ocaml/asmcomp/s390x/emit.mlp

770 lines
26 KiB
Plaintext

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Emission of Linux on Z 64-bit assembly code *)
module StringSet =
Set.Make(struct type t = string let compare (x:t) y = compare x y end)
open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux
(* Layout of the stack. The stack is kept 8-aligned. *)
let stack_offset = ref 0
let frame_size () =
let size =
!stack_offset + (* Trap frame, outgoing parameters *)
size_int * num_stack_slots.(0) + (* Local int variables *)
size_float * num_stack_slots.(1) + (* Local float variables *)
(if !contains_calls then size_addr else 0) in (* The return address *)
Misc.align size 8
let slot_offset loc cls =
match loc with
Local n ->
if cls = 0
then !stack_offset + num_stack_slots.(1) * size_float + n * size_int
else !stack_offset + n * size_float
| Incoming n -> frame_size() + n
| Outgoing n -> n
(* Output a symbol *)
let emit_symbol s = Emitaux.emit_symbol '.' s
(* Output function call *)
let emit_call s =
if !pic_code then
`brasl %r14, {emit_symbol s}@PLT`
else
`brasl %r14, {emit_symbol s}`
(* Output a label *)
let label_prefix = ".L"
let emit_label lbl =
emit_string label_prefix; emit_int lbl
let emit_data_label lbl =
emit_string label_prefix; emit_string "d"; emit_int lbl
(* Section switching *)
let data_space = " .section \".data\"\n"
let code_space = " .section \".text\"\n"
let rodata_space = " .section \".rodata\"\n"
(* Output a pseudo-register *)
let emit_reg r =
match r.loc with
| Reg r -> emit_string (register_name r)
| _ -> fatal_error "Emit.emit_reg"
(* Special registers *)
let reg_f15 = phys_reg 115
(* Output a stack reference *)
let emit_stack r =
match r.loc with
Stack s ->
let ofs = slot_offset s (register_class r) in `{emit_int ofs}(%r15)`
| _ -> fatal_error "Emit.emit_stack"
(* Output a load or store operation *)
let emit_load_store instr addressing_mode addr n arg =
match addressing_mode with
| Iindexed ofs ->
` {emit_string instr} {emit_reg arg}, {emit_int ofs}({emit_reg addr.(n)})\n`
| Iindexed2 ofs ->
` {emit_string instr} {emit_reg arg}, {emit_int ofs}({emit_reg addr.(n)},{emit_reg addr.(n+1)})\n`
(* Adjust the stack pointer down by N.
Choose the shortest instruction possible for the value of N. *)
let emit_stack_adjust n =
let n = -n in
if n = 0 then ()
else if n >= 0 && n < 4096 then
` la %r15, {emit_int n}(%r15)\n`
else if n >= -0x80000 && n < 0x80000 then
` lay %r15, {emit_int n}(%r15)\n`
else
` agfi %r15, {emit_int n}\n`
(* Emit a 'add immediate' *)
let emit_addimm res arg n =
if n >= 0 && n < 4096 then
` la {emit_reg res}, {emit_int n}({emit_reg arg})\n`
else if n >= -0x80000 && n < 0x80000 then
` lay {emit_reg res}, {emit_int n}({emit_reg arg})\n`
else begin
if arg.loc <> res.loc then
` lgr {emit_reg res}, {emit_reg arg}\n`;
` agfi {emit_reg res}, {emit_int n}\n`
end
(* After a comparison, extract the result as 0 or 1 *)
(* The locgr instruction is not available in the z10 architecture,
so this code is currently unused. *)
(*
let emit_set_comp cmp res =
` lghi %r1, 1\n`;
` lghi {emit_reg res}, 0\n`;
begin match cmp with
Ceq -> ` locgre {emit_reg res}, %r1\n`
| Cne -> ` locgrne {emit_reg res}, %r1\n`
| Cgt -> ` locgrh {emit_reg res}, %r1\n`
| Cle -> ` locgrnh {emit_reg res}, %r1\n`
| Clt -> ` locgrl {emit_reg res}, %r1\n`
| Cge -> ` locgrnl {emit_reg res}, %r1\n`
end
*)
(* Record live pointers at call points *)
let record_frame live dbg =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
| {typ = Val; loc = Reg r} ->
live_offset := (r lsl 1) + 1 :: !live_offset
| {typ = Val; loc = Stack s} as reg ->
live_offset := slot_offset s (register_class reg) :: !live_offset
| {typ = Addr} as r ->
Misc.fatal_error ("bad GC root " ^ Reg.name r)
| _ -> ())
live;
frame_descriptors :=
{ fd_lbl = lbl;
fd_frame_size = frame_size();
fd_live_offset = !live_offset;
fd_debuginfo = dbg } :: !frame_descriptors;
lbl
(* Record calls to caml_call_gc, emitted out of line. *)
type gc_call =
{ gc_lbl: label; (* Entry label *)
gc_return_lbl: label; (* Where to branch after GC *)
gc_frame_lbl: label } (* Label of frame descriptor *)
let call_gc_sites = ref ([] : gc_call list)
let emit_call_gc gc =
`{emit_label gc.gc_lbl}: {emit_call "caml_call_gc"}\n`;
`{emit_label gc.gc_frame_lbl}: brcl 15, {emit_label gc.gc_return_lbl}\n`
(* Record calls to caml_ml_array_bound_error, emitted out of line. *)
type bound_error_call =
{ bd_lbl: label; (* Entry label *)
bd_frame: label } (* Label of frame descriptor *)
let bound_error_sites = ref ([] : bound_error_call list)
let bound_error_call = ref 0
let bound_error_label dbg =
if !Clflags.debug then begin
let lbl_bound_error = new_label() in
let lbl_frame = record_frame Reg.Set.empty dbg in
bound_error_sites :=
{ bd_lbl = lbl_bound_error; bd_frame = lbl_frame } :: !bound_error_sites;
lbl_bound_error
end else begin
if !bound_error_call = 0 then bound_error_call := new_label();
!bound_error_call
end
let emit_call_bound_error bd =
`{emit_label bd.bd_lbl}: {emit_call "caml_ml_array_bound_error"}\n`;
`{emit_label bd.bd_frame}:\n`
let emit_call_bound_errors () =
List.iter emit_call_bound_error !bound_error_sites;
if !bound_error_call > 0 then
`{emit_label !bound_error_call}: {emit_call "caml_ml_array_bound_error"}\n`
(* Record floating-point and large integer literals *)
let float_literals = ref ([] : (int64 * int) list)
let int_literals = ref ([] : (nativeint * int) list)
(* Masks for conditional branches after comparisons *)
let branch_for_comparison = function
Ceq -> 8 | Cne -> 7
| Cle -> 12 | Cgt -> 2
| Cge -> 10 | Clt -> 4
let name_for_int_comparison = function
Isigned cmp -> ("cgr", branch_for_comparison cmp)
| Iunsigned cmp -> ("clgr", branch_for_comparison cmp)
let name_for_int_comparison_imm = function
Isigned cmp -> ("cgfi", branch_for_comparison cmp)
| Iunsigned cmp -> ("clgfi", branch_for_comparison cmp)
(* bit 0 = eq, bit 1 = lt, bit 2 = gt, bit 3 = unordered*)
let branch_for_float_comparison cmp neg =
match cmp with
Ceq -> if neg then 7 else 8
| Cne -> if neg then 8 else 7
| Cle -> if neg then 3 else 12
| Cgt -> if neg then 13 else 2
| Cge -> if neg then 5 else 10
| Clt -> if neg then 11 else 4
(* Names for various instructions *)
let name_for_intop = function
Iadd -> "agr"
| Isub -> "sgr"
| Imul -> "msgr"
| Iand -> "ngr"
| Ior -> "ogr"
| Ixor -> "xgr"
| _ -> Misc.fatal_error "Emit.Intop"
let name_for_floatop1 = function
Inegf -> "lcdbr"
| Iabsf -> "lpdbr"
| _ -> Misc.fatal_error "Emit.Iopf1"
let name_for_floatop2 = function
Iaddf -> "adbr"
| Isubf -> "sdbr"
| Imulf -> "mdbr"
| Idivf -> "ddbr"
| _ -> Misc.fatal_error "Emit.Iopf2"
let name_for_specific = function
Imultaddf -> "madbr"
| Imultsubf -> "msdbr"
(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
(* Output the assembly code for an instruction *)
let emit_instr i =
emit_debug_info i.dbg;
match i.desc with
Lend -> ()
| Lop(Imove | Ispill | Ireload) ->
let src = i.arg.(0) and dst = i.res.(0) in
if src.loc <> dst.loc then begin
match (src, dst) with
{loc = Reg _; typ = (Val | Int | Addr)}, {loc = Reg _} ->
` lgr {emit_reg dst}, {emit_reg src}\n`
| {loc = Reg _; typ = Float}, {loc = Reg _; typ = Float} ->
` ldr {emit_reg dst}, {emit_reg src}\n`
| {loc = Reg _; typ = (Val | Int | Addr)}, {loc = Stack _} ->
` stg {emit_reg src}, {emit_stack dst}\n`
| {loc = Reg _; typ = Float}, {loc = Stack _} ->
` std {emit_reg src}, {emit_stack dst}\n`
| {loc = Stack _; typ = (Val | Int | Addr)}, {loc = Reg _} ->
` lg {emit_reg dst}, {emit_stack src}\n`
| {loc = Stack _; typ = Float}, {loc = Reg _} ->
` ldy {emit_reg dst}, {emit_stack src}\n`
| (_, _) ->
fatal_error "Emit: Imove"
end
| Lop(Iconst_int n | Iconst_blockheader n) ->
if n >= -0x8000n && n <= 0x7FFFn then begin
` lghi {emit_reg i.res.(0)}, {emit_nativeint n}\n`;
end else if n >= -0x8000_0000n && n <= 0x7FFF_FFFFn then begin
` lgfi {emit_reg i.res.(0)}, {emit_nativeint n}\n`;
end else begin
let lbl = new_label() in
int_literals := (n, lbl) :: !int_literals;
` lgrl {emit_reg i.res.(0)}, {emit_label lbl}\n`;
end
| Lop(Iconst_float f) ->
let lbl = new_label() in
float_literals := (f, lbl) :: !float_literals;
` larl %r1, {emit_label lbl}\n`;
` ld {emit_reg i.res.(0)}, 0(%r1)\n`
| Lop(Iconst_symbol s) ->
if !pic_code then
` lgrl {emit_reg i.res.(0)}, {emit_symbol s}@GOTENT\n`
else
` larl {emit_reg i.res.(0)}, {emit_symbol s}\n`;
| Lop(Icall_ind) ->
` basr %r14, {emit_reg i.arg.(0)}\n`;
let lbl = record_frame i.live i.dbg in
`{emit_label lbl}:\n`
| Lop(Icall_imm s) ->
if !pic_code then
` brasl %r14, {emit_symbol s}@PLT\n`
else
` brasl %r14, {emit_symbol s}\n`;
let lbl = record_frame i.live i.dbg in
`{emit_label lbl}:\n`;
| Lop(Itailcall_ind) ->
let n = frame_size() in
if !contains_calls then
` lg %r14, {emit_int(n - size_addr)}(%r15)\n`;
emit_stack_adjust (-n);
` br {emit_reg i.arg.(0)}\n`
| Lop(Itailcall_imm s) ->
if s = !function_name then
` brcl 15, {emit_label !tailrec_entry_point}\n`
else begin
let n = frame_size() in
if !contains_calls then
` lg %r14, {emit_int(n - size_addr)}(%r15)\n`;
emit_stack_adjust (-n);
if !pic_code then
` brcl 15, {emit_symbol s}@PLT\n`
else
` brcl 15, {emit_symbol s}\n`
end
| Lop(Iextcall(s, alloc)) ->
if alloc then begin
if !pic_code then begin
` lgrl %r7, {emit_symbol s}@GOTENT\n`;
` brasl %r14, {emit_symbol "caml_c_call"}@PLT\n`
end else begin
` larl %r7, {emit_symbol s}\n`;
` brasl %r14, {emit_symbol "caml_c_call"}\n`
end;
let lbl = record_frame i.live i.dbg in
`{emit_label lbl}:\n`;
end else begin
if !pic_code then
` brasl %r14, {emit_symbol s}@PLT\n`
else
` brasl %r14, {emit_symbol s}\n`
end
| Lop(Istackoffset n) ->
emit_stack_adjust n;
stack_offset := !stack_offset + n
| Lop(Iload(chunk, addr)) ->
let loadinstr =
match chunk with
Byte_unsigned -> "llgc"
| Byte_signed -> "lgb"
| Sixteen_unsigned -> "llgh"
| Sixteen_signed -> "lgh"
| Thirtytwo_unsigned -> "llgf"
| Thirtytwo_signed -> "lgf"
| Word_int | Word_val -> "lg"
| Single -> "ley"
| Double | Double_u -> "ldy" in
emit_load_store loadinstr addr i.arg 0 i.res.(0);
if chunk = Single then
` ldebr {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Istore(Single, addr, _)) ->
` ledbr %f15, {emit_reg i.arg.(0)}\n`;
emit_load_store "stey" addr i.arg 1 reg_f15
| Lop(Istore(chunk, addr, _)) ->
let storeinstr =
match chunk with
Byte_unsigned | Byte_signed -> "stcy"
| Sixteen_unsigned | Sixteen_signed -> "sthy"
| Thirtytwo_unsigned | Thirtytwo_signed -> "sty"
| Word_int | Word_val -> "stg"
| Single -> assert false
| Double | Double_u -> "stdy" in
emit_load_store storeinstr addr i.arg 1 i.arg.(0)
| Lop(Ialloc n) ->
let lbl_redo = new_label() in
let lbl_call_gc = new_label() in
let lbl_frame = record_frame i.live i.dbg in
call_gc_sites :=
{ gc_lbl = lbl_call_gc;
gc_return_lbl = lbl_redo;
gc_frame_lbl = lbl_frame } :: !call_gc_sites;
`{emit_label lbl_redo}:`;
` lay %r11, {emit_int(-n)}(%r11)\n`;
` clgr %r11, %r10\n`;
` brcl 4, {emit_label lbl_call_gc}\n`; (* less than *)
` la {emit_reg i.res.(0)}, 8(%r11)\n`
| Lop(Iintop Imulh) ->
(* Hacker's Delight section 8.3:
mul-high-signed(a, b) = mul-high-unsigned(a, b)
- a if b < 0
- b if a < 0
or, without branches,
mul-high-signed(a, b) = mul-high-unsigned(a, b)
- (a & (b >>s 63))
- (b & (a >>s 63))
*)
` lgr %r1, {emit_reg i.arg.(0)}\n`;
` mlgr %r0, {emit_reg i.arg.(1)}\n`;
(* r0:r1 is 128-bit unsigned product; r0 is the high bits *)
` srag %r1, {emit_reg i.arg.(0)}, 63\n`;
` ngr %r1, {emit_reg i.arg.(1)}\n`;
` sgr %r0, %r1\n`;
` srag %r1, {emit_reg i.arg.(1)}, 63\n`;
` ngr %r1, {emit_reg i.arg.(0)}\n`;
` sgr %r0, %r1\n`;
` lgr {emit_reg i.res.(0)}, %r0\n`
| Lop(Iintop Imod) ->
` lgr %r1, {emit_reg i.arg.(0)}\n`;
` dsgr %r0, {emit_reg i.arg.(1)}\n`;
` lgr {emit_reg i.res.(0)}, %r0\n`
| Lop(Iintop Idiv) ->
` lgr %r1, {emit_reg i.arg.(0)}\n`;
` dsgr %r0, {emit_reg i.arg.(1)}\n`;
` lgr {emit_reg i.res.(0)}, %r1\n`
| Lop(Iintop Ilsl) ->
` sllg {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, 0({emit_reg i.arg.(1)})\n`
| Lop(Iintop Ilsr) ->
` srlg {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, 0({emit_reg i.arg.(1)})\n`
| Lop(Iintop Iasr) ->
` srag {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, 0({emit_reg i.arg.(1)})\n`
| Lop(Iintop(Icomp cmp)) ->
let lbl = new_label() in
let (comp, mask) = name_for_int_comparison cmp in
` {emit_string comp} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` lghi {emit_reg i.res.(0)}, 1\n`;
` brc {emit_int mask}, {emit_label lbl}\n`;
` lghi {emit_reg i.res.(0)}, 0\n`;
`{emit_label lbl}:\n`
| Lop(Iintop Icheckbound) ->
let lbl = bound_error_label i.dbg in
` clgr {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` brcl 12, {emit_label lbl}\n` (* branch if unsigned le *)
| Lop(Iintop op) ->
assert (i.arg.(0).loc = i.res.(0).loc);
let instr = name_for_intop op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(1)}\n`
| Lop(Iintop_imm(Iadd, n)) ->
emit_addimm i.res.(0) i.arg.(0) n
| Lop(Iintop_imm(Isub, n)) ->
emit_addimm i.res.(0) i.arg.(0) (-n)
| Lop(Iintop_imm(Icomp cmp, n)) ->
let lbl = new_label() in
let (comp, mask) = name_for_int_comparison_imm cmp in
` {emit_string comp} {emit_reg i.arg.(0)}, {emit_int n}\n`;
` lghi {emit_reg i.res.(0)}, 1\n`;
` brc {emit_int mask}, {emit_label lbl}\n`;
` lghi {emit_reg i.res.(0)}, 0\n`;
`{emit_label lbl}:\n`
| Lop(Iintop_imm(Icheckbound, n)) ->
let lbl = bound_error_label i.dbg in
if n >= 0 then begin
` clgfi {emit_reg i.arg.(0)}, {emit_int n}\n`;
` brcl 12, {emit_label lbl}\n` (* branch if unsigned le *)
end else begin
` brcl 15, {emit_label lbl}\n` (* branch always *)
end
| Lop(Iintop_imm(Ilsl, n)) ->
` sllg {emit_reg i.res.(0)}, {emit_reg i.arg.(0)},{emit_int n}(%r0)\n`
| Lop(Iintop_imm(Ilsr, n)) ->
` srlg {emit_reg i.res.(0)}, {emit_reg i.arg.(0)},{emit_int n}(%r0)\n`
| Lop(Iintop_imm(Iasr, n)) ->
` srag {emit_reg i.res.(0)}, {emit_reg i.arg.(0)},{emit_int n}(%r0)\n`
| Lop(Iintop_imm(Iand, n)) ->
assert (i.arg.(0).loc = i.res.(0).loc);
` nilf {emit_reg i.res.(0)}, {emit_int (n land 0xFFFF_FFFF)}\n`
| Lop(Iintop_imm(Ior, n)) ->
assert (i.arg.(0).loc = i.res.(0).loc);
` oilf {emit_reg i.res.(0)}, {emit_int n}\n`
| Lop(Iintop_imm(Ixor, n)) ->
assert (i.arg.(0).loc = i.res.(0).loc);
` xilf {emit_reg i.res.(0)}, {emit_int n}\n`
| Lop(Iintop_imm(Imul, n)) ->
assert (i.arg.(0).loc = i.res.(0).loc);
` msgfi {emit_reg i.res.(0)}, {emit_int n}\n`
| Lop(Iintop_imm((Imulh | Idiv | Imod), _)) ->
assert false
| Lop(Inegf | Iabsf as op) ->
let instr = name_for_floatop1 op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n`
| Lop(Iaddf | Isubf | Imulf | Idivf as op) ->
assert (i.arg.(0).loc = i.res.(0).loc);
let instr = name_for_floatop2 op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(1)}\n`;
| Lop(Ifloatofint) ->
` cdgbr {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n`
| Lop(Iintoffloat) ->
(* rounding method #5 = round toward 0 *)
` cgdbr {emit_reg i.res.(0)}, 5, {emit_reg i.arg.(0)}\n`
| Lop(Ispecific sop) ->
assert (i.arg.(2).loc = i.res.(0).loc);
let instr = name_for_specific sop in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`
| Lreloadretaddr ->
let n = frame_size() in
` lg %r14, {emit_int(n - size_addr)}(%r15)\n`
| Lreturn ->
let n = frame_size() in
emit_stack_adjust (-n);
` br %r14\n`
| Llabel lbl ->
`{emit_label lbl}:\n`
| Lbranch lbl ->
` brcl 15,{emit_label lbl}\n`
| Lcondbranch(tst, lbl) ->
begin match tst with
Itruetest ->
` cgfi {emit_reg i.arg.(0)}, 0\n`;
` brcl 7, {emit_label lbl}\n`
| Ifalsetest ->
` cgfi {emit_reg i.arg.(0)}, 0\n`;
` brcl 8, {emit_label lbl}\n`
| Iinttest cmp ->
let (comp, mask) = name_for_int_comparison cmp in
` {emit_string comp} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` brcl {emit_int mask}, {emit_label lbl}\n`
| Iinttest_imm(cmp, n) ->
let (comp, mask) = name_for_int_comparison_imm cmp in
` {emit_string comp} {emit_reg i.arg.(0)}, {emit_int n}\n`;
` brcl {emit_int mask}, {emit_label lbl}\n`
| Ifloattest(cmp, neg) ->
` cdbr {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
let mask = branch_for_float_comparison cmp neg in
` brcl {emit_int mask}, {emit_label lbl}\n`
| Ioddtest ->
` tmll {emit_reg i.arg.(0)}, 1\n`;
` brcl 1, {emit_label lbl}\n`
| Ieventest ->
` tmll {emit_reg i.arg.(0)}, 1\n`;
` brcl 8, {emit_label lbl}\n`
end
| Lcondbranch3(lbl0, lbl1, lbl2) ->
` cgfi {emit_reg i.arg.(0)}, 1\n`;
begin match lbl0 with
None -> ()
| Some lbl -> ` brcl 4, {emit_label lbl}\n`
end;
begin match lbl1 with
None -> ()
| Some lbl -> ` brcl 8, {emit_label lbl}\n`
end;
begin match lbl2 with
None -> ()
| Some lbl -> ` brcl 2, {emit_label lbl}\n`
end
| Lswitch jumptbl ->
let lbl = new_label() in
` larl %r0, {emit_label lbl}\n`;
` sllg %r1, {emit_reg i.arg.(0)}, 2(%r0)\n`;
` agr %r1, %r0\n`;
` lgf %r1, 0(%r1)\n`;
` agr %r1, %r0\n`;
` br %r1\n`;
emit_string rodata_space;
` .align 8\n`;
`{emit_label lbl}:`;
for i = 0 to Array.length jumptbl - 1 do
` .long {emit_label jumptbl.(i)} - {emit_label lbl}\n`
done;
emit_string code_space
| Lsetuptrap lbl ->
` brasl %r14, {emit_label lbl}\n`;
| Lpushtrap ->
stack_offset := !stack_offset + 16;
emit_stack_adjust 16;
` stg %r14, 0(%r15)\n`;
` stg %r13, {emit_int size_addr}(%r15)\n`;
` lgr %r13, %r15\n`
| Lpoptrap ->
` lg %r13, {emit_int size_addr}(%r15)\n`;
emit_stack_adjust (-16);
stack_offset := !stack_offset - 16
| Lraise k ->
begin match !Clflags.debug, k with
| true, Lambda.Raise_regular ->
` brasl %r14, {emit_symbol "caml_raise_exn"}\n`;
let lbl = record_frame Reg.Set.empty i.dbg in
`{emit_label lbl}:\n`
| true, Lambda.Raise_reraise ->
` brasl %r14, {emit_symbol "caml_reraise_exn"}\n`;
let lbl = record_frame Reg.Set.empty i.dbg in
`{emit_label lbl}:\n`
| false, _
| true, Lambda.Raise_notrace ->
` lg %r1, 0(%r13)\n`;
` lgr %r15, %r13\n`;
` lg %r13, {emit_int size_addr}(%r15)\n`;
emit_stack_adjust (-16);
` br %r1\n`
end
(* Emit a sequence of instructions *)
let rec emit_all i =
match i with
{desc = Lend} -> ()
| _ ->
emit_instr i;
emit_all i.next
(* Emission of a function declaration *)
let fundecl fundecl =
function_name := fundecl.fun_name;
tailrec_entry_point := new_label();
stack_offset := 0;
call_gc_sites := [];
bound_error_sites := [];
bound_error_call := 0;
float_literals := [];
int_literals := [];
` .globl {emit_symbol fundecl.fun_name}\n`;
emit_debug_info fundecl.fun_dbg;
` .type {emit_symbol fundecl.fun_name}, @function\n`;
emit_string code_space;
` .align 8\n`;
`{emit_symbol fundecl.fun_name}:\n`;
let n = frame_size() in
emit_stack_adjust n;
if !contains_calls then
` stg %r14, {emit_int(n - size_addr)}(%r15)\n`;
`{emit_label !tailrec_entry_point}:\n`;
emit_all fundecl.fun_body;
(* Emit the glue code to call the GC *)
List.iter emit_call_gc !call_gc_sites;
(* Emit the glue code to handle bound errors *)
emit_call_bound_errors();
(* Emit the numeric literals *)
if !float_literals <> [] || !int_literals <> [] then begin
emit_string rodata_space;
` .align 8\n`;
List.iter
(fun (f, lbl) ->
`{emit_label lbl}:`;
emit_float64_directive ".quad" f)
!float_literals;
List.iter
(fun (n, lbl) ->
`{emit_label lbl}: .quad {emit_nativeint n}\n`)
!int_literals
end
(* Emission of data *)
let declare_global_data s =
` .globl {emit_symbol s}\n`;
` .type {emit_symbol s}, @object\n`
let emit_item = function
Cglobal_symbol s ->
declare_global_data s
| Cdefine_symbol s ->
`{emit_symbol s}:\n`;
| Cdefine_label lbl ->
`{emit_data_label lbl}:\n`
| Cint8 n ->
` .byte {emit_int n}\n`
| Cint16 n ->
` .short {emit_int n}\n`
| Cint32 n ->
` .long {emit_nativeint n}\n`
| Cint n ->
` .quad {emit_nativeint n}\n`
| Csingle f ->
emit_float32_directive ".long" (Int32.bits_of_float f)
| Cdouble f ->
emit_float64_directive ".quad" (Int64.bits_of_float f)
| Csymbol_address s ->
` .quad {emit_symbol s}\n`
| Clabel_address lbl ->
` .quad {emit_data_label lbl}\n`
| Cstring s ->
emit_bytes_directive " .byte " s
| Cskip n ->
if n > 0 then ` .space {emit_int n}\n`
| Calign n ->
if n < 8 then ` .align 8\n`
else ` .align {emit_int n}\n`
let data l =
emit_string data_space;
` .align 8\n`;
List.iter emit_item l
(* Beginning / end of an assembly file *)
let begin_assembly() =
reset_debug_info();
` .file \"\"\n`; (* PR#7037 *)
(* Emit the beginning of the segments *)
let lbl_begin = Compilenv.make_symbol (Some "data_begin") in
emit_string data_space;
` .align 8\n`;
declare_global_data lbl_begin;
`{emit_symbol lbl_begin}:\n`;
let lbl_begin = Compilenv.make_symbol (Some "code_begin") in
emit_string code_space;
declare_global_data lbl_begin;
`{emit_symbol lbl_begin}:\n`
let end_assembly() =
(* Emit the end of the segments *)
emit_string code_space;
let lbl_end = Compilenv.make_symbol (Some "code_end") in
declare_global_data lbl_end;
`{emit_symbol lbl_end}:\n`;
` .long 0\n`;
emit_string data_space;
` .align 8\n`;
let lbl_end = Compilenv.make_symbol (Some "data_end") in
declare_global_data lbl_end;
`{emit_symbol lbl_end}:\n`;
` .quad 0\n`;
(* Emit the frame descriptors *)
emit_string rodata_space;
` .align 8\n`;
let lbl = Compilenv.make_symbol (Some "frametable") in
declare_global_data lbl;
`{emit_symbol lbl}:\n`;
emit_frames
{ efa_label = (fun l -> ` .quad {emit_label l}\n`);
efa_16 = (fun n -> ` .short {emit_int n}\n`);
efa_32 = (fun n -> ` .long {emit_int32 n}\n`);
efa_word = (fun n -> ` .quad {emit_int n}\n`);
efa_align = (fun n -> ` .align {emit_int n}\n`);
efa_label_rel = (fun lbl ofs ->
` .long ({emit_label lbl} - .) + {emit_int32 ofs}\n`);
efa_def_label = (fun l -> `{emit_label l}:\n`);
efa_string = (fun s -> emit_bytes_directive " .byte " (s ^ "\000"))
};
(* Mark stack as non-executable *)
` .section .note.GNU-stack,\"\",%progbits\n`