ocaml/asmcomp/proc_m68k.ml

348 lines
11 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Description of the Motorola 68020 processor *)
open Misc
open Arch
open Format
open Cmm
open Reg
open Mach
(* Registers available for register allocation *)
(* Register map:
A0 - A6 0-6 address registers (A2-A6 callee-save)
A7 stack pointer
D0 - D4 7-11 data registers (D2 - D7 callee-save)
D5 temporary
D6 allocation pointer
D7 trap pointer
FP0 - FP7 12-19 floating-point registers (FP2 - FP7 callee-save)
*)
let register_names =
[| "a0"; "a1"; "a2"; "a3"; "a4"; "a5"; "a6";
"d0"; "d1"; "d2"; "d3"; "d4";
"fp0"; "fp1"; "fp2"; "fp3"; "fp4"; "fp5"; "fp6"; "fp7" |]
let num_register_classes = 3
let register_class r =
match r.typ with
Addr -> 0
| Int -> 1
| Float -> 2
let num_available_registers = [| 7; 5; 8 |]
let first_available_register = [| 0; 7; 12 |]
let register_name r = register_names.(r)
(* There is no scheduling, so just pack registers. *)
let rotate_registers = false
(* Representation of hard registers by pseudo-registers *)
let all_phys_regs =
let v = Array.create 20 Reg.dummy in
for i = 0 to 6 do v.(i) <- Reg.at_location Addr (Reg i) done;
for i = 7 to 11 do v.(i) <- Reg.at_location Int (Reg i) done;
for i = 12 to 19 do v.(i) <- Reg.at_location Float (Reg i) done;
v
let phys_reg n = all_phys_regs.(n)
let stack_slot slot ty = Reg.at_location ty (Stack slot)
let reg_A0 = phys_reg 0
let reg_FP0 = phys_reg 12
(* Exceptions raised to signal cases not handled here *)
exception Use_default
(* Instruction selection *)
(* Auxiliary for recognizing addressing modes *)
type addressing_expr =
Asymbol of string
| Alinear of expression
| Aadd of expression * expression
| Ascale of expression * int
| Ascaledadd of expression * expression * int
let rec select_addr exp =
match exp with
Cconst_symbol s ->
(Asymbol s, 0)
| Cop((Caddi | Cadda), [arg; Cconst_int m]) ->
let (a, n) = select_addr arg in (a, n + m)
| Cop((Csubi | Csuba), [arg; Cconst_int m]) ->
let (a, n) = select_addr arg in (a, n - m)
| Cop((Caddi | Cadda), [Cconst_int m; arg]) ->
let (a, n) = select_addr arg in (a, n + m)
| Cop(Clsl, [arg; Cconst_int(1|2|3 as shift)]) ->
begin match select_addr arg with
(Alinear e, n) -> (Ascale(e, 1 lsl shift), n lsl shift)
| _ -> (Alinear exp, 0)
end
| Cop(Cmuli, [arg; Cconst_int(2|4|8 as mult)]) ->
begin match select_addr arg with
(Alinear e, n) -> (Ascale(e, mult), n * mult)
| _ -> (Alinear exp, 0)
end
| Cop(Cmuli, [Cconst_int(2|4|8 as mult); arg]) ->
begin match select_addr arg with
(Alinear e, n) -> (Ascale(e, mult), n * mult)
| _ -> (Alinear exp, 0)
end
| Cop((Caddi | Cadda), [arg1; arg2]) ->
begin match (select_addr arg1, select_addr arg2) with
((Alinear e1, n1), (Alinear e2, n2)) ->
(Aadd(e1, e2), n1 + n2)
| ((Alinear e1, n1), (Ascale(e2, scale), n2)) ->
(Ascaledadd(e1, e2, scale), n1 + n2)
| ((Ascale(e1, scale), n1), (Alinear e2, n2)) ->
(Ascaledadd(e2, e1, scale), n1 + n2)
| (_, (Ascale(e2, scale), n2)) ->
(Ascaledadd(arg1, e2, scale), n2)
| ((Ascale(e1, scale), n1), _) ->
(Ascaledadd(arg2, e1, scale), n1)
| _ ->
(Aadd(arg1, arg2), 0)
end
| arg ->
(Alinear arg, 0)
let select_addressing exp =
match select_addr exp with
(Asymbol s, d) ->
(Ibased(s, d), Ctuple [])
| (Alinear e, d) ->
(Iindexed d, e)
| (Aadd(e1, e2), d) ->
(Iindexed2 d, Ctuple[e1; e2])
| (Ascale(e, scale), d) ->
(Iscaled(scale, d), e)
| (Ascaledadd(e1, e2, scale), d) ->
(Iindexed2scaled(scale, d), Ctuple[e1; e2])
(* Selection of immediate shifts *)
let select_shift op args =
match args with
[arg1; Cconst_int n] when n >= 1 && n <= 8 -> (Iintop_imm(op, n), [arg1])
| _ -> (Iintop op, args)
(* Main instruction selection functions *)
let select_oper op args =
match op with
(* Recognize the LEA instruction *)
Cadda | Csuba ->
begin match select_addressing (Cop(op, args)) with
(Iindexed d, _) -> raise Use_default
| (addr, arg) -> (Ispecific(Ilea addr), [arg])
end
(* Recognize immediate shifts only if 1 <= count <= 8 *)
| Clsl -> select_shift Ilsl args
| Clsr -> select_shift Ilsr args
| Casr -> select_shift Iasr args
(* Recognize store instructions *)
| Cstore ->
begin match args with
[loc; Cconst_int n] ->
let (addr, arg) = select_addressing loc in
(Ispecific(Istore_int(n, addr)), [arg])
| [loc; Cconst_pointer n] ->
let (addr, arg) = select_addressing loc in
(Ispecific(Istore_int(n, addr)), [arg])
| [loc; Cconst_symbol s] ->
let (addr, arg) = select_addressing loc in
(Ispecific(Istore_symbol(s, addr)), [arg])
| _ ->
raise Use_default
end
| _ -> raise Use_default
let select_store addr exp =
match exp with
Cconst_int n -> (Ispecific(Istore_int(n, addr)), Ctuple [])
| Cconst_pointer n -> (Ispecific(Istore_int(n, addr)), Ctuple [])
| Cconst_symbol s -> (Ispecific(Istore_symbol(s, addr)), Ctuple [])
| _ -> raise Use_default
let select_push exp =
match exp with
Cconst_int n -> (Ispecific(Ipush_int n), Ctuple [])
| Cconst_pointer n -> (Ispecific(Ipush_int n), Ctuple [])
| Cconst_symbol s -> (Ispecific(Ipush_symbol s), Ctuple [])
| Cop(Cload ty, [loc]) when ty = typ_float ->
let (addr, arg) = select_addressing loc in
(Ispecific(Ipush_load_float addr), arg)
| Cop(Cload ty, [loc]) when ty = typ_addr or ty = typ_int ->
let (addr, arg) = select_addressing loc in
(Ispecific(Ipush_load addr), arg)
| _ -> (Ispecific(Ipush), exp)
let pseudoregs_for_operation op arg res =
match op with
(* Two-address binary operations *)
Iintop(Iadd | Isub | Imul | Idiv | Imod | Ilsl | Ilsr | Iasr) |
Iaddf | Isubf | Imulf | Idivf ->
([|res.(0); arg.(1)|], res, false)
(* Two-address binary operations, forcing the second argument to be
in a data register *)
| Iintop(Iand | Ior | Ixor) ->
let newarg1 = Reg.create Int in
([|res.(0); newarg1|], res, false)
(* Two-address unary operations *)
| Iintop_imm((Iadd | Isub | Imul | Idiv | Imod | Iand | Ior | Ixor |
Ilsl | Ilsr | Iasr), _) ->
(res, res, false)
(* Other instructions are regular *)
| _ -> raise Use_default
let is_immediate (n: int) = true
let word_addressed = false
(* Calling conventions *)
let calling_conventions first_addr last_addr first_float last_float
make_stack arg =
let loc = Array.create (Array.length arg) Reg.dummy in
let addr = ref first_addr in
let float = ref first_float in
let ofs = ref 0 in
for i = 0 to Array.length arg - 1 do
match arg.(i).typ with
(Addr | Int) as ty ->
if !addr <= last_addr then begin
loc.(i) <- phys_reg !addr;
incr addr
end else begin
loc.(i) <- stack_slot (make_stack !ofs) ty;
ofs := !ofs + size_addr
end
| Float ->
if !float <= last_float then begin
loc.(i) <- phys_reg !float;
incr float
end else begin
loc.(i) <- stack_slot (make_stack !ofs) Float;
ofs := !ofs + size_float
end
done;
(loc, !ofs)
let incoming ofs = Incoming ofs
let outgoing ofs = Outgoing ofs
let not_supported ofs = fatal_error "Proc.loc_results: cannot call"
let loc_arguments arg =
calling_conventions 0 5 12 18 outgoing arg
let loc_parameters arg =
let (loc, ofs) = calling_conventions 0 5 12 18 incoming arg in loc
let loc_results res =
let (loc, ofs) = calling_conventions 0 5 12 18 not_supported res in loc
let extcall_use_push = true
let loc_external_arguments arg =
fatal_error "Proc.loc_external_arguments"
let loc_external_results res =
let (loc, ofs) = calling_conventions 7 7 12 12 not_supported res in loc
let loc_exn_bucket = reg_A0
(* Registers destroyed by operations *)
let destroyed_at_c_call =
Array.of_list(List.map phys_reg [0; 1; 7; 8; 12; 13])
let destroyed_at_oper = function
Iop(Icall_ind | Icall_imm _ | Iextcall(_, true)) -> all_phys_regs
| Iop(Iextcall(_, false)) -> destroyed_at_c_call
| Iop(Iintoffloat) -> [| reg_FP0 |]
| _ -> [||]
let destroyed_at_raise = all_phys_regs
(* Maximal register pressure *)
let safe_register_pressure op = 5
let max_register_pressure = function
Iextcall(_, _) -> [| 5; 3; 6 |]
| Iintoffloat -> [| 7; 5; 7 |]
| _ -> num_available_registers
(* Reloading of instruction arguments, storing of instruction results. *)
let stackp r =
match r.loc with
Stack _ -> true
| _ -> false
let reload_test makereg round tst arg =
match tst with
Iinttest _ | Ifloattest _ ->
(* The second argument can be on stack *)
[| makereg arg.(0); arg.(1) |]
| _ ->
(* The argument can be on stack *)
arg
let reload_operation makereg round op arg res =
match op with
Imove | Ireload | Ispill |
Iintop_imm((Iadd | Isub | Iand | Ior | Ixor |
Icomp _ | Ilsl | Ilsr | Iasr), _) |
Ifloatofint | Iintoffloat | Ispecific(Ipush) ->
(* The argument(s) can be either in register or on stack *)
(arg, res)
| Iintop(Iadd | Isub | Iand | Ior | Ixor | Icomp _) ->
(* One of the two arguments can reside in the stack *)
if stackp arg.(0) && stackp arg.(1)
then ([|arg.(0); makereg arg.(1)|], res)
else (arg, res)
| Iintop(Ilsl | Ilsr | Iasr) ->
(* The first argument and result can reside in the stack *)
([|arg.(0); makereg arg.(1)|], res)
| Iintop(Imul | Idiv | Imod) | Iaddf | Isubf | Imulf | Idivf ->
(* The second argument can reside in the stack *)
let r = makereg arg.(0) in ([|r; arg.(1)|], [|r|])
| _ -> (* Other operations: all args and results in registers *)
raise Use_default
(* Scheduling is turned off. *)
let need_scheduling = false
let oper_latency _ = 0
(* Layout of the stack frame *)
let num_stack_slots = [| 0; 0; 0 |]
let contains_calls = ref false
(* Calling the assembler *)
let assemble_file infile outfile =
Sys.command ("as -o " ^ outfile ^ " " ^ infile)