ocaml/byterun/gc_ctrl.c

528 lines
16 KiB
C

/***********************************************************************/
/* */
/* OCaml */
/* */
/* Damien Doligez, projet Para, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the GNU Library General Public License, with */
/* the special exception on linking described in file ../LICENSE. */
/* */
/***********************************************************************/
#include "caml/alloc.h"
#include "caml/compact.h"
#include "caml/custom.h"
#include "caml/finalise.h"
#include "caml/freelist.h"
#include "caml/gc.h"
#include "caml/gc_ctrl.h"
#include "caml/major_gc.h"
#include "caml/minor_gc.h"
#include "caml/misc.h"
#include "caml/mlvalues.h"
#ifdef NATIVE_CODE
#include "stack.h"
#else
#include "caml/stacks.h"
#endif
#ifndef NATIVE_CODE
extern uintnat caml_max_stack_size; /* defined in stacks.c */
#endif
double caml_stat_minor_words = 0.0,
caml_stat_promoted_words = 0.0,
caml_stat_major_words = 0.0;
intnat caml_stat_minor_collections = 0,
caml_stat_major_collections = 0,
caml_stat_heap_wsz = 0,
caml_stat_top_heap_wsz = 0,
caml_stat_compactions = 0,
caml_stat_heap_chunks = 0;
extern uintnat caml_major_heap_increment; /* percent or words; see major_gc.c */
extern uintnat caml_percent_free; /* see major_gc.c */
extern uintnat caml_percent_max; /* see compact.c */
extern uintnat caml_allocation_policy; /* see freelist.c */
#define Next(hp) ((hp) + Whsize_hp (hp))
#ifdef DEBUG
/* Check that [v]'s header looks good. [v] must be a block in the heap. */
static void check_head (value v)
{
Assert (Is_block (v));
Assert (Is_in_heap (v));
Assert (Wosize_val (v) != 0);
Assert (Color_hd (Hd_val (v)) != Caml_blue);
Assert (Is_in_heap (v));
if (Tag_val (v) == Infix_tag){
int offset = Wsize_bsize (Infix_offset_val (v));
value trueval = Val_op (&Field (v, -offset));
Assert (Tag_val (trueval) == Closure_tag);
Assert (Wosize_val (trueval) > offset);
Assert (Is_in_heap (&Field (trueval, Wosize_val (trueval) - 1)));
}else{
Assert (Is_in_heap (&Field (v, Wosize_val (v) - 1)));
}
if (Tag_val (v) == Double_tag){
Assert (Wosize_val (v) == Double_wosize);
}else if (Tag_val (v) == Double_array_tag){
Assert (Wosize_val (v) % Double_wosize == 0);
}
}
static void check_block (header_t *hp)
{
mlsize_t i;
value v = Val_hp (hp);
value f;
check_head (v);
switch (Tag_hp (hp)){
case Abstract_tag: break;
case String_tag:
break;
case Double_tag:
Assert (Wosize_val (v) == Double_wosize);
break;
case Double_array_tag:
Assert (Wosize_val (v) % Double_wosize == 0);
break;
case Custom_tag:
Assert (!Is_in_heap (Custom_ops_val (v)));
break;
case Infix_tag:
Assert (0);
break;
default:
Assert (Tag_hp (hp) < No_scan_tag);
for (i = 0; i < Wosize_hp (hp); i++){
f = Field (v, i);
if (Is_block (f) && Is_in_heap (f)){
check_head (f);
Assert (Color_val (f) != Caml_blue);
}
}
}
}
#endif /* DEBUG */
/* Check the heap structure (if compiled in debug mode) and
gather statistics; return the stats if [returnstats] is true,
otherwise return [Val_unit].
*/
static value heap_stats (int returnstats)
{
CAMLparam0 ();
intnat live_words = 0, live_blocks = 0,
free_words = 0, free_blocks = 0, largest_free = 0,
fragments = 0, heap_chunks = 0;
char *chunk = caml_heap_start, *chunk_end;
header_t *cur_hp;
#ifdef DEBUG
header_t *prev_hp;
#endif
header_t cur_hd;
#ifdef DEBUG
caml_gc_message (-1, "### OCaml runtime: heap check ###\n", 0);
#endif
while (chunk != NULL){
++ heap_chunks;
chunk_end = chunk + Chunk_size (chunk);
#ifdef DEBUG
prev_hp = NULL;
#endif
cur_hp = (header_t *) chunk;
while (cur_hp < (header_t *) chunk_end){
cur_hd = Hd_hp (cur_hp);
Assert (Next (cur_hp) <= (header_t *) chunk_end);
switch (Color_hd (cur_hd)){
case Caml_white:
if (Wosize_hd (cur_hd) == 0){
++ fragments;
Assert (prev_hp == NULL
|| Color_hp (prev_hp) != Caml_blue
|| cur_hp == (header_t *) caml_gc_sweep_hp);
}else{
if (caml_gc_phase == Phase_sweep
&& cur_hp >= (header_t *) caml_gc_sweep_hp){
++ free_blocks;
free_words += Whsize_hd (cur_hd);
if (Whsize_hd (cur_hd) > largest_free){
largest_free = Whsize_hd (cur_hd);
}
}else{
++ live_blocks;
live_words += Whsize_hd (cur_hd);
#ifdef DEBUG
check_block (cur_hp);
#endif
}
}
break;
case Caml_gray: case Caml_black:
Assert (Wosize_hd (cur_hd) > 0);
++ live_blocks;
live_words += Whsize_hd (cur_hd);
#ifdef DEBUG
check_block (cur_hp);
#endif
break;
case Caml_blue:
Assert (Wosize_hd (cur_hd) > 0);
++ free_blocks;
free_words += Whsize_hd (cur_hd);
if (Whsize_hd (cur_hd) > largest_free){
largest_free = Whsize_hd (cur_hd);
}
/* not true any more with big heap chunks
Assert (prev_hp == NULL
|| (Color_hp (prev_hp) != Caml_blue && Wosize_hp (prev_hp) > 0)
|| cur_hp == caml_gc_sweep_hp);
Assert (Next (cur_hp) == chunk_end
|| (Color_hp (Next (cur_hp)) != Caml_blue
&& Wosize_hp (Next (cur_hp)) > 0)
|| (Whsize_hd (cur_hd) + Wosize_hp (Next (cur_hp)) > Max_wosize)
|| Next (cur_hp) == caml_gc_sweep_hp);
*/
break;
}
#ifdef DEBUG
prev_hp = cur_hp;
#endif
cur_hp = Next (cur_hp);
} Assert (cur_hp == (header_t *) chunk_end);
chunk = Chunk_next (chunk);
}
Assert (heap_chunks == caml_stat_heap_chunks);
Assert (live_words + free_words + fragments == caml_stat_heap_wsz);
if (returnstats){
CAMLlocal1 (res);
/* get a copy of these before allocating anything... */
double minwords = caml_stat_minor_words
+ (double) (caml_young_end - caml_young_ptr);
double prowords = caml_stat_promoted_words;
double majwords = caml_stat_major_words + (double) caml_allocated_words;
intnat mincoll = caml_stat_minor_collections;
intnat majcoll = caml_stat_major_collections;
intnat heap_words = caml_stat_heap_wsz;
intnat cpct = caml_stat_compactions;
intnat top_heap_words = caml_stat_top_heap_wsz;
res = caml_alloc_tuple (16);
Store_field (res, 0, caml_copy_double (minwords));
Store_field (res, 1, caml_copy_double (prowords));
Store_field (res, 2, caml_copy_double (majwords));
Store_field (res, 3, Val_long (mincoll));
Store_field (res, 4, Val_long (majcoll));
Store_field (res, 5, Val_long (heap_words));
Store_field (res, 6, Val_long (heap_chunks));
Store_field (res, 7, Val_long (live_words));
Store_field (res, 8, Val_long (live_blocks));
Store_field (res, 9, Val_long (free_words));
Store_field (res, 10, Val_long (free_blocks));
Store_field (res, 11, Val_long (largest_free));
Store_field (res, 12, Val_long (fragments));
Store_field (res, 13, Val_long (cpct));
Store_field (res, 14, Val_long (top_heap_words));
Store_field (res, 15, Val_long (caml_stack_usage()));
CAMLreturn (res);
}else{
CAMLreturn (Val_unit);
}
}
#ifdef DEBUG
void caml_heap_check (void)
{
heap_stats (0);
}
#endif
CAMLprim value caml_gc_stat(value v)
{
Assert (v == Val_unit);
return heap_stats (1);
}
CAMLprim value caml_gc_quick_stat(value v)
{
CAMLparam0 ();
CAMLlocal1 (res);
/* get a copy of these before allocating anything... */
double minwords = caml_stat_minor_words
+ (double) (caml_young_end - caml_young_ptr);
double prowords = caml_stat_promoted_words;
double majwords = caml_stat_major_words + (double) caml_allocated_words;
intnat mincoll = caml_stat_minor_collections;
intnat majcoll = caml_stat_major_collections;
intnat heap_words = caml_stat_heap_wsz;
intnat top_heap_words = caml_stat_top_heap_wsz;
intnat cpct = caml_stat_compactions;
intnat heap_chunks = caml_stat_heap_chunks;
res = caml_alloc_tuple (16);
Store_field (res, 0, caml_copy_double (minwords));
Store_field (res, 1, caml_copy_double (prowords));
Store_field (res, 2, caml_copy_double (majwords));
Store_field (res, 3, Val_long (mincoll));
Store_field (res, 4, Val_long (majcoll));
Store_field (res, 5, Val_long (heap_words));
Store_field (res, 6, Val_long (heap_chunks));
Store_field (res, 7, Val_long (0));
Store_field (res, 8, Val_long (0));
Store_field (res, 9, Val_long (0));
Store_field (res, 10, Val_long (0));
Store_field (res, 11, Val_long (0));
Store_field (res, 12, Val_long (0));
Store_field (res, 13, Val_long (cpct));
Store_field (res, 14, Val_long (top_heap_words));
Store_field (res, 15, Val_long (caml_stack_usage()));
CAMLreturn (res);
}
CAMLprim value caml_gc_counters(value v)
{
CAMLparam0 (); /* v is ignored */
CAMLlocal1 (res);
/* get a copy of these before allocating anything... */
double minwords = caml_stat_minor_words
+ (double) (caml_young_end - caml_young_ptr);
double prowords = caml_stat_promoted_words;
double majwords = caml_stat_major_words + (double) caml_allocated_words;
res = caml_alloc_tuple (3);
Store_field (res, 0, caml_copy_double (minwords));
Store_field (res, 1, caml_copy_double (prowords));
Store_field (res, 2, caml_copy_double (majwords));
CAMLreturn (res);
}
CAMLprim value caml_gc_get(value v)
{
CAMLparam0 (); /* v is ignored */
CAMLlocal1 (res);
res = caml_alloc_tuple (7);
Store_field (res, 0, Val_long (caml_minor_heap_wsz)); /* s */
Store_field (res, 1, Val_long (caml_major_heap_increment)); /* i */
Store_field (res, 2, Val_long (caml_percent_free)); /* o */
Store_field (res, 3, Val_long (caml_verb_gc)); /* v */
Store_field (res, 4, Val_long (caml_percent_max)); /* O */
#ifndef NATIVE_CODE
Store_field (res, 5, Val_long (caml_max_stack_size)); /* l */
#else
Store_field (res, 5, Val_long (0));
#endif
Store_field (res, 6, Val_long (caml_allocation_policy)); /* a */
CAMLreturn (res);
}
#define Max(x,y) ((x) < (y) ? (y) : (x))
static uintnat norm_pfree (uintnat p)
{
return Max (p, 1);
}
static uintnat norm_pmax (uintnat p)
{
return p;
}
static intnat norm_minsize (intnat s)
{
if (s < Minor_heap_min) s = Minor_heap_min;
if (s > Minor_heap_max) s = Minor_heap_max;
return s;
}
CAMLprim value caml_gc_set(value v)
{
uintnat newpf, newpm;
asize_t newheapincr;
asize_t newminwsz;
uintnat oldpolicy;
caml_verb_gc = Long_val (Field (v, 3));
#ifndef NATIVE_CODE
caml_change_max_stack_size (Long_val (Field (v, 5)));
#endif
newpf = norm_pfree (Long_val (Field (v, 2)));
if (newpf != caml_percent_free){
caml_percent_free = newpf;
caml_gc_message (0x20, "New space overhead: %d%%\n", caml_percent_free);
}
newpm = norm_pmax (Long_val (Field (v, 4)));
if (newpm != caml_percent_max){
caml_percent_max = newpm;
caml_gc_message (0x20, "New max overhead: %d%%\n", caml_percent_max);
}
newheapincr = Long_val (Field (v, 1));
if (newheapincr != caml_major_heap_increment){
caml_major_heap_increment = newheapincr;
if (newheapincr > 1000){
caml_gc_message (0x20, "New heap increment size: %luk words\n",
caml_major_heap_increment/1024);
}else{
caml_gc_message (0x20, "New heap increment size: %lu%%\n",
caml_major_heap_increment);
}
}
oldpolicy = caml_allocation_policy;
caml_set_allocation_policy (Long_val (Field (v, 6)));
if (oldpolicy != caml_allocation_policy){
caml_gc_message (0x20, "New allocation policy: %d\n",
caml_allocation_policy);
}
/* Minor heap size comes last because it will trigger a minor collection
(thus invalidating [v]) and it can raise [Out_of_memory]. */
newminwsz = norm_minsize (Long_val (Field (v, 0)));
if (newminwsz != caml_minor_heap_wsz){
caml_gc_message (0x20, "New minor heap size: %luk words\n",
newminwsz / 1024);
caml_set_minor_heap_size (Bsize_wsize (newminwsz));
}
return Val_unit;
}
CAMLprim value caml_gc_minor(value v)
{ Assert (v == Val_unit);
caml_minor_collection ();
return Val_unit;
}
static void test_and_compact (void)
{
float fp;
fp = 100.0 * caml_fl_cur_wsz / (caml_stat_heap_wsz - caml_fl_cur_wsz);
if (fp > 999999.0) fp = 999999.0;
caml_gc_message (0x200, "Estimated overhead (lower bound) = %"
ARCH_INTNAT_PRINTF_FORMAT "u%%\n",
(uintnat) fp);
if (fp >= caml_percent_max && caml_stat_heap_chunks > 1){
caml_gc_message (0x200, "Automatic compaction triggered.\n", 0);
caml_compact_heap ();
}
}
CAMLprim value caml_gc_major(value v)
{ Assert (v == Val_unit);
caml_gc_message (0x1, "Major GC cycle requested\n", 0);
caml_empty_minor_heap ();
caml_finish_major_cycle ();
test_and_compact ();
caml_final_do_calls ();
return Val_unit;
}
CAMLprim value caml_gc_full_major(value v)
{ Assert (v == Val_unit);
caml_gc_message (0x1, "Full major GC cycle requested\n", 0);
caml_empty_minor_heap ();
caml_finish_major_cycle ();
caml_final_do_calls ();
caml_empty_minor_heap ();
caml_finish_major_cycle ();
test_and_compact ();
caml_final_do_calls ();
return Val_unit;
}
CAMLprim value caml_gc_major_slice (value v)
{
Assert (Is_long (v));
caml_empty_minor_heap ();
return Val_long (caml_major_collection_slice (Long_val (v)));
}
CAMLprim value caml_gc_compaction(value v)
{ Assert (v == Val_unit);
caml_gc_message (0x10, "Heap compaction requested\n", 0);
caml_empty_minor_heap ();
caml_finish_major_cycle ();
caml_final_do_calls ();
caml_empty_minor_heap ();
caml_finish_major_cycle ();
caml_compact_heap ();
caml_final_do_calls ();
return Val_unit;
}
uintnat caml_normalize_heap_increment (uintnat i)
{
if (i < Bsize_wsize (Heap_chunk_min)){
i = Bsize_wsize (Heap_chunk_min);
}
return ((i + Page_size - 1) >> Page_log) << Page_log;
}
/* [minor_size] and [major_size] are numbers of words
[major_incr] is either a percentage or a number of words */
void caml_init_gc (uintnat minor_size, uintnat major_size,
uintnat major_incr, uintnat percent_fr,
uintnat percent_m)
{
uintnat major_heap_size =
Bsize_wsize (caml_normalize_heap_increment (major_size));
if (caml_page_table_initialize(Bsize_wsize(minor_size) + major_heap_size)){
caml_fatal_error ("OCaml runtime error: cannot initialize page table\n");
}
caml_set_minor_heap_size (Bsize_wsize (norm_minsize (minor_size)));
caml_major_heap_increment = major_incr;
caml_percent_free = norm_pfree (percent_fr);
caml_percent_max = norm_pmax (percent_m);
caml_init_major_heap (major_heap_size);
caml_gc_message (0x20, "Initial minor heap size: %luk words\n",
caml_minor_heap_wsz / 1024);
caml_gc_message (0x20, "Initial major heap size: %luk bytes\n",
major_heap_size / 1024);
caml_gc_message (0x20, "Initial space overhead: %lu%%\n", caml_percent_free);
caml_gc_message (0x20, "Initial max overhead: %lu%%\n", caml_percent_max);
if (caml_major_heap_increment > 1000){
caml_gc_message (0x20, "Initial heap increment: %luk words\n",
caml_major_heap_increment / 1024);
}else{
caml_gc_message (0x20, "Initial heap increment: %lu%%\n",
caml_major_heap_increment);
}
caml_gc_message (0x20, "Initial allocation policy: %d\n",
caml_allocation_policy);
}
/* Control runtime warnings */
CAMLprim value caml_ml_enable_runtime_warnings(value vbool)
{
caml_runtime_warnings = Bool_val(vbool);
return Val_unit;
}
CAMLprim value caml_ml_runtime_warnings_enabled(value vbool)
{
return Val_bool(caml_runtime_warnings);
}