374 lines
7.4 KiB
C
374 lines
7.4 KiB
C
/***********************************************************************/
|
|
/* */
|
|
/* Objective Caml */
|
|
/* */
|
|
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
|
|
/* */
|
|
/* Copyright 1996 Institut National de Recherche en Informatique et */
|
|
/* Automatique. Distributed only by permission. */
|
|
/* */
|
|
/***********************************************************************/
|
|
|
|
/* $Id$ */
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include "alloc.h"
|
|
#include "fail.h"
|
|
#include "memory.h"
|
|
#include "mlvalues.h"
|
|
#include "misc.h"
|
|
#include "stacks.h"
|
|
|
|
#ifdef ARCH_ALIGN_DOUBLE
|
|
|
|
double Double_val(val)
|
|
value val;
|
|
{
|
|
union { value v[2]; double d; } buffer;
|
|
|
|
Assert(sizeof(double) == 2 * sizeof(value));
|
|
buffer.v[0] = Field(val, 0);
|
|
buffer.v[1] = Field(val, 1);
|
|
return buffer.d;
|
|
}
|
|
|
|
void Store_double_val(val, dbl)
|
|
value val;
|
|
double dbl;
|
|
{
|
|
union { value v[2]; double d; } buffer;
|
|
|
|
Assert(sizeof(double) == 2 * sizeof(value));
|
|
buffer.d = dbl;
|
|
Field(val, 0) = buffer.v[0];
|
|
Field(val, 1) = buffer.v[1];
|
|
}
|
|
|
|
#endif
|
|
|
|
value copy_double(d)
|
|
double d;
|
|
{
|
|
value res;
|
|
|
|
#define Setup_for_gc
|
|
#define Restore_after_gc
|
|
Alloc_small(res, Double_wosize, Double_tag);
|
|
#undef Setup_for_gc
|
|
#undef Restore_after_gc
|
|
Store_double_val(res, d);
|
|
return res;
|
|
}
|
|
|
|
value format_float(fmt, arg) /* ML */
|
|
value fmt, arg;
|
|
{
|
|
#define MAX_DIGITS 350
|
|
/* Max number of decimal digits in a "natural" (not artificially padded)
|
|
representation of a float. Can be quite big for %f format.
|
|
Max exponent for IEEE format is 308 decimal digits.
|
|
Rounded up for good measure. */
|
|
char format_buffer[MAX_DIGITS + 20];
|
|
int prec, i;
|
|
char * p;
|
|
char * dest;
|
|
value res;
|
|
|
|
prec = MAX_DIGITS;
|
|
for (p = String_val(fmt); *p != 0; p++) {
|
|
if (*p >= '0' && *p <= '9') {
|
|
i = atoi(p) + MAX_DIGITS;
|
|
if (i > prec) prec = i;
|
|
break;
|
|
}
|
|
}
|
|
for( ; *p != 0; p++) {
|
|
if (*p == '.') {
|
|
i = atoi(p+1) + MAX_DIGITS;
|
|
if (i > prec) prec = i;
|
|
break;
|
|
}
|
|
}
|
|
if (prec <= sizeof(format_buffer)) {
|
|
dest = format_buffer;
|
|
} else {
|
|
dest = stat_alloc(prec);
|
|
}
|
|
sprintf(dest, String_val(fmt), Double_val(arg));
|
|
res = copy_string(dest);
|
|
if (dest != format_buffer) {
|
|
stat_free(dest);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
value float_of_string(s) /* ML */
|
|
value s;
|
|
{
|
|
return copy_double(atof(String_val(s)));
|
|
}
|
|
|
|
value int_of_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return Val_long((long) Double_val(f));
|
|
}
|
|
|
|
value float_of_int(n) /* ML */
|
|
value n;
|
|
{
|
|
return copy_double((double) Long_val(n));
|
|
}
|
|
|
|
value neg_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(- Double_val(f));
|
|
}
|
|
|
|
value abs_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(fabs(Double_val(f)));
|
|
}
|
|
|
|
value add_float(f, g) /* ML */
|
|
value f, g;
|
|
{
|
|
return copy_double(Double_val(f) + Double_val(g));
|
|
}
|
|
|
|
value sub_float(f, g) /* ML */
|
|
value f, g;
|
|
{
|
|
return copy_double(Double_val(f) - Double_val(g));
|
|
}
|
|
|
|
value mul_float(f, g) /* ML */
|
|
value f, g;
|
|
{
|
|
return copy_double(Double_val(f) * Double_val(g));
|
|
}
|
|
|
|
value div_float(f, g) /* ML */
|
|
value f, g;
|
|
{
|
|
double dg = Double_val(g);
|
|
return copy_double(Double_val(f) / dg);
|
|
}
|
|
|
|
value exp_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(exp(Double_val(f)));
|
|
}
|
|
|
|
value floor_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(floor(Double_val(f)));
|
|
}
|
|
|
|
value fmod_float(f1, f2) /* ML */
|
|
value f1, f2;
|
|
{
|
|
return copy_double(fmod(Double_val(f1), Double_val(f2)));
|
|
}
|
|
|
|
value frexp_float(f) /* ML */
|
|
value f;
|
|
{
|
|
int i;
|
|
value res;
|
|
Push_roots(r, 1);
|
|
|
|
r[0] = copy_double(frexp (Double_val(f), &i));
|
|
res = alloc_tuple(2);
|
|
Field(res, 0) = r[0];
|
|
Field(res, 1) = Val_int(i);
|
|
Pop_roots();
|
|
return res;
|
|
}
|
|
|
|
value ldexp_float(f, i) /* ML */
|
|
value f, i;
|
|
{
|
|
return copy_double(ldexp(Double_val(f), Int_val(i)));
|
|
}
|
|
|
|
value log_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(log(Double_val(f)));
|
|
}
|
|
|
|
value log10_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(log10(Double_val(f)));
|
|
}
|
|
|
|
value modf_float(f) /* ML */
|
|
value f;
|
|
{
|
|
#if macintosh
|
|
_float_eval fres;
|
|
#else
|
|
double fres;
|
|
#endif
|
|
value res;
|
|
Push_roots(r, 2);
|
|
|
|
r[0] = copy_double(modf (Double_val(f), &fres));
|
|
r[1] = copy_double(fres);
|
|
|
|
res = alloc_tuple(2);
|
|
Field(res, 0) = r[0];
|
|
Field(res, 1) = r[1];
|
|
Pop_roots();
|
|
return res;
|
|
}
|
|
|
|
value sqrt_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(sqrt(Double_val(f)));
|
|
}
|
|
|
|
value power_float(f, g) /* ML */
|
|
value f, g;
|
|
{
|
|
return copy_double(pow(Double_val(f), Double_val(g)));
|
|
}
|
|
|
|
value sin_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(sin(Double_val(f)));
|
|
}
|
|
|
|
value sinh_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(sinh(Double_val(f)));
|
|
}
|
|
|
|
value cos_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(cos(Double_val(f)));
|
|
}
|
|
|
|
value cosh_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(cosh(Double_val(f)));
|
|
}
|
|
|
|
value tan_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(tan(Double_val(f)));
|
|
}
|
|
|
|
value tanh_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(tanh(Double_val(f)));
|
|
}
|
|
|
|
value asin_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(asin(Double_val(f)));
|
|
}
|
|
|
|
value acos_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(acos(Double_val(f)));
|
|
}
|
|
|
|
value atan_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(atan(Double_val(f)));
|
|
}
|
|
|
|
value atan2_float(f, g) /* ML */
|
|
value f, g;
|
|
{
|
|
return copy_double(atan2(Double_val(f), Double_val(g)));
|
|
}
|
|
|
|
value ceil_float(f) /* ML */
|
|
value f;
|
|
{
|
|
return copy_double(ceil(Double_val(f)));
|
|
}
|
|
|
|
value eq_float(f, g) /* ML */
|
|
value f, g;
|
|
{
|
|
return Val_bool(Double_val(f) == Double_val(g));
|
|
}
|
|
|
|
value neq_float(f, g) /* ML */
|
|
value f, g;
|
|
{
|
|
return Val_bool(Double_val(f) != Double_val(g));
|
|
}
|
|
|
|
value le_float(f, g) /* ML */
|
|
value f, g;
|
|
{
|
|
return Val_bool(Double_val(f) <= Double_val(g));
|
|
}
|
|
|
|
value lt_float(f, g) /* ML */
|
|
value f, g;
|
|
{
|
|
return Val_bool(Double_val(f) < Double_val(g));
|
|
}
|
|
|
|
value ge_float(f, g) /* ML */
|
|
value f, g;
|
|
{
|
|
return Val_bool(Double_val(f) >= Double_val(g));
|
|
}
|
|
|
|
value gt_float(f, g) /* ML */
|
|
value f, g;
|
|
{
|
|
return Val_bool(Double_val(f) > Double_val(g));
|
|
}
|
|
|
|
/* The init_ieee_float function should initialize floating-point hardware
|
|
so that it behaves as much as possible like the IEEE standard.
|
|
In particular, return special numbers like Infinity and NaN instead
|
|
of signalling exceptions. So far, only the Intel 386 under
|
|
Linux and BSD is not in IEEE mode at program startup. */
|
|
|
|
#ifdef __i386__
|
|
#ifdef __linux__
|
|
#include <i386/fpu_control.h>
|
|
#endif
|
|
#ifdef __FreeBSD__
|
|
#include <floatingpoint.h>
|
|
#endif
|
|
#endif
|
|
|
|
void init_ieee_floats()
|
|
{
|
|
#ifdef __i386__
|
|
#ifdef __linux__
|
|
__setfpucw(_FPU_IEEE);
|
|
#endif
|
|
#ifdef __FreeBSD__
|
|
fpsetmask(0);
|
|
#endif
|
|
#endif
|
|
}
|