ocaml/asmcomp/emit_m68k.mlp

723 lines
24 KiB
Plaintext

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Emission of Motorola 68020 assembly code (MIT syntax) *)
open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux
(* Tradeoff between code size and code speed *)
let fastcode_flag = ref true
let stack_offset = ref 0
(* Layout of the stack frame *)
let frame_size () = (* includes return address *)
!stack_offset +
4 * (num_stack_slots.(0) + num_stack_slots.(1)) +
8 * num_stack_slots.(2) +
4 (* return address *)
let slot_offset loc cl =
match loc with
Incoming n -> frame_size() + n
| Local n ->
if cl = 0
then !stack_offset + n * 4
else if cl = 1
then !stack_offset + num_stack_slots.(0) * 4 + n * 4
else !stack_offset +
(num_stack_slots.(0) + num_stack_slots.(1)) * 4 + n * 8
| Outgoing n -> n
(* Output a symbol *)
let emit_symbol s =
emit_char '_'; Emitaux.emit_symbol '$' s
(* Output a label *)
let emit_label lbl =
emit_char 'L'; emit_int lbl
(* Output an align directive *)
let emit_align n =
` .align {emit_int n}\n`
(* Output a pseudo-register *)
let emit_reg = function
{ loc = Reg r } ->
emit_string (register_name r)
| { loc = Stack s } as r ->
let ofs = slot_offset s (register_class r) in
if ofs = 0
then `a7@`
else `a7@({emit_int ofs})`
| { loc = Unknown } ->
fatal_error "Emit_m68k.emit_reg"
(* Check if the given register is an address register *)
let is_address_reg = function { loc = Reg _; typ = Addr } -> true | _ -> false
(* Check if the given register overlaps (same location) with the given
array of registers *)
let register_overlap reg arr =
try
for i = 0 to Array.length arr - 1 do
if reg.loc = arr.(i).loc then raise Exit
done;
false
with Exit ->
true
(* Output a suffix for a floating-point instruction -- either .x if
the argument is a register or .d if it's in memory. *)
let emit_float_size r =
match r.loc with
Reg _ -> `x`
| _ -> `d`
let emit_float_size2 r1 r2 =
match (r1.loc, r2.loc) with
(Reg _, Reg _) -> `x`
| _ -> `d`
(* Output an addressing mode *)
let emit_displacement d =
if d <> 0 then `{emit_int d}, `
let emit_addressing addr r n =
match addr with
Ibased(s, d) ->
`{emit_symbol s}`;
if d <> 0 then ` + {emit_int d}`
| Iindexed d ->
`{emit_reg r.(n)}@`;
if d <> 0 then `({emit_int d})`
| Iindexed2 d ->
`{emit_reg r.(n)}@({emit_int d}, {emit_reg r.(n+1)}:l)`
| Iscaled(scale, d) ->
`@({emit_int d}, {emit_reg r.(n)}:l:{emit_int scale})`
| Iindexed2scaled(scale, d) ->
`{emit_reg r.(n)}@({emit_int d}, {emit_reg r.(n+1)}:l:{emit_int scale})`
(* Record live pointers at call points *)
type frame_descr =
{ fd_lbl: int; (* Return address *)
fd_frame_size: int; (* Size of stack frame *)
fd_live_offset: int list } (* Offsets/regs of live addresses *)
let frame_descriptors = ref([] : frame_descr list)
let record_frame_label live =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
{typ = Addr; loc = Reg r} ->
live_offset := ((r lsl 1) + 1) :: !live_offset
| {typ = Addr; loc = Stack s} as reg ->
live_offset := slot_offset s (register_class reg) :: !live_offset
| _ -> ())
live;
frame_descriptors :=
{ fd_lbl = lbl;
fd_frame_size = frame_size();
fd_live_offset = !live_offset } :: !frame_descriptors;
lbl
let record_frame live =
let lbl = record_frame_label live in `{emit_label lbl}:\n`
let emit_frame fd =
` .long {emit_label fd.fd_lbl}\n`;
` .word {emit_int fd.fd_frame_size}\n`;
` .word {emit_int (List.length fd.fd_live_offset)}\n`;
List.iter
(fun n ->
` .word {emit_int n}\n`)
fd.fd_live_offset;
emit_align 4
(* Names for instructions *)
let instr_for_intop = function
Iadd -> "addl"
| Isub -> "subl"
| Imul -> "mulsl"
| Idiv -> "divsl"
| Iand -> "andl"
| Ior -> "orl"
| Ixor -> "eorl"
| Ilsl -> "lsll"
| Ilsr -> "lsrl"
| Iasr -> "asrl"
| _ -> fatal_error "Emit_m68k: instr_for_intop"
let instr_for_floatop = function
Inegf -> "fneg"
| Iabsf -> "fabs"
| Iaddf -> "fadd"
| Isubf -> "fsub"
| Imulf -> "fmul"
| Idivf -> "fdiv"
| _ -> fatal_error "Emit_m68k: instr_for_floatop"
let name_for_cond_branch = function
Isigned Ceq -> "eq" | Isigned Cne -> "ne"
| Isigned Cle -> "le" | Isigned Cgt -> "gt"
| Isigned Clt -> "lt" | Isigned Cge -> "ge"
| Iunsigned Ceq -> "eq" | Iunsigned Cne -> "ne"
| Iunsigned Cle -> "ls" | Iunsigned Cgt -> "hi"
| Iunsigned Clt -> "cs" | Iunsigned Cge -> "cc"
let name_for_float_cond_branch cond neg =
match cond with
Ceq -> if neg then "ne" else "eq"
| Cne -> if neg then "eq" else "ne"
| Cle -> if neg then "ugt" else "ole"
| Cgt -> if neg then "ule" else "ogt"
| Clt -> if neg then "uge" else "olt"
| Cge -> if neg then "ult" else "oge"
(* Emit an immediate move in the given data register *)
let emit_move_immediate n dreg =
if n >= -128 && n < 128
then ` moveq #{emit_int n}, {emit_string dreg}\n`
else ` movel #{emit_int n}, {emit_string dreg}\n`
(* Offset the stack by the given amount of bytes *)
let output_stack_offset n =
if n > 0 && n <= 8 then
` subql #{emit_int(n)}, a7\n`
else if n < 0 && n >= -8 then
` addql #{emit_int(-n)}, a7\n`
else
` addw #{emit_int(-n)}, a7\n`
(* Deallocate the stack frame before a return or tail call *)
let output_epilogue () =
let n = frame_size() - 4 in
if n > 0 then output_stack_offset (-n)
(* Record the state of the condition codes *)
type condition_code = CCundefined | CCreflect of Reg.t
let cc_state = ref CCundefined
let undef_cc () =
cc_state := CCundefined
let set_cc reg =
cc_state := CCreflect reg
let output_test reg =
match !cc_state with
CCreflect r when r.loc = reg.loc -> ()
| _ ->
` tstl {emit_reg reg}\n`;
cc_state := CCreflect reg
(* Output the assembly code for an instruction *)
(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
(* Label of trap for out-of-range accesses *)
let range_check_trap = ref 0
let emit_instr i =
match i.desc with
Lend -> ()
| Lop(Imove | Ispill | Ireload) ->
let src = i.arg.(0) and dst = i.res.(0) in
if src.loc <> dst.loc then begin
match (src, dst) with
({typ = Float; loc = Stack ss}, {loc = Stack sd}) ->
let os = slot_offset ss 2 in
let od = slot_offset sd 2 in
` movel ({emit_int os}, a7), ({emit_int od}, a7)\n`;
` movel ({emit_int (os+4)}, a7), ({emit_int (od+4)}, a7)\n`;
undef_cc()
| ({typ = Float}, _) ->
` fmove{emit_float_size2 src dst} {emit_reg src}, {emit_reg dst}\n`
| (_, _) ->
` movel {emit_reg src}, {emit_reg dst}\n`;
set_cc dst
end
| Lop(Iconst_int n) ->
begin match i.res.(0) with
{typ = Addr; loc = Reg _} ->
if Nativeint.cmp n (-32768) >= 0 && Nativeint.cmp n 32768 < 0 then
` movew #{emit_nativeint n}, {emit_reg i.res.(0)}\n`
else
` movel #{emit_nativeint n}, {emit_reg i.res.(0)}\n`
| _ when Nativeint.sign n = 0 ->
` clrl {emit_reg i.res.(0)}\n`;
set_cc i.res.(0)
| {typ = Int; loc = Reg _}
when Nativeint.cmp n (-128) >= 0 && Nativeint.cmp n 128 < 0 ->
` moveq #{emit_nativeint n}, {emit_reg i.res.(0)}\n`;
set_cc i.res.(0)
| _ ->
` movel #{emit_nativeint n}, {emit_reg i.res.(0)}\n`;
set_cc i.res.(0)
end
| Lop(Iconst_float s) ->
let f = float_of_string s in
if f = 0.0 then
` fmovecr #0x0F, {emit_reg i.res.(0)}\n`
else if f = 1.0 then
` fmovecr #0x32, {emit_reg i.res.(0)}\n`
else
` fmoved #0r{emit_string s}, {emit_reg i.res.(0)}\n`
| Lop(Iconst_symbol s) ->
` lea {emit_symbol s}, {emit_reg i.res.(0)}\n`
| Lop(Icall_ind) ->
` jbsr {emit_reg i.arg.(0)}@\n`;
record_frame i.live;
undef_cc()
| Lop(Icall_imm s) ->
` jbsr {emit_symbol s}\n`;
record_frame i.live;
undef_cc()
| Lop(Itailcall_ind) ->
output_epilogue();
` jmp {emit_reg i.arg.(0)}@\n`;
undef_cc()
| Lop(Itailcall_imm s) ->
if s = !function_name then
` bra {emit_label !tailrec_entry_point}\n`
else begin
output_epilogue();
` jmp {emit_symbol s}\n`
end;
undef_cc()
| Lop(Iextcall(s, alloc)) ->
if alloc then begin
` lea {emit_symbol s}, a0\n`;
` jbsr {emit_symbol "caml_c_call"}\n`;
record_frame i.live
end else begin
` jbsr {emit_symbol s}\n`
end;
if Array.length i.res > 0 && i.res.(0).typ = Float then begin
` movel d1, a7@-\n`;
` movel d0, a7@-\n`;
` fmoved a7@+, {emit_reg i.res.(0)}\n`
end;
undef_cc()
| Lop(Istackoffset n) ->
output_stack_offset n;
stack_offset := !stack_offset + n;
undef_cc()
| Lop(Iload(chunk, addr)) ->
let dest = i.res.(0) in
begin match dest.typ with
Int | Addr ->
begin match chunk with
Word ->
` movel {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Byte_unsigned when not (register_overlap dest i.arg) ->
` clrl {emit_reg dest}\n`;
` moveb {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Byte_unsigned ->
` moveb {emit_addressing addr i.arg 0}, {emit_reg dest}\n`;
` andl #0xFF, {emit_reg dest}\n`
| Byte_signed ->
` moveb {emit_addressing addr i.arg 0}, {emit_reg dest}\n`;
` extbl {emit_reg dest}\n`
| Sixteen_unsigned when not (register_overlap dest i.arg) ->
` clrl {emit_reg dest}\n`;
` movew {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Sixteen_unsigned ->
` movew {emit_addressing addr i.arg 0}, {emit_reg dest}\n`;
` andl #0xFFFF, {emit_reg dest}\n`
| Sixteen_signed ->
` movew {emit_addressing addr i.arg 0}, {emit_reg dest}\n`;
` extl {emit_reg dest}\n`
end;
set_cc dest
| Float ->
` fmoved {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
end
| Lop(Istore(chunk, addr)) ->
let src = i.arg.(0) in
let instr =
match src.typ with
Int ->
begin match chunk with
Word -> "movel"
| Byte_unsigned | Byte_signed -> "moveb"
| Sixteen_unsigned | Sixteen_signed -> "movew"
end
| Addr -> "movel"
| Float -> "fmoved" in
` {emit_string instr} {emit_reg src}, {emit_addressing addr i.arg 1}\n`;
undef_cc()
| Lop(Ialloc n) ->
if !fastcode_flag then begin
let lbl_frame = record_frame_label i.live in
` subl #{emit_int n}, d6\n`;
` cmpl {emit_symbol "young_limit"}, d6\n`;
` bcc {emit_label lbl_frame}\n`;
emit_move_immediate n "d5";
` jbsr {emit_symbol "caml_call_gc"}\n`;
`{emit_label lbl_frame}: movel d6, {emit_reg i.res.(0)}\n`;
` addql #4, {emit_reg i.res.(0)}\n`
end else begin
begin match n with
8 -> ` jbsr {emit_symbol "caml_alloc1"}\n`
| 12 -> ` jbsr {emit_symbol "caml_alloc2"}\n`
| 16 -> ` jbsr {emit_symbol "caml_alloc3"}\n`
| _ -> emit_move_immediate n "d5";
` jbsr {emit_symbol "caml_alloc"}\n`
end;
`{record_frame i.live} movel d6, {emit_reg i.res.(0)}\n`;
` addql #4, {emit_reg i.res.(0)}\n`
end;
undef_cc()
| Lop(Iintop(Icomp cmp)) ->
` cmpl {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` s{emit_string b} {emit_reg i.res.(0)}\n`;
` negb {emit_reg i.res.(0)}\n`;
` extbl {emit_reg i.res.(0)}\n`;
set_cc i.res.(0)
| Lop(Iintop_imm(Icomp cmp, n)) ->
` cmpl #{emit_int n}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` s{emit_string b} {emit_reg i.res.(0)}\n`;
` negb {emit_reg i.res.(0)}\n`;
` extbl {emit_reg i.res.(0)}\n`;
set_cc i.res.(0)
| Lop(Iintop Icheckbound) ->
if !range_check_trap = 0 then range_check_trap := new_label();
` cmpl {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
` bls {emit_label !range_check_trap}\n`
| Lop(Iintop_imm(Icheckbound, n)) ->
if !range_check_trap = 0 then range_check_trap := new_label();
` cmpl #{emit_int n}, {emit_reg i.arg.(0)}\n`;
` bls {emit_label !range_check_trap}\n`
| Lop(Iintop_imm(Iadd, n)) ->
let dest = i.res.(0) in
begin match dest with
{loc = Reg _} when n > 0 && n <= 8 ->
` addql #{emit_int n}, {emit_reg dest}\n`;
set_cc i.res.(0)
| {loc = Reg _} when n < 0 && n >= -8 ->
` subql #{emit_int(-n)}, {emit_reg dest}\n`;
set_cc i.res.(0)
| _ ->
` addl #{emit_int n}, {emit_reg dest}\n`;
set_cc i.res.(0)
end
| Lop(Iintop_imm(Isub, n)) ->
let dest = i.res.(0) in
begin match dest with
{loc = Reg _} when n > 0 && n <= 8 ->
` subql #{emit_int n}, {emit_reg dest}\n`;
set_cc i.res.(0)
| {loc = Reg _} when n < 0 && n >= -8 ->
` addql #{emit_int(-n)}, {emit_reg dest}\n`;
set_cc i.res.(0)
| _ ->
` subl #{emit_int n}, {emit_reg dest}\n`;
set_cc i.res.(0)
end
| Lop(Iintop_imm(Idiv, n)) when n = 1 lsl (Misc.log2 n) ->
let l = Misc.log2 n in
let lbl = new_label() in
output_test i.arg.(0);
` bge {emit_label lbl}\n`;
` addl #{emit_int(n-1)}, {emit_reg i.arg.(0)}\n`;
`{emit_label lbl}:`;
if l <= 8 then
` asrl #{emit_int l}, {emit_reg i.arg.(0)}\n`
else begin
` moveq #{emit_int l}, d5\n`;
` asrl d0, {emit_reg i.arg.(0)}\n`
end;
set_cc i.res.(0)
| Lop(Iintop Imod) ->
` movel {emit_reg i.arg.(0)}, d5\n`;
` divsll {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}:d5\n`;
undef_cc()
| Lop(Iintop_imm(Imod, n)) when n = 1 lsl (Misc.log2 n) ->
let l = Misc.log2 n in
let lbl = new_label() in
` movel {emit_reg i.arg.(0)}, d5\n`;
` bge {emit_label lbl}\n`;
` addl #{emit_int(n-1)}, d5\n`;
`{emit_label lbl}: andl #{emit_int(-n)}, d5\n`;
` subl d5, {emit_reg i.arg.(0)}\n`;
set_cc i.res.(0)
| Lop(Iintop_imm(Imod, n)) ->
` movel {emit_reg i.arg.(0)}, d5\n`;
` divsll #{emit_int n}, {emit_reg i.res.(0)}:d5\n`;
undef_cc()
| Lop(Iintop op) ->
(* We have i.arg.(0) = i.res.(0) *)
` {emit_string(instr_for_intop op)} {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`;
set_cc i.res.(0)
| Lop(Iintop_imm(op, n)) ->
(* We have i.arg.(0) = i.res.(0) *)
` {emit_string(instr_for_intop op)} #{emit_int n}, {emit_reg i.res.(0)}\n`;
set_cc i.res.(0)
| Lop(Inegf | Iabsf as floatop) ->
` {emit_string(instr_for_floatop floatop)}{emit_float_size i.arg.(0)} {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Iaddf | Isubf | Imulf | Idivf as floatop) ->
` {emit_string(instr_for_floatop floatop)}{emit_float_size i.arg.(1)} {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`
| Lop(Ifloatofint) ->
` fmovel {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Iintoffloat) ->
` fintrz{emit_float_size i.arg.(0)} {emit_reg i.arg.(0)}, fp0\n`;
` fmovel fp0, {emit_reg i.res.(0)}\n`;
undef_cc()
| Lop(Ispecific(Ilea addr)) ->
` lea {emit_addressing addr i.arg 0}, {emit_reg i.res.(0)}\n`
| Lop(Ispecific(Istore_int(n, addr))) ->
if n = 0 then
` clrl {emit_addressing addr i.arg 0}\n`
else
` movel #{emit_int n}, {emit_addressing addr i.arg 0}\n`;
undef_cc()
| Lop(Ispecific(Istore_symbol(s, addr))) ->
` movel #{emit_symbol s}, {emit_addressing addr i.arg 0}\n`;
undef_cc()
| Lop(Ispecific(Ipush)) ->
(* Push arguments in reverse order *)
for n = Array.length i.arg - 1 downto 0 do
let r = i.arg.(n) in
match r with
{loc = Reg _; typ = Float} ->
` fmoved {emit_reg r}, a7@-\n`;
stack_offset := !stack_offset + 8
| {loc = Stack sl; typ = Float} ->
let ofs = slot_offset sl 2 in
` movel ({emit_int(ofs + 4)}, a7), a7@-\n`;
` movel ({emit_int(ofs + 4)}, a7), a7@-\n`;
stack_offset := !stack_offset + 8
| _ ->
` movel {emit_reg r}, a7@-\n`;
stack_offset := !stack_offset + 4
done;
undef_cc()
| Lop(Ispecific(Ipush_int n)) ->
` movel #{emit_int n}, a7@-\n`;
stack_offset := !stack_offset + 4;
undef_cc()
| Lop(Ispecific(Ipush_symbol s)) ->
` pea {emit_symbol s}\n`;
stack_offset := !stack_offset + 4;
undef_cc()
| Lop(Ispecific(Ipush_load addr)) ->
` movel {emit_addressing addr i.arg 0}, a7@-\n`;
stack_offset := !stack_offset + 4;
undef_cc()
| Lop(Ispecific(Ipush_load_float addr)) ->
` movel {emit_addressing (offset_addressing addr 4) i.arg 0}, a7@-\n`;
` movel {emit_addressing addr i.arg 0}, a7@-\n`;
stack_offset := !stack_offset + 8;
undef_cc()
| Lreloadretaddr ->
()
| Lreturn ->
output_epilogue();
` rts\n`;
undef_cc()
| Llabel lbl ->
`{emit_label lbl}:\n`;
undef_cc()
| Lbranch lbl ->
` bra {emit_label lbl}\n`
| Lcondbranch(tst, lbl) ->
begin match tst with
Itruetest ->
output_test i.arg.(0);
` bne {emit_label lbl}\n`
| Ifalsetest ->
output_test i.arg.(0);
` beq {emit_label lbl}\n`
| Iinttest cmp ->
` cmpl {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` b{emit_string b} {emit_label lbl}\n`
| Iinttest_imm(cmp, 0) ->
output_test i.arg.(0);
let b = name_for_cond_branch cmp in
` b{emit_string b} {emit_label lbl}\n`
| Iinttest_imm(cmp, n) ->
` cmpl #{emit_int n}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` b{emit_string b} {emit_label lbl}\n`
| Ifloattest(cmp, neg) ->
` fcmp{emit_float_size2 i.arg.(0) i.arg.(1)} {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
let b = name_for_float_cond_branch cmp neg in
` fb{emit_string b} {emit_label lbl}\n`
| Ioddtest ->
begin match i.arg.(0) with
{typ = Addr; loc = Reg _} as arg ->
` movel {emit_reg arg}, d5\n`;
` btst #0, d5\n`
| arg ->
` btst #0, {emit_reg arg}\n`
end;
` bne {emit_label lbl}\n`
| Ieventest ->
begin match i.arg.(0) with
{typ = Addr; loc = Reg _} as arg ->
` movel {emit_reg arg}, d5\n`;
` btst #0, d5\n`
| arg ->
` btst #0, {emit_reg arg}\n`
end;
` beq {emit_label lbl}\n`
end;
undef_cc()
| Lcondbranch3(lbl0, lbl1, lbl2) ->
` cmpl #1, {emit_reg i.arg.(0)}\n`;
begin match lbl0 with
None -> ()
| Some lbl -> ` blt {emit_label lbl}\n`
end;
begin match lbl1 with
None -> ()
| Some lbl -> ` beq {emit_label lbl}\n`
end;
begin match lbl2 with
None -> ()
| Some lbl -> ` bgt {emit_label lbl}\n`
end;
undef_cc()
| Lswitch jumptbl ->
let lbl_load = new_label() in
let lbl_table = new_label() in
`{emit_label lbl_load}: movew pc@({emit_label lbl_table}-{emit_label lbl_load}-2:b, {emit_reg i.arg.(0)}:l:2), d0\n`;
` jmp pc@(2, d0:w)\n`;
`{emit_label lbl_table}:`;
for i = 0 to Array.length jumptbl - 1 do
` .word {emit_label jumptbl.(i)} - {emit_label lbl_table}\n`
done;
undef_cc()
| Lsetuptrap lbl ->
` bsr {emit_label lbl}\n`
| Lpushtrap ->
` movel d7, a7@-\n`;
` movel a7, d7\n`;
stack_offset := !stack_offset + 8;
undef_cc()
| Lpoptrap ->
` movel a7@+, d7\n`;
` addql #4, a7\n`;
stack_offset := !stack_offset - 8;
undef_cc()
| Lraise ->
` movel d7, a7\n`;
` movel a7@+, d7\n`;
` rts\n`
let rec emit_all i =
match i.desc with Lend -> () | _ -> emit_instr i; emit_all i.next
(* Emission of a function declaration *)
let fundecl fundecl =
function_name := fundecl.fun_name;
fastcode_flag := fundecl.fun_fast;
tailrec_entry_point := new_label();
stack_offset := 0;
range_check_trap := 0;
undef_cc();
` .text\n`;
` .globl {emit_symbol fundecl.fun_name}\n`;
`{emit_symbol fundecl.fun_name}:\n`;
let n = frame_size() - 4 in
if n > 0 then output_stack_offset n;
`{emit_label !tailrec_entry_point}:\n`;
emit_all fundecl.fun_body;
if !range_check_trap > 0 then
`{emit_label !range_check_trap}: jbsr {emit_symbol "array_bound_error"}\n`
(* Emission of data *)
let emit_item = function
Cdefine_symbol s ->
` .globl {emit_symbol s}\n`;
`{emit_symbol s}:\n`
| Cdefine_label lbl ->
`{emit_label (10000 + lbl)}:\n`
| Cint8 n ->
` .byte {emit_int n}\n`
| Cint16 n ->
` .word {emit_int n}\n`
| Cint n ->
` .long {emit_nativeint n}\n`
| Cfloat f ->
` .double 0r{emit_string f}\n`
| Csymbol_address s ->
` .long {emit_symbol s}\n`
| Clabel_address lbl ->
` .long {emit_label (10000 + lbl)}\n`
| Cstring s ->
emit_string_directive " .ascii " s
| Cskip n ->
if n > 0 then ` .skip {emit_int n}\n`
| Calign n ->
emit_align n
let data l =
` .data\n`;
List.iter emit_item l
(* Beginning / end of an assembly file *)
let begin_assembly() =
let lbl_begin = Compilenv.current_unit_name() ^ "_begin" in
` .data\n`;
` .globl {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin}:\n`
let end_assembly() =
` .data\n`;
let lbl_end = Compilenv.current_unit_name() ^ "_end" in
` .globl {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end}:\n`;
` .long 0\n`;
let lbl = Compilenv.current_unit_name() ^ "_frametable" in
` .globl {emit_symbol lbl}\n`;
`{emit_symbol lbl}:\n`;
` .long {emit_int (List.length !frame_descriptors)}\n`;
List.iter emit_frame !frame_descriptors;
frame_descriptors := []