ocaml/byterun/gc_ctrl.c

227 lines
6.7 KiB
C

/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Damien Doligez, projet Para, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* Automatique. Distributed only by permission. */
/* */
/***********************************************************************/
/* $Id$ */
#include "alloc.h"
#include "gc.h"
#include "gc_ctrl.h"
#include "major_gc.h"
#include "minor_gc.h"
#include "misc.h"
#include "mlvalues.h"
long stat_minor_words = 0,
stat_promoted_words = 0,
stat_major_words = 0,
stat_minor_collections = 0,
stat_major_collections = 0,
stat_heap_size = 0; /* bytes */
extern asize_t major_heap_increment; /* bytes; cf. major_gc.c */
extern int percent_free; /* cf. major_gc.c */
extern int verb_gc; /* cf. misc.c */
#define Chunk_size(c) (((heap_chunk_head *) (c)) [-1]).size
#define Chunk_next(c) (((heap_chunk_head *) (c)) [-1]).next
#define Next(hp) ((hp) + Bhsize_hp (hp))
/* This will also thoroughly verify the heap if compiled in DEBUG mode. */
value gc_stat(v) /* ML */
value v;
{
value res;
long live_words = 0, live_blocks = 0,
free_words = 0, free_blocks = 0, largest_free = 0,
fragments = 0, heap_chunks = 0;
char *chunk = heap_start, *chunk_end;
char *cur_hp, *prev_hp;
header_t cur_hd;
Assert (v == Val_unit);
while (chunk != NULL){
++ heap_chunks;
chunk_end = chunk + Chunk_size (chunk);
prev_hp = NULL;
cur_hp = chunk;
while (cur_hp < chunk_end){
cur_hd = Hd_hp (cur_hp);
switch (Color_hd (cur_hd)){
case White:
if (Wosize_hd (cur_hd) == 0){
++fragments;
Assert (prev_hp == NULL
|| (Color_hp (prev_hp) != Blue
&& Wosize_hp (prev_hp) > 0));
Assert (Next (cur_hp) == chunk_end
|| (Color_hp (Next (cur_hp)) != Blue
&& Wosize_hp (Next (cur_hp)) > 0));
break;
}
/* FALLTHROUGH */
case Gray: case Black:
Assert (Wosize_hd (cur_hd) > 0);
++ live_blocks;
live_words += Whsize_hd (cur_hd);
break;
case Blue:
Assert (Wosize_hd (cur_hd) > 0);
++ free_blocks;
free_words += Whsize_hd (cur_hd);
if (Whsize_hd (cur_hd) > largest_free){
largest_free = Whsize_hd (cur_hd);
}
Assert (prev_hp == NULL
|| (Color_hp (prev_hp) != Blue
&& Wosize_hp (prev_hp) > 0));
Assert (Next (cur_hp) == chunk_end
|| (Color_hp (Next (cur_hp)) != Blue
&& Wosize_hp (Next (cur_hp)) > 0));
break;
}
prev_hp = cur_hp;
cur_hp = Next (cur_hp);
} Assert (cur_hp == chunk_end);
chunk = Chunk_next (chunk);
}
Assert (live_words + free_words + fragments == Wsize_bsize (stat_heap_size));
res = alloc (13, 0);
Field (res, 0) = Val_long (stat_minor_words
+ Wsize_bsize (young_end - young_ptr));
Field (res, 1) = Val_long (stat_promoted_words);
Field (res, 2) = Val_long (stat_major_words + allocated_words);
Field (res, 3) = Val_long (stat_minor_collections);
Field (res, 4) = Val_long (stat_major_collections);
Field (res, 5) = Val_long (Wsize_bsize (stat_heap_size));
Field (res, 6) = Val_long (heap_chunks);
Field (res, 7) = Val_long (live_words);
Field (res, 8) = Val_long (live_blocks);
Field (res, 9) = Val_long (free_words);
Field (res, 10) = Val_long (free_blocks);
Field (res, 11) = Val_long (largest_free);
Field (res, 12) = Val_long (fragments);
return res;
}
value gc_get(v) /* ML */
value v;
{
value res;
Assert (v == Val_unit);
res = alloc (4, 0);
Field (res, 0) = Wsize_bsize (Val_long (minor_heap_size));
Field (res, 1) = Wsize_bsize (Val_long (major_heap_increment));
Field (res, 2) = Val_long (percent_free);
Field (res, 3) = Val_bool (verb_gc);
return res;
}
static int norm_pfree (p)
int p;
{
if (p < 1) return p = 1;
return p;
}
static long norm_heapincr (i)
long i;
{
i = ((i + (1 << Page_log) - 1) >> Page_log) << Page_log;
if (i < Heap_chunk_min) i = Heap_chunk_min;
if (i > Heap_chunk_max) i = Heap_chunk_max;
return i;
}
static long norm_minsize (s)
long s;
{
if (s < Minor_heap_min) s = Minor_heap_min;
if (s > Minor_heap_max) s = Minor_heap_max;
return s;
}
value gc_set(v) /* ML */
value v;
{
int newpf;
verb_gc = Bool_val (Field (v, 3));
newpf = norm_pfree (Long_val (Field (v, 2)));
if (newpf != percent_free){
percent_free = newpf;
gc_message ("New space overhead: %d%%\n", percent_free);
}
if (Bsize_wsize (Long_val (Field (v, 1))) != major_heap_increment){
major_heap_increment = norm_heapincr (Bsize_wsize (Long_val (Field(v,1))));
gc_message ("New heap increment size: %ldk\n", major_heap_increment/1024);
}
/* Minor heap size comes last because it will trigger a minor collection
(thus invalidating [v]) and it can raise [Out_of_memory]. */
if (Bsize_wsize (Long_val (Field (v, 0))) != minor_heap_size){
long new_size = norm_minsize (Bsize_wsize (Long_val (Field (v, 0))));
gc_message ("New minor heap size: %ldk\n", new_size/1024);
set_minor_heap_size (new_size);
}
return Val_unit;
}
value gc_minor(v) /* ML */
value v;
{ Assert (v == Val_unit);
minor_collection ();
return Val_unit;
}
value gc_major(v) /* ML */
value v;
{ Assert (v == Val_unit);
minor_collection ();
finish_major_cycle ();
return Val_unit;
}
value gc_full_major(v) /* ML */
value v;
{ Assert (v == Val_unit);
minor_collection ();
finish_major_cycle ();
finish_major_cycle ();
return Val_unit;
}
void init_gc (minor_size, major_incr, percent_fr, verb)
long minor_size;
long major_incr;
int percent_fr;
int verb;
{
#ifdef DEBUG
verb_gc = 1;
gc_message ("*** camlrun: debug mode ***\n", 0);
#endif
verb_gc = verb;
set_minor_heap_size (Bsize_wsize (norm_minsize (minor_size)));
major_heap_increment = Bsize_wsize (norm_heapincr (major_incr));
percent_free = norm_pfree (percent_fr);
init_major_heap (major_heap_increment);
gc_message ("Initial space overhead: %d%%\n", percent_free);
gc_message ("Initial heap increment: %ldk\n", major_heap_increment / 1024);
gc_message ("Initial minor heap size: %ldk\n", minor_heap_size / 1024);
}