ocaml/stdlib/listLabels.mli

270 lines
9.5 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(** List operations.
Some functions are flagged as not tail-recursive. A tail-recursive
function uses constant stack space, while a non-tail-recursive function
uses stack space proportional to the length of its list argument, which
can be a problem with very long lists. When the function takes several
list arguments, an approximate formula giving stack usage (in some
unspecified constant unit) is shown in parentheses.
The above considerations can usually be ignored if your lists are not
longer than about 10000 elements.
*)
(** Return the length (number of elements) of the given list. *)
val length : 'a list -> int
(** Return the first element of the given list. Raise
[Failure "hd"] if the list is empty. *)
val hd : 'a list -> 'a
(** Return the given list without its first element. Raise
[Failure "tl"] if the list is empty. *)
val tl : 'a list -> 'a list
(** Return the n-th element of the given list.
The first element (head of the list) is at position 0.
Raise [Failure "nth"] if the list is too short. *)
val nth : 'a list -> int -> 'a
(** List reversal. *)
val rev : 'a list -> 'a list
(** Catenate two lists. Same function as the infix operator [@].
Not tail-recursive (length of the first argument). The [@]
operator is not tail-recursive either. *)
val append : 'a list -> 'a list -> 'a list
(** [List.rev_append l1 l2] reverses [l1] and catenates it to [l2].
This is equivalent to {!ListLabels.rev}[ l1 @ l2], but [rev_append] is
tail-recursive and more efficient. *)
val rev_append : 'a list -> 'a list -> 'a list
(** Concatenate a list of lists. Not tail-recursive
(length of the argument + length of the longest sub-list). *)
val concat : 'a list list -> 'a list
(** Flatten a list of lists. Not tail-recursive
(length of the argument + length of the longest sub-list). *)
val flatten : 'a list list -> 'a list
(** {2 Iterators} *)
(** [List.iter f [a1; ...; an]] applies function [f] in turn to
[a1; ...; an]. It is equivalent to
[begin f a1; f a2; ...; f an; () end]. *)
val iter : f:('a -> unit) -> 'a list -> unit
(** [List.map f [a1; ...; an]] applies function [f] to [a1, ..., an],
and builds the list [[f a1; ...; f an]]
with the results returned by [f]. Not tail-recursive. *)
val map : f:('a -> 'b) -> 'a list -> 'b list
(** [List.rev_map f l] gives the same result as
{!ListLabels.rev}[ (]{!ListLabels.map}[ f l)], but is tail-recursive and
more efficient. *)
val rev_map : f:('a -> 'b) -> 'a list -> 'b list
(** [List.fold_left f a [b1; ...; bn]] is
[f (... (f (f a b1) b2) ...) bn]. *)
val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b list -> 'a
(** [List.fold_right f [a1; ...; an] b] is
[f a1 (f a2 (... (f an b) ...))]. Not tail-recursive. *)
val fold_right : f:('a -> 'b -> 'b) -> 'a list -> init:'b -> 'b
(** {2 Iterators on two lists} *)
(** [List.iter2 f [a1; ...; an] [b1; ...; bn]] calls in turn
[f a1 b1; ...; f an bn].
Raise [Invalid_argument] if the two lists have
different lengths. *)
val iter2 : f:('a -> 'b -> unit) -> 'a list -> 'b list -> unit
(** [List.map2 f [a1; ...; an] [b1; ...; bn]] is
[[f a1 b1; ...; f an bn]].
Raise [Invalid_argument] if the two lists have
different lengths. Not tail-recursive. *)
val map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
(** [List.rev_map2 f l] gives the same result as
{!ListLabels.rev}[ (]{!ListLabels.map2}[ f l)], but is tail-recursive and
more efficient. *)
val rev_map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
(** [List.fold_left2 f a [b1; ...; bn] [c1; ...; cn]] is
[f (... (f (f a b1 c1) b2 c2) ...) bn cn].
Raise [Invalid_argument] if the two lists have
different lengths. *)
val fold_left2 :
f:('a -> 'b -> 'c -> 'a) -> init:'a -> 'b list -> 'c list -> 'a
(** [List.fold_right2 f [a1; ...; an] [b1; ...; bn] c] is
[f a1 b1 (f a2 b2 (... (f an bn c) ...))].
Raise [Invalid_argument] if the two lists have
different lengths. Not tail-recursive. *)
val fold_right2 :
f:('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> init:'c -> 'c
(** {2 List scanning} *)
(** [for_all p [a1; ...; an]] checks if all elements of the list
satisfy the predicate [p]. That is, it returns
[(p a1) && (p a2) && ... && (p an)]. *)
val for_all : f:('a -> bool) -> 'a list -> bool
(** [exists p [a1; ...; an]] checks if at least one element of
the list satisfies the predicate [p]. That is, it returns
[(p a1) || (p a2) || ... || (p an)]. *)
val exists : f:('a -> bool) -> 'a list -> bool
(** Same as {!ListLabels.for_all}, but for a two-argument predicate.
Raise [Invalid_argument] if the two lists have
different lengths. *)
val for_all2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool
(** Same as {!ListLabels.exists}, but for a two-argument predicate.
Raise [Invalid_argument] if the two lists have
different lengths. *)
val exists2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool
(** [mem a l] is true if and only if [a] is equal
to an element of [l]. *)
val mem : 'a -> set:'a list -> bool
(** Same as {!ListLabels.mem}, but uses physical equality instead of structural
equality to compare list elements. *)
val memq : 'a -> set:'a list -> bool
(** {2 List searching} *)
(** [find p l] returns the first element of the list [l]
that satisfies the predicate [p].
Raise [Not_found] if there is no value that satisfies [p] in the
list [l]. *)
val find : f:('a -> bool) -> 'a list -> 'a
(** [filter p l] returns all the elements of the list [l]
that satisfy the predicate [p]. The order of the elements
in the input list is preserved. *)
val filter : f:('a -> bool) -> 'a list -> 'a list
(** [find_all] is another name for {!ListLabels.filter}. *)
val find_all : f:('a -> bool) -> 'a list -> 'a list
(** [partition p l] returns a pair of lists [(l1, l2)], where
[l1] is the list of all the elements of [l] that
satisfy the predicate [p], and [l2] is the list of all the
elements of [l] that do not satisfy [p].
The order of the elements in the input list is preserved. *)
val partition : f:('a -> bool) -> 'a list -> 'a list * 'a list
(** {2 Association lists} *)
(** [assoc a l] returns the value associated with key [a] in the list of
pairs [l]. That is,
[assoc a [ ...; (a,b); ...] = b]
if [(a,b)] is the leftmost binding of [a] in list [l].
Raise [Not_found] if there is no value associated with [a] in the
list [l]. *)
val assoc : 'a -> ('a * 'b) list -> 'b
(** Same as {!ListLabels.assoc}, but uses physical equality instead of structural
equality to compare keys. *)
val assq : 'a -> ('a * 'b) list -> 'b
(** Same as {!ListLabels.assoc}, but simply return true if a binding exists,
and false if no bindings exist for the given key. *)
val mem_assoc : 'a -> map:('a * 'b) list -> bool
(** Same as {!ListLabels.mem_assoc}, but uses physical equality instead of
structural equality to compare keys. *)
val mem_assq : 'a -> map:('a * 'b) list -> bool
(** [remove_assoc a l] returns the list of
pairs [l] without the first pair with key [a], if any.
Not tail-recursive. *)
val remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list
(** Same as {!ListLabels.remove_assq}, but uses physical equality instead
of structural equality to compare keys. Not tail-recursive. *)
val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list
(** {2 Lists of pairs} *)
(** Transform a list of pairs into a pair of lists:
[split [(a1,b1); ...; (an,bn)]] is [([a1; ...; an], [b1; ...; bn])].
Not tail-recursive.
*)
val split : ('a * 'b) list -> 'a list * 'b list
(** Transform a pair of lists into a list of pairs:
[combine [a1; ...; an] [b1; ...; bn]] is
[[(a1,b1); ...; (an,bn)]].
Raise [Invalid_argument] if the two lists
have different lengths. Not tail-recursive. *)
val combine : 'a list -> 'b list -> ('a * 'b) list
(** {2 Sorting} *)
(** Sort a list in increasing order according to a comparison
function. The comparison function must return 0 if it arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller. For example,
the [compare] function is a suitable comparison function.
The resulting list is sorted in increasing order.
[List.sort] is guaranteed to run in constant heap space
(in addition to the size of the result list) and logarithmic
stack space.
The current implementation uses Merge Sort and is the same as
{!ListLabels.stable_sort}.
*)
val sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list;;
(** Same as {!ListLabels.sort}, but the sorting algorithm is stable.
The current implementation is Merge Sort. It runs in constant
heap space and logarithmic stack space.
*)
val stable_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list;;