
Sig_class(id, Subst.class_declaration sub decl, x)
| Sig_class_type(id, decl, x) ->
Sig_class_type(id, Subst.cltype_declaration sub decl, x)
)
sg
let prefix_idents_and_subst root sub sg =
let (pl, sub) = prefix_idents root 0 sub sg in
pl, sub, lazy (subst_signature sub sg)
let set_nongen_level sub path =
Subst.set_nongen_level sub (Path.binding_time path)
let prefix_idents_and_subst root sub sg =
let sub = set_nongen_level sub root in
if sub = set_nongen_level Subst.identity root then
let sgs =
try
Hashtbl.find prefixed_sg root
with Not_found ->
let sgs = ref [] in
Hashtbl.add prefixed_sg root sgs;
sgs
in
try
List.assq sg !sgs
with Not_found ->
let r = prefix_idents_and_subst root sub sg in
sgs := (sg, r) :: !sgs;
r
else
prefix_idents_and_subst root sub sg
(* Compute structure descriptions *)
let add_to_tbl id decl tbl =
let decls =
try Tbl.find id tbl with Not_found -> [] in
Tbl.add id (decl :: decls) tbl
let rec components_of_module ~deprecated env sub path mty =
{
deprecated;
comps = EnvLazy.create (env, sub, path, mty)
}
and components_of_module_maker (env, sub, path, mty) =
(match scrape_alias env mty with
Mty_signature sg ->
let c =
{ comp_values = Tbl.empty;
comp_constrs = Tbl.empty;
comp_labels = Tbl.empty; comp_types = Tbl.empty;
comp_modules = Tbl.empty; comp_modtypes = Tbl.empty;
comp_components = Tbl.empty; comp_classes = Tbl.empty;
comp_cltypes = Tbl.empty } in
let pl, sub, _ = prefix_idents_and_subst path sub sg in
let env = ref env in
let pos = ref 0 in
List.iter2 (fun item path ->
match item with
Sig_value(id, decl) ->
let decl' = Subst.value_description sub decl in
c.comp_values <-
Tbl.add (Ident.name id) (decl', !pos) c.comp_values;
begin match decl.val_kind with
Val_prim _ -> () | _ -> incr pos
end
| Sig_type(id, decl, _) ->
let decl' = Subst.type_declaration sub decl in
let constructors =
List.map snd (Datarepr.constructors_of_type path decl') in
let labels =
List.map snd (Datarepr.labels_of_type path decl') in
c.comp_types <-
Tbl.add (Ident.name id)
((decl', (constructors, labels)), nopos)
c.comp_types;
List.iter
(fun descr ->
c.comp_constrs <-
add_to_tbl descr.cstr_name (descr, nopos) c.comp_constrs)
constructors;
List.iter
(fun descr ->
c.comp_labels <-
add_to_tbl descr.lbl_name (descr, nopos) c.comp_labels)
labels;
env := store_type_infos None id (Pident id) decl !env !env
| Sig_typext(id, ext, _) ->
let ext' = Subst.extension_constructor sub ext in
let descr = Datarepr.extension_descr path ext' in
c.comp_constrs <-
add_to_tbl (Ident.name id) (descr, !pos) c.comp_constrs;
incr pos
| Sig_module(id, md, _) ->
let mty = md.md_type in
let mty' = EnvLazy.create (sub, mty) in
c.comp_modules <-
Tbl.add (Ident.name id) (mty', !pos) c.comp_modules;
let deprecated =
Builtin_attributes.deprecated_of_attrs md.md_attributes
in
let comps = components_of_module ~deprecated !env sub path mty in
c.comp_components <-
Tbl.add (Ident.name id) (comps, !pos) c.comp_components;
env := store_module None id (Pident id) md !env !env;
incr pos
| Sig_modtype(id, decl) ->
let decl' = Subst.modtype_declaration sub decl in
c.comp_modtypes <-
Tbl.add (Ident.name id) (decl', nopos) c.comp_modtypes;
env := store_modtype None id (Pident id) decl !env !env
| Sig_class(id, decl, _) ->
let decl' = Subst.class_declaration sub decl in
c.comp_classes <-
Tbl.add (Ident.name id) (decl', !pos) c.comp_classes;
incr pos
| Sig_class_type(id, decl, _) ->
let decl' = Subst.cltype_declaration sub decl in
c.comp_cltypes <-
Tbl.add (Ident.name id) (decl', !pos) c.comp_cltypes)
sg pl;
Structure_comps c
| Mty_functor(param, ty_arg, ty_res) ->
Functor_comps {
fcomp_param = param;
(* fcomp_arg and fcomp_res must be prefixed eagerly, because
they are interpreted in the outer environment *)
fcomp_arg = may_map (Subst.modtype sub) ty_arg;
fcomp_res = Subst.modtype (set_nongen_level sub path) ty_res;
fcomp_cache = Hashtbl.create 17;
fcomp_subst_cache = Hashtbl.create 17 }
| Mty_ident _
| Mty_alias _ ->
Structure_comps {
comp_values = Tbl.empty;
comp_constrs = Tbl.empty;
comp_labels = Tbl.empty;
comp_types = Tbl.empty;
comp_modules = Tbl.empty; comp_modtypes = Tbl.empty;
comp_components = Tbl.empty; comp_classes = Tbl.empty;
comp_cltypes = Tbl.empty })
(* Insertion of bindings by identifier + path *)
and check_usage loc id warn tbl =
if not loc.Location.loc_ghost && Warnings.is_active (warn "") then begin
let name = Ident.name id in
let key = (name, loc) in
if Hashtbl.mem tbl key then ()
else let used = ref false in
Hashtbl.add tbl key (fun () -> used := true);
if not (name = "" || name.[0] = '_' || name.[0] = '#')
then
!add_delayed_check_forward
(fun () -> if not !used then Location.prerr_warning loc (warn name))
end;
and check_value_name name loc =
(* Note: we could also check here general validity of the
identifier, to protect against bad identifiers forged by -pp or
-ppx preprocessors. *)
if String.length name > 0 && (name.[0] = '#') then
for i = 1 to String.length name - 1 do
if name.[i] = '#' then
raise (Error(Illegal_value_name(loc, name)))
done
and store_value ?check slot id path decl env renv =
check_value_name (Ident.name id) decl.val_loc;
may (fun f -> check_usage decl.val_loc id f value_declarations) check;
{ env with
values = EnvTbl.add slot (fun x -> `Value x) id (path, decl)
env.values renv.values;
summary = Env_value(env.summary, id, decl) }
and store_type ~check slot id path info env renv =
let loc = info.type_loc in
if check then
check_usage loc id (fun s -> Warnings.Unused_type_declaration s)
type_declarations;
let constructors = Datarepr.constructors_of_type path info in
let labels = Datarepr.labels_of_type path info in
let descrs = (List.map snd constructors, List.map snd labels) in
if check && not loc.Location.loc_ghost &&
Warnings.is_active (Warnings.Unused_constructor ("", false, false))
then begin
let ty = Ident.name id in
List.iter
begin fun (_, {cstr_name = c; _}) ->
let k = (ty, loc, c) in
if not (Hashtbl.mem used_constructors k) then
let used = constructor_usages () in
Hashtbl.add used_constructors k (add_constructor_usage used);
if not (ty = "" || ty.[0] = '_')
then !add_delayed_check_forward
(fun () ->
if not (is_in_signature env) && not used.cu_positive then
Location.prerr_warning loc
(Warnings.Unused_constructor
(c, used.cu_pattern, used.cu_privatize)))
end
constructors
end;
{ env with
constrs =
List.fold_right
(fun (id, descr) constrs ->
EnvTbl.add slot (fun x -> `Constructor x) id descr constrs
renv.constrs)
constructors
env.constrs;
labels =
List.fold_right
(fun (id, descr) labels ->
EnvTbl.add slot (fun x -> `Label x) id descr labels renv.labels)
labels
env.labels;
types =
EnvTbl.add slot (fun x -> `Type x) id (path, (info, descrs)) env.types
renv.types;
summary = Env_type(env.summary, id, info) }
and store_type_infos slot id path info env renv =
(* Simplified version of store_type that doesn't compute and store
constructor and label infos, but simply record the arity and
manifest-ness of the type. Used in components_of_module to
keep track of type abbreviations (e.g. type t = float) in the
computation of label representations. *)
{ env with
types = EnvTbl.add slot (fun x -> `Type x) id (path, (info,([],[])))
env.types renv.types;
summary = Env_type(env.summary, id, info) }
and store_extension ~check slot id path ext env renv =
let loc = ext.ext_loc in
if check && not loc.Location.loc_ghost &&
Warnings.is_active (Warnings.Unused_extension ("", false, false))
then begin
let ty = Path.last ext.ext_type_path in
let n = Ident.name id in
let k = (ty, loc, n) in
if not (Hashtbl.mem used_constructors k) then begin
let used = constructor_usages () in
Hashtbl.add used_constructors k (add_constructor_usage used);
!add_delayed_check_forward
(fun () ->
if not (is_in_signature env) && not used.cu_positive then
Location.prerr_warning loc
(Warnings.Unused_extension
(n, used.cu_pattern, used.cu_privatize)
)
)
end;
end;
{ env with
constrs = EnvTbl.add slot (fun x -> `Constructor x) id
(Datarepr.extension_descr path ext)
env.constrs renv.constrs;
summary = Env_extension(env.summary, id, ext) }
and store_module slot id path md env renv =
let deprecated = Builtin_attributes.deprecated_of_attrs md.md_attributes in
{ env with
modules = EnvTbl.add slot (fun x -> `Module x) id (path, md)
env.modules renv.modules;
components =
EnvTbl.add slot (fun x -> `Component x) id
(path, components_of_module ~deprecated
env Subst.identity path md.md_type)
env.components renv.components;
summary = Env_module(env.summary, id, md) }
and store_modtype slot id path info env renv =
{ env with
modtypes = EnvTbl.add slot (fun x -> `Module_type x) id (path, info)
env.modtypes renv.modtypes;
summary = Env_modtype(env.summary, id, info) }
and store_class slot id path desc env renv =
{ env with
classes = EnvTbl.add slot (fun x -> `Class x) id (path, desc)
env.classes renv.classes;
summary = Env_class(env.summary, id, desc) }
and store_cltype slot id path desc env renv =
{ env with
cltypes = EnvTbl.add slot (fun x -> `Class_type x) id (path, desc)
env.cltypes renv.cltypes;
summary = Env_cltype(env.summary, id, desc) }
(* Compute the components of a functor application in a path. *)
let components_of_functor_appl f env p1 p2 =
try
Hashtbl.find f.fcomp_cache p2
with Not_found ->
let p = Papply(p1, p2) in
let sub = Subst.add_module f.fcomp_param p2 Subst.identity in
let mty = Subst.modtype sub f.fcomp_res in
let comps = components_of_module ~deprecated:None (*???*)
env Subst.identity p mty in
Hashtbl.add f.fcomp_cache p2 comps;
comps
(* Define forward functions *)
let _ =
components_of_module' := components_of_module;
components_of_functor_appl' := components_of_functor_appl;
components_of_module_maker' := components_of_module_maker
(* Insertion of bindings by identifier *)
let add_functor_arg id env =
{env with
functor_args = Ident.add id () env.functor_args;
summary = Env_functor_arg (env.summary, id)}
let add_value ?check id desc env =
store_value None ?check id (Pident id) desc env env
let add_type ~check id info env =
store_type ~check None id (Pident id) info env env
and add_extension ~check id ext env =
store_extension ~check None id (Pident id) ext env env
and add_module_declaration ?(arg=false) id md env =
let path =
(*match md.md_type with
Mty_alias path -> normalize_path env path
| _ ->*) Pident id
in
let env = store_module None id path md env env in
if arg then add_functor_arg id env else env
and add_modtype id info env =
store_modtype None id (Pident id) info env env
and add_class id ty env =
store_class None id (Pident id) ty env env
and add_cltype id ty env =
store_cltype None id (Pident id) ty env env
let add_module ?arg id mty env =
add_module_declaration ?arg id (md mty) env
let add_local_constraint id info elv env =
match info with
{type_manifest = Some _; type_newtype_level = Some (lv, _)} ->
(* elv is the expansion level, lv is the definition level *)
let env =
add_type ~check:false
id {info with type_newtype_level = Some (lv, elv)} env in
{ env with local_constraints = true }
| _ -> assert false
(* Insertion of bindings by name *)
let enter store_fun name data env =
let id = Ident.create name in (id, store_fun None id (Pident id) data env env)
let enter_value ?check = enter (store_value ?check)
and enter_type = enter (store_type ~check:true)
and enter_extension = enter (store_extension ~check:true)
and enter_module_declaration ?arg id md env =
add_module_declaration ?arg id md env
(* let (id, env) = enter store_module name md env in
(id, add_functor_arg ?arg id env) *)
and enter_modtype = enter store_modtype
and enter_class = enter store_class
and enter_cltype = enter store_cltype
let enter_module ?arg s mty env =
let id = Ident.create s in
(id, enter_module_declaration ?arg id (md mty) env)
(* Insertion of all components of a signature *)
let add_item comp env =
match comp with
Sig_value(id, decl) -> add_value id decl env
| Sig_type(id, decl, _) -> add_type ~check:false id decl env
| Sig_typext(id, ext, _) -> add_extension ~check:false id ext env
| Sig_module(id, md, _) -> add_module_declaration id md env
| Sig_modtype(id, decl) -> add_modtype id decl env
| Sig_class(id, decl, _) -> add_class id decl env
| Sig_class_type(id, decl, _) -> add_cltype id decl env
let rec add_signature sg env =
match sg with
[] -> env
| comp :: rem -> add_signature rem (add_item comp env)
(* Open a signature path *)
let open_signature slot root sg env0 =
(* First build the paths and substitution *)
let (pl, _sub, sg) = prefix_idents_and_subst root Subst.identity sg in
let sg = Lazy.force sg in
(* Then enter the components in the environment after substitution *)
let newenv =
List.fold_left2
(fun env item p ->
match item with
Sig_value(id, decl) ->
store_value slot (Ident.hide id) p decl env env0
| Sig_type(id, decl, _) ->
store_type ~check:false slot (Ident.hide id) p decl env env0
| Sig_typext(id, ext, _) ->
store_extension ~check:false slot (Ident.hide id) p ext env env0
| Sig_module(id, mty, _) ->
store_module slot (Ident.hide id) p mty env env0
| Sig_modtype(id, decl) ->
store_modtype slot (Ident.hide id) p decl env env0
| Sig_class(id, decl, _) ->
store_class slot (Ident.hide id) p decl env env0
| Sig_class_type(id, decl, _) ->
store_cltype slot (Ident.hide id) p decl env env0
)
env0 sg pl in
{ newenv with summary = Env_open(env0.summary, root) }
(* Open a signature from a file *)
let open_pers_signature name env =
let ps = find_pers_struct name in
open_signature None (Pident(Ident.create_persistent name))
(Lazy.force ps.ps_sig) env
let open_signature ?(loc = Location.none) ?(toplevel = false) ovf root sg env =
if not toplevel && ovf = Asttypes.Fresh && not loc.Location.loc_ghost
&& (Warnings.is_active (Warnings.Unused_open "")
|| Warnings.is_active (Warnings.Open_shadow_identifier ("", ""))
|| Warnings.is_active (Warnings.Open_shadow_label_constructor ("","")))
then begin
let used = ref false in
!add_delayed_check_forward
(fun () ->
if not !used then
Location.prerr_warning loc (Warnings.Unused_open (Path.name root))
);
let shadowed = ref [] in
let slot s b =
begin match check_shadowing env b with
| Some kind when not (List.mem (kind, s) !shadowed) ->
shadowed := (kind, s) :: !shadowed;
let w =
match kind with
| "label" | "constructor" ->
Warnings.Open_shadow_label_constructor (kind, s)
| _ -> Warnings.Open_shadow_identifier (kind, s)
in
Location.prerr_warning loc w
| _ -> ()
end;
used := true
in
open_signature (Some slot) root sg env
end
else open_signature None root sg env
(* Read a signature from a file *)
let read_signature modname filename =
let ps = read_pers_struct modname filename in
Lazy.force ps.ps_sig
(* Return the CRC of the interface of the given compilation unit *)
let crc_of_unit name =
let ps = find_pers_struct name in
let crco =
try
List.assoc name ps.ps_crcs
with Not_found ->
assert false
in
match crco with
None -> assert false
| Some crc -> crc
(* Return the list of imported interfaces with their CRCs *)
let imports () =
Consistbl.extract (StringSet.elements !imported_units) crc_units
(* Returns true if [s] is an opaque imported module *)
let is_imported_opaque s =
StringSet.mem s !imported_opaque_units
(* Save a signature to a file *)
let save_signature_with_imports ~deprecated sg modname filename imports =
(*prerr_endline filename;
List.iter (fun (name, crc) -> prerr_endline name) imports;*)
Btype.cleanup_abbrev ();
Subst.reset_for_saving ();
let sg = Subst.signature (Subst.for_saving Subst.identity) sg in
let flags =
List.concat [
if !Clflags.recursive_types then [Cmi_format.Rectypes] else [];
if !Clflags.opaque then [Cmi_format.Opaque] else [];
(match deprecated with Some s -> [Deprecated s] | None -> []);
]
in
let oc = open_out_bin filename in
try
let cmi = {
cmi_name = modname;
cmi_sign = sg;
cmi_crcs = imports;
cmi_flags = flags;
} in
let crc = output_cmi filename oc cmi in
close_out oc;
(* Enter signature in persistent table so that imported_unit()
will also return its crc *)
let comps =
components_of_module ~deprecated empty Subst.identity
(Pident(Ident.create_persistent modname)) (Mty_signature sg) in
let ps =
{ ps_name = modname;
ps_sig = lazy (Subst.signature Subst.identity sg);
ps_comps = comps;
ps_crcs = (cmi.cmi_name, Some crc) :: imports;
ps_filename = filename;
ps_flags = cmi.cmi_flags;
} in
save_pers_struct crc ps;
sg
with exn ->
close_out oc;
remove_file filename;
raise exn
let save_signature ~deprecated sg modname filename =
save_signature_with_imports ~deprecated sg modname filename (imports())
(* Folding on environments *)
let find_all proj1 proj2 f lid env acc =
match lid with
| None ->
EnvTbl.fold_name
(fun id (p, data) acc -> f (Ident.name id) p data acc)
(proj1 env) acc
| Some l ->
let p, desc = lookup_module_descr l env in
begin match get_components desc with
Structure_comps c ->
Tbl.fold
(fun s (data, pos) acc -> f s (Pdot (p, s, pos)) data acc)
(proj2 c) acc
| Functor_comps _ ->
acc
end
let find_all_simple_list proj1 proj2 f lid env acc =
match lid with
| None ->
EnvTbl.fold_name
(fun _id data acc -> f data acc)
(proj1 env) acc
| Some l ->
let (_p, desc) = lookup_module_descr l env in
begin match get_components desc with
Structure_comps c ->
Tbl.fold
(fun _s comps acc ->
match comps with
[] -> acc
| (data, _pos) :: _ ->
f data acc)
(proj2 c) acc
| Functor_comps _ ->
acc
end
let fold_modules f lid env acc =
match lid with
| None ->
let acc =
EnvTbl.fold_name
(fun id (p, data) acc -> f (Ident.name id) p data acc)
env.modules
acc
in
Hashtbl.fold
(fun name ps acc ->
match ps with
None -> acc
| Some ps ->
f name (Pident(Ident.create_persistent name))
(md (Mty_signature (Lazy.force ps.ps_sig))) acc)
persistent_structures
acc
| Some l ->
let p, desc = lookup_module_descr l env in
begin match get_components desc with
Structure_comps c ->
Tbl.fold
(fun s (data, pos) acc ->
f s (Pdot (p, s, pos))
(md (EnvLazy.force subst_modtype_maker data)) acc)
c.comp_modules
acc
| Functor_comps _ ->
acc
end
let fold_values f =
find_all (fun env -> env.values) (fun sc -> sc.comp_values) f
and fold_constructors f =
find_all_simple_list (fun env -> env.constrs) (fun sc -> sc.comp_constrs) f
and fold_labels f =
find_all_simple_list (fun env -> env.labels) (fun sc -> sc.comp_labels) f
and fold_types f =
find_all (fun env -> env.types) (fun sc -> sc.comp_types) f
and fold_modtypes f =
find_all (fun env -> env.modtypes) (fun sc -> sc.comp_modtypes) f
and fold_classs f =
find_all (fun env -> env.classes) (fun sc -> sc.comp_classes) f
and fold_cltypes f =
find_all (fun env -> env.cltypes) (fun sc -> sc.comp_cltypes) f
(* Make the initial environment *)
let (initial_safe_string, initial_unsafe_string) =
Predef.build_initial_env
(add_type ~check:false)
(add_extension ~check:false)
empty
(* Return the environment summary *)
let summary env = env.summary
let last_env = ref empty
let last_reduced_env = ref empty
let keep_only_summary env =
if !last_env == env then !last_reduced_env
else begin
let new_env =
{
empty with
summary = env.summary;
local_constraints = env.local_constraints;
flags = env.flags;
}
in
last_env := env;
last_reduced_env := new_env;
new_env
end
let env_of_only_summary env_from_summary env =
let new_env = env_from_summary env.summary Subst.identity in
{ new_env with
local_constraints = env.local_constraints;
flags = env.flags;
}
(* Error report *)
open Format
let report_error ppf = function
| Illegal_renaming(modname, ps_name, filename) -> fprintf ppf
"Wrong file naming: %a@ contains the compiled interface for @ \
%s when %s was expected"
Location.print_filename filename ps_name modname
| Inconsistent_import(name, source1, source2) -> fprintf ppf
"@[<hov>The files %a@ and %a@ \
make inconsistent assumptions@ over interface %s@]"
Location.print_filename source1 Location.print_filename source2 name
| Need_recursive_types(import, export) ->
fprintf ppf
"@[<hov>Unit %s imports from %s, which uses recursive types.@ %s@]"
export import "The compilation flag -rectypes is required"
| Missing_module(_, path1, path2) ->
fprintf ppf "@[@[<hov>";
if Path.same path1 path2 then
fprintf ppf "Internal path@ %s@ is dangling." (Path.name path1)
else
fprintf ppf "Internal path@ %s@ expands to@ %s@ which is dangling."
(Path.name path1) (Path.name path2);
fprintf ppf "@]@ @[%s@ %s@ %s.@]@]"
"The compiled interface for module" (Ident.name (Path.head path2))
"was not found"
| Illegal_value_name(_loc, name) ->
fprintf ppf "'%s' is not a valid value identifier."
name
let () =
Location.register_error_of_exn
(function
| Error (Missing_module (loc, _, _)
| Illegal_value_name (loc, _)
as err) when loc <> Location.none ->
Some (Location.error_of_printer loc report_error err)
| Error err -> Some (Location.error_of_printer_file report_error err)
| _ -> None
)