ocaml/asmcomp/ia64/proc.ml

214 lines
7.2 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 2000 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Description of the IA64 processor *)
open Misc
open Cmm
open Reg
open Arch
open Mach
(* Instruction selection *)
let word_addressed = false
(* Registers available for register allocation *)
(* Register map:
r0 always 0
r1 global pointer (gp)
r2 - r3 temporaries (for the code generator)
r4 allocation pointer
r5 allocation limit
r6 trap pointer
r7 saved gp during C calls (preserved by C)
r8 - r11 0 - 3 function results
r12 stack pointer
r13 reserved by C (thread-specific data)
r14 - r15 80 - 81 temporaries (for accessing stack variables)
r16 - r31 4 - 19 general purpose
r32 - r63 20 - 51 function arguments
r64 - r91 52 - 79 general purpose
r92 - r95 used by C glue code
We do not use register windows, but instead allocate 64 "out" registers
(r32-r95) when entering Caml code.
f0 always 0.0
f1 always 1.0
f2 - f5 100 - 103 general purpose (preserved by C)
f6 - f7 104 - 105 general purpose
f8 - f15 106 - 113 function results
f16 - f31 114 - 129 function arguments (preserved by C)
f32 - f63 130 - 161 general purpose
f64 - f66 temporaries
f67 - f127 unused
*)
let int_reg_name = [|
(* 0-3 *) "r8"; "r9"; "r10"; "r11";
(* 4-19 *) "r16"; "r17"; "r18"; "r19"; "r20"; "r21"; "r22"; "r23";
"r24"; "r25"; "r26"; "r27"; "r28"; "r29"; "r30"; "r31";
(* 20-51 *) "r32"; "r33"; "r34"; "r35"; "r36"; "r37"; "r38"; "r39";
"r40"; "r41"; "r42"; "r43"; "r44"; "r45"; "r46"; "r47";
"r48"; "r49"; "r50"; "r51"; "r52"; "r53"; "r54"; "r55";
"r56"; "r57"; "r58"; "r59"; "r60"; "r61"; "r62"; "r63";
(* 52-79 *) "r64"; "r65"; "r66"; "r67"; "r68"; "r69"; "r70"; "r71";
"r72"; "r73"; "r74"; "r75"; "r76"; "r77"; "r78"; "r79";
"r80"; "r81"; "r82"; "r83"; "r84"; "r85"; "r86"; "r87";
"r88"; "r89"; "r90"; "r91";
(* 80-81 *) "r14"; "r15"
|]
let float_reg_name = [|
(* 0-13 *) "f2"; "f3"; "f4"; "f5"; "f6"; "f7";
"f8"; "f9"; "f10"; "f11"; "f12"; "f13"; "f14"; "f15";
(* 14-29 *) "f16"; "f17"; "f18"; "f19"; "f20"; "f21"; "f22"; "f23";
"f24"; "f25"; "f26"; "f27"; "f28"; "f29"; "f30"; "f31";
(* 30-61 *) "f32"; "f33"; "f34"; "f35"; "f36"; "f37"; "f38"; "f39";
"f40"; "f41"; "f42"; "f43"; "f44"; "f45"; "f46"; "f47";
"f48"; "f49"; "f50"; "f51"; "f52"; "f53"; "f54"; "f55";
"f56"; "f57"; "f58"; "f59"; "f60"; "f61"; "f62"; "f63"
|]
let num_register_classes = 2
let register_class r =
match r.typ with
Int -> 0
| Addr -> 0
| Float -> 1
let num_available_registers = [| 80; 62 |]
let first_available_register = [| 0; 100 |]
let register_name r =
if r < 100 then int_reg_name.(r) else float_reg_name.(r - 100)
let rotate_registers = true
(* Representation of hard registers by pseudo-registers *)
let hard_int_reg =
let v = Array.create 82 Reg.dummy in
for i = 0 to 81 do v.(i) <- Reg.at_location Int (Reg i) done;
v
let hard_float_reg =
let v = Array.create 62 Reg.dummy in
for i = 0 to 61 do v.(i) <- Reg.at_location Float (Reg(100 + i)) done;
v
let all_phys_regs =
Array.append hard_int_reg hard_float_reg
let phys_reg n =
if n < 100 then hard_int_reg.(n) else hard_float_reg.(n - 100)
let stack_slot slot ty =
Reg.at_location ty (Stack slot)
(* Calling conventions *)
let calling_conventions first_int last_int first_float last_float
lockstep make_stack arg =
let loc = Array.create (Array.length arg) Reg.dummy in
let int = ref first_int in
let float = ref first_float in
let ofs = ref 0 in
for i = 0 to Array.length arg - 1 do
match arg.(i).typ with
Int | Addr as ty ->
if !int <= last_int then begin
loc.(i) <- phys_reg !int;
incr int;
if lockstep then incr float
end else begin
loc.(i) <- stack_slot (make_stack !ofs) ty;
ofs := !ofs + size_int
end
| Float ->
if !float <= last_float then begin
loc.(i) <- phys_reg !float;
incr float;
if lockstep then incr int
end else begin
loc.(i) <- stack_slot (make_stack !ofs) Float;
ofs := !ofs + size_float
end
done;
(loc, Misc.align !ofs 16) (* Keep stack 16-aligned *)
let incoming ofs = Incoming ofs
let outgoing ofs = Outgoing ofs
let not_supported ofs = fatal_error "Proc.loc_results: cannot call"
let loc_arguments arg =
calling_conventions 20 51 114 129 false outgoing arg
let loc_parameters arg =
let (loc, ofs) = calling_conventions 20 51 114 129 false incoming arg in loc
let loc_results res =
let (loc, ofs) = calling_conventions 0 3 106 113 false not_supported res
in loc
(* Arguments in r32...r39, f8...f15
Results in r8...r11, f8...f15 *)
let loc_external_arguments arg =
calling_conventions 20 27 106 113 true outgoing arg
let loc_external_results res =
let (loc, ofs) = calling_conventions 0 3 106 113 false not_supported res
in loc
let extcall_use_push = false
let loc_exn_bucket = phys_reg 0 (* r8 *)
(* Registers destroyed by operations *)
let destroyed_at_c_call = (* f2...f5, f16...f31 preserved by C *)
Array.append
hard_int_reg
(Array.of_list(List.map phys_reg
[100;101;102;103;104;105;106;107;108;109;110;111;112;113;
130;131;132;133;134;135;136;137;138;139;
140;141;142;143;144;145;146;147;148;149;
150;151;152;153;154;155;156;157;158;159;
160;161]))
let destroyed_at_oper = function
Iop(Icall_ind | Icall_imm _ | Iextcall(_, true)) -> all_phys_regs
| Iop(Iextcall(_, false)) -> destroyed_at_c_call
| _ -> [||]
let destroyed_at_raise = all_phys_regs
(* Maximal register pressure *)
let safe_register_pressure = function
Iextcall(_, _) -> 0
| _ -> 62
let max_register_pressure = function
Iextcall(_, _) -> [| 0; 20 |]
| _ -> num_available_registers
(* Layout of the stack *)
let num_stack_slots = [| 0; 0 |]
let contains_calls = ref false
(* Calling the assembler *)
let assemble_file infile outfile =
Ccomp.command ("as -xexplicit -o " ^ outfile ^ " " ^ infile)