ocaml/asmcomp/emit_i386.mlp

689 lines
22 KiB
Plaintext

(***********************************************************************)
(* *)
(* Caml Special Light *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1995 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Emission of Intel 386 assembly code *)
open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux
(* Tradeoff between code size and code speed *)
let fastcode_flag = ref true
let stack_offset = ref 0
(* Layout of the stack frame *)
let frame_size () = (* includes return address *)
!stack_offset + 4 * num_stack_slots.(0) + 8 * num_stack_slots.(1) + 4
let slot_offset loc class =
match loc with
Incoming n -> frame_size() + n
| Local n ->
if class = 0
then !stack_offset + n * 4
else !stack_offset + num_stack_slots.(0) * 4 + n * 8
| Outgoing n -> n
(* Symbols are prefixed with _, except under Linux with ELF binaries *)
let symbol_prefix =
match Config.system with
"linux_elf" -> ""
| _ -> "_"
let emit_symbol s =
emit_string symbol_prefix; Emitaux.emit_symbol s
(* Output a label *)
let label_prefix =
match Config.system with
"linux_elf" -> ".L"
| _ -> "L"
let emit_label lbl =
emit_string label_prefix; emit_int lbl
(* Output a .align directive.
The numerical argument to .align is log2 of alignment size, except
under ELF, where it is the alignment size... *)
let emit_align =
match Config.system with
"linux_elf" -> (fun n -> ` .align {emit_int n}\n`)
| _ -> (fun n -> ` .align {emit_int(Misc.log2 n)}\n`)
(* Output a pseudo-register *)
let emit_reg r =
match r.loc with
Reg r ->
emit_string (register_name r)
| Stack s ->
let ofs = slot_offset s (register_class r) in
`{emit_int ofs}(%esp)`
| Unknown ->
fatal_error "Emit_i386.emit_reg"
(* Same, but after one push in the floating-point register set *)
let emit_shift r =
match r.loc with
Reg r ->
emit_string (register_name(r + 1))
| Stack s ->
let ofs = slot_offset s (register_class r) in
`{emit_int ofs}(%esp)`
| Unknown ->
fatal_error "Emit_i386.emit_shift"
(* Output a reference to the lower 8 bits or lower 16 bits of a register *)
let reg_low_byte_name = [| "%al"; "%bl"; "%cl"; "%dl" |]
let reg_low_half_name = [| "%ax"; "%bx"; "%cx"; "%dx"; "%si"; "%di"; "%bp" |]
let emit_reg8 r =
match r.loc with
Reg r when r < 4 -> emit_string (reg_low_byte_name.(r))
| _ -> fatal_error "Emit_i386.emit_reg8"
let emit_reg16 r =
match r.loc with
Reg r when r < 7 -> emit_string (reg_low_half_name.(r))
| _ -> fatal_error "Emit_i386.emit_reg16"
(* Check if the given register overlaps (same location) with the given
array of registers *)
let register_overlap reg arr =
try
for i = 0 to Array.length arr - 1 do
if reg.loc = arr.(i).loc then raise Exit
done;
false
with Exit ->
true
(* Check if a set of registers contains a float *)
let contains_floats arr =
try
for i = 0 to Array.length arr - 1 do
if arr.(i).typ = Float then raise Exit
done;
false
with Exit ->
true
(* Output an addressing mode *)
let emit_addressing addr r n =
match addr with
Ibased(s, d) ->
`{emit_symbol s}`;
if d <> 0 then ` + {emit_int d}`
| Iindexed d ->
if d <> 0 then emit_int d;
`({emit_reg r.(n)})`
| Iindexed2 d ->
if d <> 0 then emit_int d;
`({emit_reg r.(n)}, {emit_reg r.(n+1)})`
| Iscaled(scale, d) ->
if d <> 0 then emit_int d;
`(, {emit_reg r.(n)}, {emit_int scale})`
| Iindexed2scaled(scale, d) ->
if d <> 0 then emit_int d;
`({emit_reg r.(n)}, {emit_reg r.(n+1)}, {emit_int scale})`
(* Record live pointers at call points *)
type frame_descr =
{ fd_lbl: int; (* Return address *)
fd_frame_size: int; (* Size of stack frame *)
fd_live_offset: int list } (* Offsets/regs of live addresses *)
let frame_descriptors = ref([] : frame_descr list)
let record_frame_label live =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
{typ = Addr; loc = Reg r} ->
live_offset := (-1 - r) :: !live_offset
| {typ = Addr; loc = Stack s} as reg ->
live_offset := slot_offset s (register_class reg) :: !live_offset
| _ -> ())
live;
frame_descriptors :=
{ fd_lbl = lbl;
fd_frame_size = frame_size();
fd_live_offset = !live_offset } :: !frame_descriptors;
lbl
let record_frame live =
let lbl = record_frame_label live in `{emit_label lbl}:`
let emit_frame fd =
` .long {emit_label fd.fd_lbl}\n`;
` .word {emit_int fd.fd_frame_size}\n`;
` .word {emit_int (List.length fd.fd_live_offset)}\n`;
List.iter
(fun n ->
` .word {emit_int n}\n`)
fd.fd_live_offset;
emit_align 4
(* Names for instructions *)
let instr_for_intop = function
Iadd -> "addl"
| Isub -> "subl"
| Imul -> "imull"
| Iand -> "andl"
| Ior -> "orl"
| Ixor -> "xorl"
| Ilsl -> "sal"
| Ilsr -> "shr"
| Iasr -> "sar"
| _ -> fatal_error "Emit_i386: instr_for_intop"
let name_for_cond_branch = function
Isigned Ceq -> "e" | Isigned Cne -> "ne"
| Isigned Cle -> "le" | Isigned Cgt -> "g"
| Isigned Clt -> "l" | Isigned Cge -> "ge"
| Iunsigned Ceq -> "e" | Iunsigned Cne -> "ne"
| Iunsigned Cle -> "be" | Iunsigned Cgt -> "a"
| Iunsigned Clt -> "b" | Iunsigned Cge -> "ae"
(* Output an = 0 or <> 0 test. *)
let output_test_zero arg =
match arg.loc with
Reg r -> ` testl {emit_reg arg}, {emit_reg arg}\n`
| _ -> ` cmpl $0, {emit_reg arg}\n`
(* Deallocate the stack frame before a return or tail call *)
let output_epilogue () =
match frame_size() - 4 with
0 -> ()
| 4 -> ` popl %esi\n` (* Faster than add, and %esi is dead here *)
| n -> ` addl ${emit_int n}, %esp\n`
(* Output the assembly code for an instruction *)
(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
(* Label of trap for out-of-range accesses *)
let range_check_trap = ref 0
let float_constants = ref ([] : (int * string) list)
let emit_instr i =
match i.desc with
Lend -> ()
| Lop(Imove | Ispill | Ireload) ->
if i.arg.(0).loc <> i.res.(0).loc then begin
match i.arg.(0).typ with
Int | Addr ->
` movl {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Float ->
if i.arg.(0).loc = Reg 100 then
` fstl {emit_reg i.res.(0)}\n`
else begin
` fldl {emit_reg i.arg.(0)}\n`;
` fstpl {emit_shift i.res.(0)}\n`
end
end
| Lop(Iconst_int 0) ->
begin match i.res.(0).loc with
Reg n -> ` xorl {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
| _ -> ` movl $0, {emit_reg i.res.(0)}\n`
end
| Lop(Iconst_int n) ->
` movl ${emit_int n}, {emit_reg i.res.(0)}\n`
| Lop(Iconst_float f) ->
if float_of_string f = 0.0 then
` fldz\n`
else begin
let lbl = new_label() in
float_constants := (lbl, f) :: !float_constants;
` fldl {emit_label lbl}\n`
end;
` fstpl {emit_shift i.res.(0)}\n`
| Lop(Iconst_symbol s) ->
` movl ${emit_symbol s}, {emit_reg i.res.(0)}\n`
| Lop(Icall_ind) ->
` call *{emit_reg i.arg.(0)}\n`;
record_frame i.live
| Lop(Icall_imm s) ->
` call {emit_symbol s}\n`;
record_frame i.live
| Lop(Itailcall_ind) ->
output_epilogue();
` jmp *{emit_reg i.arg.(0)}\n`
| Lop(Itailcall_imm s) ->
if s = !function_name then
` jmp {emit_label !tailrec_entry_point}\n`
else begin
output_epilogue();
` jmp {emit_symbol s}\n`
end
| Lop(Iextcall(s, alloc)) ->
if alloc then begin
` movl ${emit_symbol s}, %eax\n`;
` call {emit_symbol "caml_c_call"}\n`;
record_frame i.live
end else if contains_floats i.arg or contains_floats i.res then begin
` movl ${emit_symbol s}, %eax\n`;
` call {emit_symbol "caml_c_call_noalloc"}\n`
end else
` call {emit_symbol s}\n`;
if Array.length i.res > 0 & i.res.(0).typ = Float then
` fstpl {emit_shift i.res.(0)}\n`
| Lop(Istackoffset n) ->
if n >= 0
then ` subl ${emit_int n}, %esp\n`
else ` addl ${emit_int(-n)}, %esp\n`;
stack_offset := !stack_offset + n
| Lop(Iload(chunk, addr)) ->
let dest = i.res.(0) in
begin match dest.typ with
Int | Addr ->
begin match (chunk, dest.loc) with
(Word, _) ->
` movl {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| (Byte_unsigned, Reg r) when r < 4 & not (register_overlap dest i.arg) ->
` xorl {emit_reg dest}, {emit_reg dest}\n`;
` movb {emit_addressing addr i.arg 0}, {emit_reg8 dest}\n`
| (Byte_unsigned, _) ->
` movzbl {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| (Byte_signed, _) ->
` movsbl {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| (Sixteen_unsigned, Reg r) when not (register_overlap dest i.arg) ->
` xorl {emit_reg dest}, {emit_reg dest}\n`;
` movw {emit_addressing addr i.arg 0}, {emit_reg16 dest}\n`
| (Sixteen_unsigned, _) ->
` movzwl {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| (Sixteen_signed, _) ->
` movswl {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
end
| Float ->
` fldl {emit_addressing addr i.arg 0}\n`;
` fstpl {emit_shift i.res.(0)}\n`
end
| Lop(Istore(Word, addr)) ->
begin match i.arg.(0).typ with
Int | Addr ->
` movl {emit_reg i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
| Float ->
if i.arg.(0).loc = Reg 100 then
` fstl {emit_addressing addr i.arg 1}\n`
else begin
` fldl {emit_reg i.arg.(0)}\n`;
` fstpl {emit_addressing addr i.arg 1}\n`
end
end
| Lop(Istore(chunk, addr)) ->
(* i.arg.(0) is guaranteed to be in %edx, actually *)
begin match chunk with
Word -> fatal_error "Emit_i386: store word"
| Byte_unsigned | Byte_signed ->
` movb {emit_reg8 i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
| Sixteen_unsigned | Sixteen_signed ->
` movw {emit_reg16 i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
end
| Lop(Ialloc n) ->
if !fastcode_flag then begin
` movl {emit_symbol "young_ptr"}, %eax\n`;
` subl ${emit_int n}, %eax\n`;
` movl %eax, {emit_symbol "young_ptr"}\n`;
` cmpl {emit_symbol "young_start"}, %eax\n`;
let lbl_cont = record_frame_label i.live in
` jae {emit_label lbl_cont}\n`;
` call {emit_symbol "caml_call_gc"}\n`;
` .word {emit_int n}\n`;
`{emit_label lbl_cont}: leal 4(%eax), {emit_reg i.res.(0)}\n`
end else begin
begin match n with
8 -> ` call {emit_symbol "caml_alloc1"}\n`
| 12 -> ` call {emit_symbol "caml_alloc2"}\n`
| 16 -> ` call {emit_symbol "caml_alloc3"}\n`
| _ -> ` movl ${emit_int n}, %eax\n`;
` call {emit_symbol "caml_alloc"}\n`
end;
`{record_frame i.live} leal 4(%eax), {emit_reg i.res.(0)}\n`
end
| Lop(Iintop(Icomp cmp)) ->
` cmpl {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` set{emit_string b} %al\n`;
` movzbl %al, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Icomp cmp, n)) ->
` cmpl ${emit_int n}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` set{emit_string b} %al\n`;
` movzbl %al, {emit_reg i.res.(0)}\n`
| Lop(Iintop Icheckbound) ->
if !range_check_trap = 0 then range_check_trap := new_label();
` cmpl {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
` jbe {emit_label !range_check_trap}\n`
| Lop(Iintop_imm(Icheckbound, n)) ->
if !range_check_trap = 0 then range_check_trap := new_label();
` cmpl ${emit_int n}, {emit_reg i.arg.(0)}\n`;
` jbe {emit_label !range_check_trap}\n`
| Lop(Iintop(Idiv | Imod)) ->
` cltd\n`;
` idivl {emit_reg i.arg.(1)}\n`
| Lop(Iintop(Ilsl | Ilsr | Iasr as op)) ->
(* We have i.arg.(0) = i.res.(0) and i.arg.(1) = %ecx *)
` {emit_string(instr_for_intop op)} %cl, {emit_reg i.res.(0)}\n`
| Lop(Iintop op) ->
(* We have i.arg.(0) = i.res.(0) *)
` {emit_string(instr_for_intop op)} {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Iadd, 1) | Iintop_imm(Isub, -1)) ->
` incl {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Iadd, -1) | Iintop_imm(Isub, 1)) ->
` decl {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(op, n)) ->
(* We have i.arg.(0) = i.res.(0) *)
` {emit_string(instr_for_intop op)} ${emit_int n}, {emit_reg i.res.(0)}\n`
| Lop(Iaddf | Isubf | Imulf | Idivf as floatop) ->
fatal_error "Emit_i386: floatop"
| Lop(Ifloatofint) ->
begin match i.arg.(0).loc with
Stack s ->
` fildl {emit_reg i.arg.(0)}\n`;
` fstpl {emit_shift i.res.(0)}\n`
| _ ->
` pushl {emit_reg i.arg.(0)}\n`;
stack_offset := !stack_offset + 4;
` fildl (%esp)\n`;
` fstpl {emit_shift i.res.(0)}\n`;
` addl $4, %esp\n`;
stack_offset := !stack_offset - 4
end
| Lop(Iintoffloat) ->
stack_offset := !stack_offset - 8;
` subl $8, %esp\n`;
` fnstcw 4(%esp)\n`;
` movl 4(%esp), %eax\n`;
` movb $12, %ah\n`;
` movl %eax, (%esp)\n`;
` fldcw (%esp)\n`;
` fldl {emit_reg i.arg.(0)}\n`;
begin match i.res.(0).loc with
Stack s ->
` fistpl {emit_shift i.res.(0)}\n`
| _ ->
` fistpl (%esp)\n`;
` movl (%esp), {emit_reg i.res.(0)}\n`
end;
` fldcw 4(%esp)\n`;
` addl $8, %esp\n`;
stack_offset := !stack_offset + 8
| Lop(Ispecific(Ilea addr)) ->
` lea {emit_addressing addr i.arg 0}, {emit_reg i.res.(0)}\n`
| Lop(Ispecific(Istore_int(n, addr))) ->
` movl ${emit_int n}, {emit_addressing addr i.arg 0}\n`
| Lop(Ispecific(Istore_symbol(s, addr))) ->
` movl ${emit_symbol s}, {emit_addressing addr i.arg 0}\n`
| Lop(Ispecific(Ioffset_loc(n, addr))) ->
` addl ${emit_int n}, {emit_addressing addr i.arg 0}\n`
| Lop(Ispecific(Ifloatarith(op, addr_arg1, addr_arg2, addr_res))) ->
let pos_arg2 =
match addr_arg1 with
None -> 1 | Some addr -> num_args_addressing addr in
let pos_res =
pos_arg2 +
(match addr_arg2 with
None -> 1 | Some addr -> num_args_addressing addr) in
let instr =
match op with
Ifloatadd -> "fadd"
| Ifloatsub -> "fsub"
| Ifloatmul -> "fmul"
| Ifloatdiv -> "fdiv" in
begin match addr_arg1 with
Some addr ->
` fldl {emit_addressing addr i.arg 0}\n`
| None ->
` fldl {emit_reg i.arg.(0)}\n`
end;
begin match addr_arg2 with
Some addr ->
` {emit_string instr}l {emit_addressing addr i.arg pos_arg2}\n`
| None ->
match i.arg.(1).loc with
Stack s ->
` {emit_string instr}l {emit_shift i.arg.(pos_arg2)}\n`
| _ ->
` {emit_string instr} {emit_shift i.arg.(pos_arg2)}\n`
end;
begin match addr_res with
Some addr ->
` fstpl {emit_addressing addr i.arg pos_res}\n`
| None ->
` fstpl {emit_shift i.res.(0)}\n`
end
| Lreloadretaddr ->
()
| Lreturn ->
output_epilogue();
` ret\n`
| Llabel lbl ->
`{emit_label lbl}:\n`
| Lbranch lbl ->
` jmp {emit_label lbl}\n`
| Lcondbranch(tst, lbl) ->
begin match tst with
Itruetest ->
output_test_zero i.arg.(0);
` jne {emit_label lbl}\n`
| Ifalsetest ->
output_test_zero i.arg.(0);
` je {emit_label lbl}\n`
| Iinttest cmp ->
` cmpl {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Iinttest_imm((Isigned Ceq | Isigned Cne |
Iunsigned Ceq | Iunsigned Cne) as cmp, 0) ->
output_test_zero i.arg.(0);
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Iinttest_imm(cmp, n) ->
` cmpl ${emit_int n}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Ifloattest cmp ->
` fldl {emit_reg i.arg.(0)}\n`;
let comp_instr =
match cmp with
Ceq | Cne -> "fucom"
| _ -> "fcom" in
begin match i.arg.(1).loc with
Stack s ->
` {emit_string comp_instr}pl {emit_shift i.arg.(1)}\n`
| _ ->
` {emit_string comp_instr}p {emit_shift i.arg.(1)}\n`
end;
` fnstsw %ax\n`;
begin match cmp with
Ceq ->
` andb $69, %ah\n`;
` cmpb $64, %ah\n`;
` je {emit_label lbl}\n`
| Cne ->
` andb $68, %ah\n`;
` xorb $64, %ah\n`;
` jne {emit_label lbl}\n`
| Cle ->
` andb $69, %ah\n`;
` decb %ah\n`;
` cmpb $64, %ah\n`;
` jb {emit_label lbl}\n`
| Cge ->
` andb $5, %ah\n`;
` je {emit_label lbl}\n`
| Clt ->
` andb $69, %ah\n`;
` cmpb $1, %ah\n`;
` je {emit_label lbl}\n`
| Cgt ->
` andb $69, %ah\n`;
` je {emit_label lbl}\n`
end
| Ioddtest ->
` testl $1, {emit_reg i.arg.(0)}\n`;
` jne {emit_label lbl}\n`
| Ieventest ->
` testl $1, {emit_reg i.arg.(0)}\n`;
` je {emit_label lbl}\n`
end
| Lcondbranch3(lbl0, lbl1, lbl2) ->
` cmpl $1, {emit_reg i.arg.(0)}\n`;
begin match lbl0 with
None -> ()
| Some lbl -> ` jb {emit_label lbl}\n`
end;
begin match lbl1 with
None -> ()
| Some lbl -> ` je {emit_label lbl}\n`
end;
begin match lbl2 with
None -> ()
| Some lbl -> ` jg {emit_label lbl}\n`
end
| Lswitch jumptbl ->
let lbl = new_label() in
` jmp *{emit_label lbl}(, {emit_reg i.arg.(0)}, 4)\n`;
emit_align 4;
`{emit_label lbl}:`;
for i = 0 to Array.length jumptbl - 1 do
` .long {emit_label jumptbl.(i)}\n`
done
| Lsetuptrap lbl ->
` call {emit_label lbl}\n`
| Lpushtrap ->
` pushl {emit_symbol "caml_exception_pointer"}\n`;
` movl %esp, {emit_symbol "caml_exception_pointer"}\n`;
stack_offset := !stack_offset + 8
| Lpoptrap ->
` popl {emit_symbol "caml_exception_pointer"}\n`;
` addl $4, %esp\n`;
stack_offset := !stack_offset - 8
| Lraise ->
` movl {emit_symbol "caml_exception_pointer"}, %esp\n`;
` popl {emit_symbol "caml_exception_pointer"}\n`;
` ret\n`
let rec emit_all i =
match i.desc with Lend -> () | _ -> emit_instr i; emit_all i.next
(* Emission of the floating-point constants *)
let emit_float_constant (lbl, cst) =
` .data\n`;
`{emit_label lbl}: .double {emit_string cst}\n`
(* Emission of a function declaration *)
let fundecl fundecl =
function_name := fundecl.fun_name;
fastcode_flag := fundecl.fun_fast;
tailrec_entry_point := new_label();
stack_offset := 0;
float_constants := [];
range_check_trap := 0;
` .text\n`;
emit_align 16; (* 16-byte alignment is recommended for the 486 *)
` .globl {emit_symbol fundecl.fun_name}\n`;
`{emit_symbol fundecl.fun_name}:\n`;
let n = frame_size() - 4 in
if n > 0 then
` subl ${emit_int n}, %esp\n`;
`{emit_label !tailrec_entry_point}:`;
emit_all fundecl.fun_body;
if !range_check_trap > 0 then
`{emit_label !range_check_trap}: int $5\n`;
List.iter emit_float_constant !float_constants
(* Emission of data *)
let emit_item = function
Cdefine_symbol s ->
` .globl {emit_symbol s}\n`;
`{emit_symbol s}:\n`
| Cdefine_label lbl ->
`{emit_label (10000 + lbl)}:\n`
| Cint8 n ->
` .byte {emit_int n}\n`
| Cint16 n ->
` .word {emit_int n}\n`
| Cint n ->
` .long {emit_int n}\n`
| Cintlit n ->
` .long {emit_string n}\n`
| Cfloat f ->
` .double {emit_string f}\n`
| Csymbol_address s ->
` .long {emit_symbol s}\n`
| Clabel_address lbl ->
` .long {emit_label (10000 + lbl)}\n`
| Cstring s ->
let l = String.length s in
if l = 0 then ()
else if l < 80 then
` .ascii {emit_string_literal s}\n`
else begin
let i = ref 0 in
while !i < l do
let n = min (l - !i) 80 in
` .ascii {emit_string_literal(String.sub s !i n)}\n`;
i := !i + n
done
end
| Cskip n ->
if n > 0 then ` .space {emit_int n}\n`
| Calign n ->
emit_align n
let data l =
` .data\n`;
List.iter emit_item l
(* Beginning / end of an assembly file *)
let begin_assembly() = ()
let end_assembly() =
let lbl = Compilenv.current_unit_name() ^ "_frametable" in
` .data\n`;
` .globl {emit_symbol lbl}\n`;
`{emit_symbol lbl}:\n`;
` .long {emit_int (List.length !frame_descriptors)}\n`;
List.iter emit_frame !frame_descriptors;
frame_descriptors := []