ocaml/asmcomp/proc_hppa.ml

323 lines
10 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Description of the HP PA-RICS processor *)
open Misc
open Cmm
open Reg
open Arch
open Mach
(* Registers available for register allocation *)
(* Register map:
%r0 always zero
%r1 temporary, target of ADDIL
%r2 return address
%r3 allocation pointer
%r4 allocation limit
%r5 trap pointer
%r6 - %r26 general purpose
%r27 global pointer
%r28 - %r29 general purpose, C function results
%r30 stack pointer
%r31 temporary, used by BLE
%fr0 - %fr3 float status info
%fr4 - %fr30 general purpose
%fr31 temporary *)
let int_reg_name = [|
(* 0-4 *) "%r6"; "%r7"; "%r8"; "%r9"; "%r10";
(* 5-10 *) "%r11"; "%r12"; "%r13"; "%r14"; "%r15"; "%r16";
(* 11-16 *) "%r17"; "%r18"; "%r19"; "%r20"; "%r21"; "%r22";
(* 17-20 *) "%r23"; "%r24"; "%r25"; "%r26";
(* 21-22 *) "%r28"; "%r29"
|]
let float_reg_name = [|
(* 100-105 *) "%fr4"; "%fr5"; "%fr6"; "%fr7"; "%fr8"; "%fr9";
(* 106-111 *) "%fr10"; "%fr11"; "%fr12"; "%fr13"; "%fr14"; "%fr15";
(* 112-117 *) "%fr16"; "%fr17"; "%fr18"; "%fr19"; "%fr20"; "%fr21";
(* 118-123 *) "%fr22"; "%fr23"; "%fr24"; "%fr25"; "%fr26"; "%fr27";
(* 124-126 *) "%fr28"; "%fr29"; "%fr30"
|]
let num_register_classes = 2
let register_class r =
match r.typ with
Int -> 0
| Addr -> 0
| Float -> 1
let num_available_registers = [| 23; 27 |]
let first_available_register = [| 0; 100 |]
let register_name r =
if r < 100 then int_reg_name.(r) else float_reg_name.(r - 100)
let rotate_registers = true
(* Representation of hard registers by pseudo-registers *)
let hard_int_reg =
let v = Array.create 23 Reg.dummy in
for i = 0 to 22 do v.(i) <- Reg.at_location Int (Reg i) done;
v
let hard_float_reg =
let v = Array.create 27 Reg.dummy in
for i = 0 to 26 do v.(i) <- Reg.at_location Float (Reg(100 + i)) done;
v
let all_phys_regs =
Array.append hard_int_reg (Array.sub hard_float_reg 0 27)
(* No need to include the left/right parts of float registers *)
let phys_reg n =
if n < 100 then hard_int_reg.(n) else hard_float_reg.(n - 100)
let stack_slot slot ty =
Reg.at_location ty (Stack slot)
(* Exceptions raised to signal cases not handled here *)
exception Use_default
(* Recognition of addressing modes *)
let select_addressing = function
Cconst_symbol s ->
(Ibased(s, 0), Ctuple [])
| Cop(Cadda, [Cconst_symbol s; Cconst_int n]) ->
(Ibased(s, n), Ctuple [])
| Cop(Cadda, [arg; Cconst_int n]) ->
(Iindexed n, arg)
| Cop(Cadda, [arg1; Cop(Caddi, [arg2; Cconst_int n])]) ->
(Iindexed n, Cop(Cadda, [arg1; arg2]))
| arg ->
(Iindexed 0, arg)
(* Instruction selection *)
let shiftadd = function
2 -> Ishift1add
| 4 -> Ishift2add
| 8 -> Ishift3add
| _ -> fatal_error "Proc_hppa.shiftadd"
let select_oper op args =
match (op, args) with
(* Recognize shift-add operations. *)
((Caddi|Cadda),
[arg2; Cop(Clsl, [arg1; Cconst_int(1|2|3 as shift)])]) ->
(Ispecific(shiftadd(1 lsl shift)), [arg1; arg2])
| ((Caddi|Cadda),
[arg2; Cop(Cmuli, [arg1; Cconst_int(2|4|8 as mult)])]) ->
(Ispecific(shiftadd mult), [arg1; arg2])
| ((Caddi|Cadda),
[arg2; Cop(Cmuli, [Cconst_int(2|4|8 as mult); arg1])]) ->
(Ispecific(shiftadd mult), [arg1; arg2])
| (Caddi, [Cop(Clsl, [arg1; Cconst_int(1|2|3 as shift)]); arg2]) ->
(Ispecific(shiftadd(1 lsl shift)), [arg1; arg2])
| (Caddi, [Cop(Cmuli, [arg1; Cconst_int(2|4|8 as mult)]); arg2]) ->
(Ispecific(shiftadd mult), [arg1; arg2])
| (Caddi, [Cop(Cmuli, [Cconst_int(2|4|8 as mult); arg1]); arg2]) ->
(Ispecific(shiftadd mult), [arg1; arg2])
(* Prevent the recognition of some immediate arithmetic operations *)
(* Cmuli : -> Ilsl if power of 2
Cdivi, Cmodi : only if power of 2
Cand, Cor, Cxor : never *)
| (Cmuli, ([arg1; Cconst_int n] as args)) ->
let l = Misc.log2 n in
if n = 1 lsl l
then (Iintop_imm(Ilsl, l), [arg1])
else (Iintop Imul, args)
| (Cmuli, ([Cconst_int n; arg1] as args)) ->
let l = Misc.log2 n in
if n = 1 lsl l
then (Iintop_imm(Ilsl, l), [arg1])
else (Iintop Imul, args)
| (Cmuli, args) -> (Iintop Imul, args)
| (Cdivi, [arg1; Cconst_int n]) when n = 1 lsl (Misc.log2 n) ->
(Iintop_imm(Idiv, n), [arg1])
| (Cdivi, args) -> (Iintop Idiv, args)
| (Cmodi, [arg1; Cconst_int n]) when n = 1 lsl (Misc.log2 n) ->
(Iintop_imm(Imod, n), [arg1])
| (Cmodi, args) -> (Iintop Imod, args)
| (Cand, args) -> (Iintop Iand, args)
| (Cor, args) -> (Iintop Ior, args)
| (Cxor, args) -> (Iintop Ixor, args)
| _ -> raise Use_default
let select_store addr exp = raise Use_default
let select_push exp = fatal_error "Proc: select_push"
let pseudoregs_for_operation op arg res =
match op with
Iintop(Idiv | Imod) -> (* handled via calls to millicode *)
([|phys_reg 20; phys_reg 19|], [|phys_reg 22|], true)
(* %r26, %r25, %r29 *)
| _ ->
raise Use_default
let is_immediate n = (n < 16) & (n >= -16) (* 5 bits *)
let word_addressed = false
(* Calling conventions *)
let calling_conventions first_int last_int first_float last_float make_stack
arg =
let loc = Array.create (Array.length arg) Reg.dummy in
let int = ref first_int in
let float = ref first_float in
let ofs = ref 0 in
for i = 0 to Array.length arg - 1 do
match arg.(i).typ with
Int | Addr as ty ->
if !int >= last_int then begin
loc.(i) <- phys_reg !int;
decr int
end else begin
ofs := !ofs + size_int;
loc.(i) <- stack_slot (make_stack !ofs) ty
end
| Float ->
if !float <= last_float then begin
loc.(i) <- phys_reg !float;
incr float
end else begin
ofs := Misc.align (!ofs + size_float) 8;
loc.(i) <- stack_slot (make_stack !ofs) Float
end
done;
(loc, Misc.align !ofs 8) (* Keep stack 8-aligned *)
let incoming ofs = Incoming ofs
let outgoing ofs = Outgoing ofs
let not_supported ofs = fatal_error "Proc.loc_results: cannot call"
(* Arguments and results: %r26-%r19, %fr4-%fr11. *)
let loc_arguments arg =
calling_conventions 20 13 100 107 outgoing arg
let loc_parameters arg =
let (loc, ofs) = calling_conventions 20 13 100 107 incoming arg in loc
let loc_results res =
let (loc, ofs) = calling_conventions 20 13 100 107 not_supported res in loc
(* Calling C functions:
when all arguments are integers, use %r26 - %r23,
then -52(%r30), -56(%r30), etc.
When some arguments are floats, we handle a couple of cases by hand
and fail otherwise. *)
let loc_external_arguments arg =
match List.map register_class (Array.to_list arg) with
[1] -> ([| phys_reg 101 |], 56) (* %fr5 *)
| [1; 1] -> ([| phys_reg 101; phys_reg 103 |], 56) (* %fr5, %fr7 *)
| [1; 0] -> ([| phys_reg 101; phys_reg 18 |], 56) (* %fr5, %r24 *)
| [0; 1] -> ([| phys_reg 20; phys_reg 103 |], 56) (* %r26, %fr7 *)
| _ ->
let loc = Array.create (Array.length arg) Reg.dummy in
let int = ref 20 in
let ofs = ref 48 in
for i = 0 to Array.length arg - 1 do
match arg.(i).typ with
Int | Addr as ty ->
if !int >= 17 then begin
loc.(i) <- phys_reg (!int);
decr int
end else begin
ofs := !ofs + 4;
loc.(i) <- stack_slot (Outgoing !ofs) ty
end
| Float ->
fatal_error "Proc.external_calling_conventions: cannot call"
done;
(loc, Misc.align !ofs 8)
let extcall_use_push = false
let loc_external_results res =
let (loc, ofs) = calling_conventions 21 21 100 100 not_supported res in loc
let loc_exn_bucket = phys_reg 20 (* %r26 *)
(* Registers destroyed by operations *)
let destroyed_at_c_call = (* %r3 - %r18, %fr12 - %fr21 preserved *)
Array.of_list(List.map phys_reg
[13;14;15;16;17;18;19;20;21;22;
100;101;102;103;104;105;106;107;118;119;120;121;122;123;124;125;126])
let destroyed_by_millicode = (* %r25, %r26, %r28, %r29 -- more? *)
[| phys_reg 19; phys_reg 20; phys_reg 21; phys_reg 22 |]
let destroyed_at_oper = function
Iop(Icall_ind | Icall_imm _ | Iextcall(_, true)) -> all_phys_regs
| Iop(Iextcall(_, false)) -> destroyed_at_c_call
| Iop(Iintop(Idiv | Imod)) -> destroyed_by_millicode
| _ -> [||]
let destroyed_at_raise = all_phys_regs
(* Maximal register pressure *)
let safe_register_pressure = function
Iextcall(_, _) -> 16
| Iintop(Idiv | Imod) -> 19
| _ -> 23
let max_register_pressure = function
Iextcall(_, _) -> [| 16; 19 |]
| Iintop(Idiv | Imod) -> [| 19; 27 |]
| _ -> [| 23; 27 |]
(* Reloading *)
let reload_test makereg round tst args = raise Use_default
let reload_operation makereg round op args res = raise Use_default
(* Latencies (in cycles). Roughly based on the ``Mustang'' chips. *)
let need_scheduling = true
let oper_latency = function
Ireload -> 2
| Iload(_, _) -> 2
| Iconst_float _ -> 2 (* turned into a load *)
| Iintop Imul -> 2 (* ends up with a load *)
| Iaddf | Isubf | Imulf -> 3
| Idivf -> 12
| _ -> 1
(* Layout of the stack *)
let num_stack_slots = [| 0; 0 |]
let contains_calls = ref false
(* Calling the assembler *)
let assemble_file infile outfile =
if Config.system = "hpux"
(* Use the GNU assembler, since /bin/as is too buggy *)
then Sys.command ("gcc -c -o " ^ outfile ^ " " ^ infile)
else Sys.command ("as -o " ^ outfile ^ " " ^ infile)