ocaml/typing/printtyp.ml

1013 lines
32 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt*)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Printing functions *)
open Misc
open Ctype
open Format
open Longident
open Path
open Asttypes
open Types
open Btype
open Outcometree
(* Print a long identifier *)
let rec longident ppf = function
| Lident s -> fprintf ppf "%s" s
| Ldot(p, s) -> fprintf ppf "%a.%s" longident p s
| Lapply(p1, p2) -> fprintf ppf "%a(%a)" longident p1 longident p2
(* Print an identifier *)
let ident ppf id = fprintf ppf "%s" (Ident.name id)
(* Print a path *)
let ident_pervasive = Ident.create_persistent "Pervasives"
let rec tree_of_path = function
| Pident id ->
Oide_ident (Ident.name id)
| Pdot(Pident id, s, pos) when Ident.same id ident_pervasive ->
Oide_ident s
| Pdot(p, s, pos) ->
Oide_dot (tree_of_path p, s)
| Papply(p1, p2) ->
Oide_apply (tree_of_path p1, tree_of_path p2)
let rec path ppf = function
| Pident id ->
ident ppf id
| Pdot(Pident id, s, pos) when Ident.same id ident_pervasive ->
fprintf ppf "%s" s
| Pdot(p, s, pos) ->
fprintf ppf "%a.%s" path p s
| Papply(p1, p2) ->
fprintf ppf "%a(%a)" path p1 path p2
(* Print a recursive annotation *)
let tree_of_rec = function
| Trec_not -> Orec_not
| Trec_first -> Orec_first
| Trec_next -> Orec_next
(* Print a raw type expression, with sharing *)
let raw_list pr ppf = function
[] -> fprintf ppf "[]"
| a :: l ->
fprintf ppf "@[<1>[%a%t]@]" pr a
(fun ppf -> List.iter (fun x -> fprintf ppf ";@,%a" pr x) l)
let rec safe_kind_repr v = function
Fvar {contents=Some k} ->
if List.memq k v then "Fvar loop" else
safe_kind_repr (k::v) k
| Fvar _ -> "Fvar None"
| Fpresent -> "Fpresent"
| Fabsent -> "Fabsent"
let rec safe_commu_repr v = function
Cok -> "Cok"
| Cunknown -> "Cunknown"
| Clink r ->
if List.memq r v then "Clink loop" else
safe_commu_repr (r::v) !r
let rec safe_repr v = function
{desc = Tlink t} when not (List.memq t v) ->
safe_repr (t::v) t
| t -> t
let rec list_of_memo = function
Mnil -> []
| Mcons (p, t1, t2, rem) -> p :: list_of_memo rem
| Mlink rem -> list_of_memo !rem
let visited = ref []
let rec raw_type ppf ty =
let ty = safe_repr [] ty in
if List.memq ty !visited then fprintf ppf "{id=%d}" ty.id else begin
visited := ty :: !visited;
fprintf ppf "@[<1>{id=%d;level=%d;desc=@,%a}@]" ty.id ty.level
raw_type_desc ty.desc
end
and raw_type_list tl = raw_list raw_type tl
and raw_type_desc ppf = function
Tvar -> fprintf ppf "Tvar"
| Tarrow(l,t1,t2,c) ->
fprintf ppf "@[<hov1>Tarrow(%s,@,%a,@,%a,@,%s)@]"
l raw_type t1 raw_type t2
(safe_commu_repr [] c)
| Ttuple tl ->
fprintf ppf "@[<1>Ttuple@,%a@]" raw_type_list tl
| Tconstr (p, tl, abbrev) ->
fprintf ppf "@[<hov1>Tconstr(@,%a,@,%a,@,%a)@]" path p
raw_type_list tl
(raw_list path) (list_of_memo !abbrev)
| Tobject (t, nm) ->
fprintf ppf "@[<hov1>Tobject(@,%a,@,@[<1>ref%t@])@]" raw_type t
(fun ppf ->
match !nm with None -> fprintf ppf " None"
| Some(p,tl) ->
fprintf ppf "(Some(@,%a,@,%a))" path p raw_type_list tl)
| Tfield (f, k, t1, t2) ->
fprintf ppf "@[<hov1>Tfield(@,%s,@,%s,@,%a,@;<0 -1>%a)@]" f
(safe_kind_repr [] k)
raw_type t1 raw_type t2
| Tnil -> fprintf ppf "Tnil"
| Tlink t -> fprintf ppf "@[<1>Tlink@,%a@]" raw_type t
| Tsubst t -> fprintf ppf "@[<1>Tsubst@,%a@]" raw_type t
| Tunivar -> fprintf ppf "Tunivar"
| Tpoly (t, tl) ->
fprintf ppf "@[<hov1>Tpoly(@,%a,@,%a)@]"
raw_type t
raw_type_list tl
| Tvariant row ->
fprintf ppf
"@[<hov1>{@[%s@,%a;@]@ @[%s@,%a;@]@ %s%b;@ %s%b;@ @[<1>%s%t@]}@]"
"row_fields="
(raw_list (fun ppf (l, f) ->
fprintf ppf "@[%s,@ %a@]" l raw_field f))
row.row_fields
"row_more=" raw_type row.row_more
"row_closed=" row.row_closed
"row_fixed=" row.row_fixed
"row_name="
(fun ppf ->
match row.row_name with None -> fprintf ppf "None"
| Some(p,tl) ->
fprintf ppf "Some(@,%a,@,%a)" path p raw_type_list tl)
and raw_field ppf = function
Rpresent None -> fprintf ppf "Rpresent None"
| Rpresent (Some t) -> fprintf ppf "@[<1>Rpresent(Some@,%a)@]" raw_type t
| Reither (c,tl,m,e) ->
fprintf ppf "@[<hov1>Reither(%b,@,%a,@,%b,@,@[<1>ref%t@])@]" c
raw_type_list tl m
(fun ppf ->
match !e with None -> fprintf ppf " None"
| Some f -> fprintf ppf "@,@[<1>(%a)@]" raw_field f)
| Rabsent -> fprintf ppf "Rabsent"
let raw_type_expr ppf t =
visited := [];
raw_type ppf t;
visited := []
(* Print a type expression *)
let names = ref ([] : (type_expr * string) list)
let name_counter = ref 0
let reset_names () = names := []; name_counter := 0
let new_name () =
let name =
if !name_counter < 26
then String.make 1 (Char.chr(97 + !name_counter))
else String.make 1 (Char.chr(97 + !name_counter mod 26)) ^
string_of_int(!name_counter / 26) in
incr name_counter;
name
let name_of_type t =
try List.assq t !names with Not_found ->
let name = new_name () in
names := (t, name) :: !names;
name
let check_name_of_type t = ignore(name_of_type t)
let non_gen_mark sch ty =
if sch && ty.desc = Tvar && ty.level <> generic_level then "_" else ""
let print_name_of_type sch ppf t =
fprintf ppf "'%s%s" (non_gen_mark sch t) (name_of_type t)
let visited_objects = ref ([] : type_expr list)
let aliased = ref ([] : type_expr list)
let delayed = ref ([] : type_expr list)
let add_delayed t =
if not (List.memq t !delayed) then delayed := t :: !delayed
let is_aliased ty = List.memq (proxy ty) !aliased
let add_alias ty =
let px = proxy ty in
if not (is_aliased px) then aliased := px :: !aliased
let aliasable ty =
match ty.desc with Tvar | Tunivar | Tpoly _ -> false | _ -> true
let namable_row row =
row.row_name <> None &&
List.for_all
(fun (_, f) ->
match row_field_repr f with
| Reither(c, l, _, _) ->
row.row_closed && if c then l = [] else List.length l = 1
| _ -> true)
row.row_fields
let rec mark_loops_rec visited ty =
let ty = repr ty in
let px = proxy ty in
if List.memq px visited && aliasable ty then add_alias px else
let visited = px :: visited in
match ty.desc with
| Tvar -> ()
| Tarrow(_, ty1, ty2, _) ->
mark_loops_rec visited ty1; mark_loops_rec visited ty2
| Ttuple tyl -> List.iter (mark_loops_rec visited) tyl
| Tconstr(_, tyl, _) ->
List.iter (mark_loops_rec visited) tyl
| Tvariant row ->
if List.memq px !visited_objects then add_alias px else
begin
let row = row_repr row in
if not (static_row row) then
visited_objects := px :: !visited_objects;
match row.row_name with
| Some(p, tyl) when namable_row row ->
List.iter (mark_loops_rec visited) tyl
| _ ->
iter_row (mark_loops_rec visited) {row with row_bound = []}
end
| Tobject (fi, nm) ->
if List.memq px !visited_objects then add_alias px else
begin
if opened_object ty then
visited_objects := px :: !visited_objects;
begin match !nm with
| None ->
let fields, _ = flatten_fields fi in
List.iter
(fun (_, kind, ty) ->
if field_kind_repr kind = Fpresent then
mark_loops_rec visited ty)
fields
| Some (_, l) ->
List.iter (mark_loops_rec visited) (List.tl l)
end
end
| Tfield(_, kind, ty1, ty2) when field_kind_repr kind = Fpresent ->
mark_loops_rec visited ty1; mark_loops_rec visited ty2
| Tfield(_, _, _, ty2) ->
mark_loops_rec visited ty2
| Tnil -> ()
| Tsubst ty -> mark_loops_rec visited ty
| Tlink _ -> fatal_error "Printtyp.mark_loops_rec (2)"
| Tpoly (ty, tyl) ->
List.iter (fun t -> add_alias t) tyl;
mark_loops_rec visited ty
| Tunivar -> ()
let mark_loops ty =
normalize_type Env.empty ty;
mark_loops_rec [] ty;;
let reset_loop_marks () =
visited_objects := []; aliased := []; delayed := []
let reset () =
reset_names (); reset_loop_marks ()
let reset_and_mark_loops ty =
reset (); mark_loops ty
let reset_and_mark_loops_list tyl =
reset (); List.iter mark_loops tyl
(* Disabled in classic mode when printing an unification error *)
let print_labels = ref true
let print_label ppf l =
if !print_labels && l <> "" || is_optional l then fprintf ppf "%s:" l
let rec tree_of_typexp sch ty =
let ty = repr ty in
let px = proxy ty in
if List.mem_assq px !names && not (List.memq px !delayed) then
let mark = is_non_gen sch ty in
Otyp_var (mark, name_of_type px) else
let pr_typ () =
match ty.desc with
| Tvar ->
Otyp_var (is_non_gen sch ty, name_of_type ty)
| Tarrow(l, ty1, ty2, _) ->
let pr_arrow l ty1 ty2 =
let lab =
if !print_labels && l <> "" || is_optional l then l else ""
in
let t1 =
if is_optional l then
match (repr ty1).desc with
| Tconstr(path, [ty], _)
when Path.same path Predef.path_option ->
tree_of_typexp sch ty
| _ -> Otyp_stuff "<hidden>"
else tree_of_typexp sch ty1 in
Otyp_arrow (lab, t1, tree_of_typexp sch ty2) in
pr_arrow l ty1 ty2
| Ttuple tyl ->
Otyp_tuple (tree_of_typlist sch tyl)
| Tconstr(p, tyl, abbrev) ->
Otyp_constr (tree_of_path p, tree_of_typlist sch tyl)
| Tvariant row ->
let row = row_repr row in
let fields =
if row.row_closed then
List.filter (fun (_, f) -> row_field_repr f <> Rabsent)
row.row_fields
else row.row_fields in
let present =
List.filter
(fun (_, f) ->
match row_field_repr f with
| Rpresent _ -> true
| _ -> false)
fields in
let all_present = List.length present = List.length fields in
begin match row.row_name with
| Some(p, tyl) when namable_row row ->
let id = tree_of_path p in
let args = tree_of_typlist sch tyl in
if row.row_closed && all_present then
Otyp_constr (id, args)
else
let non_gen = is_non_gen sch px in
let tags =
if all_present then None else Some (List.map fst present) in
Otyp_variant (non_gen, Ovar_name(tree_of_path p, args),
row.row_closed, tags)
| _ ->
let non_gen =
not (row.row_closed && all_present) && is_non_gen sch px in
let fields = List.map (tree_of_row_field sch) fields in
let tags =
if all_present then None else Some (List.map fst present) in
Otyp_variant (non_gen, Ovar_fields fields, row.row_closed, tags)
end
| Tobject (fi, nm) ->
tree_of_typobject sch fi nm
| Tsubst ty ->
tree_of_typexp sch ty
| Tlink _ | Tnil | Tfield _ ->
fatal_error "Printtyp.tree_of_typexp"
| Tpoly (ty, []) ->
tree_of_typexp sch ty
| Tpoly (ty, tyl) ->
let tyl = List.map repr tyl in
(* let tyl = List.filter is_aliased tyl in *)
if tyl = [] then tree_of_typexp sch ty else begin
let old_delayed = !delayed in
List.iter add_delayed tyl;
let tl = List.map name_of_type tyl in
let tr = Otyp_poly (tl, tree_of_typexp sch ty) in
delayed := old_delayed; tr
end
| Tunivar ->
Otyp_var (false, name_of_type ty)
in
if List.memq px !delayed then delayed := List.filter ((!=) px) !delayed;
if is_aliased px && aliasable ty then begin
check_name_of_type px;
Otyp_alias (pr_typ (), name_of_type px) end
else pr_typ ()
and tree_of_row_field sch (l, f) =
match row_field_repr f with
| Rpresent None | Reither(true, [], _, _) -> (l, false, [])
| Rpresent(Some ty) -> (l, false, [tree_of_typexp sch ty])
| Reither(c, tyl, _, _) ->
if c (* contradiction: un constructeur constant qui a un argument *)
then (l, true, tree_of_typlist sch tyl)
else (l, false, tree_of_typlist sch tyl)
| Rabsent -> (l, false, [] (* une erreur, en fait *))
and tree_of_typlist sch tyl =
List.map (tree_of_typexp sch) tyl
and tree_of_typobject sch fi nm =
begin match !nm with
| None ->
let pr_fields fi =
let (fields, rest) = flatten_fields fi in
let present_fields =
List.fold_right
(fun (n, k, t) l ->
match field_kind_repr k with
| Fpresent -> (n, t) :: l
| _ -> l)
fields [] in
let sorted_fields =
Sort.list (fun (n, _) (n', _) -> n <= n') present_fields in
tree_of_typfields sch rest sorted_fields in
let (fields, rest) = pr_fields fi in
Otyp_object (fields, rest)
| Some (p, ty :: tyl) ->
let non_gen = is_non_gen sch (repr ty) in
let args = tree_of_typlist sch tyl in
Otyp_class (non_gen, tree_of_path p, args)
| _ ->
fatal_error "Printtyp.tree_of_typobject"
end
and is_non_gen sch ty =
sch && ty.desc = Tvar && ty.level <> generic_level
and tree_of_typfields sch rest = function
| [] ->
let rest =
match rest.desc with
| Tvar | Tunivar -> Some (is_non_gen sch rest)
| Tconstr _ -> Some false
| Tnil -> None
| _ -> fatal_error "typfields (1)"
in
([], rest)
| (s, t) :: l ->
let field = (s, tree_of_typexp sch t) in
let (fields, rest) = tree_of_typfields sch rest l in
(field :: fields, rest)
let typexp sch prio ppf ty =
!Oprint.out_type ppf (tree_of_typexp sch ty)
let type_expr ppf ty = typexp false 0 ppf ty
and type_sch ppf ty = typexp true 0 ppf ty
and type_scheme ppf ty = reset_and_mark_loops ty; typexp true 0 ppf ty
(* Maxence *)
let type_scheme_max ?(b_reset_names=true) ppf ty =
if b_reset_names then reset_names () ;
typexp true 0 ppf ty
(* Fin Maxence *)
let tree_of_type_scheme ty = reset_and_mark_loops ty; tree_of_typexp true ty
(* Print one type declaration *)
let tree_of_constraints params =
List.fold_right
(fun ty list ->
let ty' = unalias ty in
if proxy ty != proxy ty' then
let tr = tree_of_typexp true ty in
(tr, tree_of_typexp true ty') :: list
else list)
params []
let filter_params tyl =
let params =
List.fold_left
(fun tyl ty ->
let ty = repr ty in
if List.memq ty tyl then Btype.newgenty (Tsubst ty) :: tyl
else ty :: tyl)
[] tyl
in List.rev params
let string_of_mutable = function
| Immutable -> ""
| Mutable -> "mutable "
let rec tree_of_type_decl id decl =
reset();
let params = filter_params decl.type_params in
List.iter add_alias params;
List.iter mark_loops params;
List.iter check_name_of_type (List.map proxy params);
let ty_manifest =
match decl.type_manifest with
| None -> None
| Some ty ->
let ty =
(* Special hack to hide variant name *)
match repr ty with {desc=Tvariant row} ->
let row = row_repr row in
begin match row.row_name with
Some (Pident id', _) when Ident.same id id' ->
newgenty (Tvariant {row with row_name = None})
| _ -> ty
end
| _ -> ty
in
mark_loops ty;
Some ty
in
begin match decl.type_kind with
| Type_abstract -> ()
| Type_variant [] -> ()
| Type_variant cstrs ->
List.iter (fun (_, args) -> List.iter mark_loops args) cstrs
| Type_record(l, rep) ->
List.iter (fun (_, _, ty) -> mark_loops ty) l
end;
let type_param =
function
| Otyp_var (_, id) -> id
| _ -> "?"
in
let type_defined decl =
let abstr =
match decl.type_kind with
Type_abstract ->
begin match decl.type_manifest with
None -> true
| Some ty -> has_constr_row ty
end
| Type_variant _ | Type_record(_,_) ->
decl.type_private = Private
in
let vari =
List.map2
(fun ty (co,cn,ct) ->
if abstr || (repr ty).desc <> Tvar then (co,cn) else (true,true))
decl.type_params decl.type_variance
in
(Ident.name id,
List.map2 (fun ty cocn -> type_param (tree_of_typexp false ty), cocn)
params vari)
in
let tree_of_manifest ty1 =
match ty_manifest with
| None -> ty1
| Some ty -> Otyp_manifest (tree_of_typexp false ty, ty1)
in
let (name, args) = type_defined decl in
let constraints = tree_of_constraints params in
let ty, priv =
match decl.type_kind with
| Type_abstract ->
begin match ty_manifest with
| None -> (Otyp_abstract, Public)
| Some ty ->
tree_of_typexp false ty, decl.type_private
end
| Type_variant cstrs ->
tree_of_manifest (Otyp_sum (List.map tree_of_constructor cstrs)),
decl.type_private
| Type_record(lbls, rep) ->
tree_of_manifest (Otyp_record (List.map tree_of_label lbls)),
decl.type_private
in
(name, args, ty, priv, constraints)
and tree_of_constructor (name, args) =
(name, tree_of_typlist false args)
and tree_of_label (name, mut, arg) =
(name, mut = Mutable, tree_of_typexp false arg)
let tree_of_type_declaration id decl rs =
Osig_type (tree_of_type_decl id decl, tree_of_rec rs)
let type_declaration id ppf decl =
!Oprint.out_sig_item ppf (tree_of_type_declaration id decl Trec_first)
(* Print an exception declaration *)
let tree_of_exception_declaration id decl =
reset_and_mark_loops_list decl;
let tyl = tree_of_typlist false decl in
Osig_exception (Ident.name id, tyl)
let exception_declaration id ppf decl =
!Oprint.out_sig_item ppf (tree_of_exception_declaration id decl)
(* Print a value declaration *)
let tree_of_value_description id decl =
let id = Ident.name id in
let ty = tree_of_type_scheme decl.val_type in
let prims =
match decl.val_kind with
| Val_prim p -> Primitive.description_list p
| _ -> []
in
Osig_value (id, ty, prims)
let value_description id ppf decl =
!Oprint.out_sig_item ppf (tree_of_value_description id decl)
(* Print a class type *)
let class_var sch ppf l (m, t) =
fprintf ppf
"@ @[<2>val %s%s :@ %a@]" (string_of_mutable m) l (typexp sch 0) t
let method_type (_, kind, ty) =
match field_kind_repr kind, repr ty with
Fpresent, {desc=Tpoly(ty, _)} -> ty
| _ , ty -> ty
let tree_of_metho sch concrete csil (lab, kind, ty) =
if lab <> dummy_method then begin
let kind = field_kind_repr kind in
let priv = kind <> Fpresent in
let virt = not (Concr.mem lab concrete) in
let ty = method_type (lab, kind, ty) in
Ocsg_method (lab, priv, virt, tree_of_typexp sch ty) :: csil
end
else csil
let rec prepare_class_type params = function
| Tcty_constr (p, tyl, cty) ->
let sty = Ctype.self_type cty in
if List.memq (proxy sty) !visited_objects
|| List.exists (fun ty -> (repr ty).desc <> Tvar) params
|| List.exists (deep_occur sty) tyl
then prepare_class_type params cty
else List.iter mark_loops tyl
| Tcty_signature sign ->
let sty = repr sign.cty_self in
(* Self may have a name *)
let px = proxy sty in
if List.memq px !visited_objects then add_alias sty
else visited_objects := px :: !visited_objects;
let (fields, _) =
Ctype.flatten_fields (Ctype.object_fields sign.cty_self)
in
List.iter (fun met -> mark_loops (method_type met)) fields;
Vars.iter (fun _ (_, _, ty) -> mark_loops ty) sign.cty_vars
| Tcty_fun (_, ty, cty) ->
mark_loops ty;
prepare_class_type params cty
let rec tree_of_class_type sch params =
function
| Tcty_constr (p', tyl, cty) ->
let sty = Ctype.self_type cty in
if List.memq (proxy sty) !visited_objects
|| List.exists (fun ty -> (repr ty).desc <> Tvar) params
then
tree_of_class_type sch params cty
else
Octy_constr (tree_of_path p', tree_of_typlist true tyl)
| Tcty_signature sign ->
let sty = repr sign.cty_self in
let self_ty =
if is_aliased sty then
Some (Otyp_var (false, name_of_type (proxy sty)))
else None
in
let (fields, _) =
Ctype.flatten_fields (Ctype.object_fields sign.cty_self)
in
let csil = [] in
let csil =
List.fold_left
(fun csil (ty1, ty2) -> Ocsg_constraint (ty1, ty2) :: csil)
csil (tree_of_constraints params)
in
let all_vars =
Vars.fold (fun l (m, v, t) all -> (l, m, v, t) :: all) sign.cty_vars []
in
(* Consequence of PR#3607: order of Map.fold has changed! *)
let all_vars = List.rev all_vars in
let csil =
List.fold_left
(fun csil (l, m, v, t) ->
Ocsg_value (l, m = Mutable, v = Virtual, tree_of_typexp sch t)
:: csil)
csil all_vars
in
let csil =
List.fold_left (tree_of_metho sch sign.cty_concr) csil fields
in
Octy_signature (self_ty, List.rev csil)
| Tcty_fun (l, ty, cty) ->
let lab = if !print_labels && l <> "" || is_optional l then l else "" in
let ty =
if is_optional l then
match (repr ty).desc with
| Tconstr(path, [ty], _) when Path.same path Predef.path_option -> ty
| _ -> newconstr (Path.Pident(Ident.create "<hidden>")) []
else ty in
let tr = tree_of_typexp sch ty in
Octy_fun (lab, tr, tree_of_class_type sch params cty)
let class_type ppf cty =
reset ();
prepare_class_type [] cty;
!Oprint.out_class_type ppf (tree_of_class_type false [] cty)
let tree_of_class_param param variance =
(match tree_of_typexp true param with
Otyp_var (_, s) -> s
| _ -> "?"),
if (repr param).desc = Tvar then (true, true) else variance
let tree_of_class_params params =
let tyl = tree_of_typlist true params in
List.map (function Otyp_var (_, s) -> s | _ -> "?") tyl
let tree_of_class_declaration id cl rs =
let params = filter_params cl.cty_params in
reset ();
List.iter add_alias params;
prepare_class_type params cl.cty_type;
let sty = self_type cl.cty_type in
List.iter mark_loops params;
List.iter check_name_of_type (List.map proxy params);
if is_aliased sty then check_name_of_type (proxy sty);
let vir_flag = cl.cty_new = None in
Osig_class
(vir_flag, Ident.name id,
List.map2 tree_of_class_param params cl.cty_variance,
tree_of_class_type true params cl.cty_type,
tree_of_rec rs)
let class_declaration id ppf cl =
!Oprint.out_sig_item ppf (tree_of_class_declaration id cl Trec_first)
let tree_of_cltype_declaration id cl rs =
let params = List.map repr cl.clty_params in
reset ();
List.iter add_alias params;
prepare_class_type params cl.clty_type;
let sty = self_type cl.clty_type in
List.iter mark_loops params;
List.iter check_name_of_type (List.map proxy params);
if is_aliased sty then check_name_of_type (proxy sty);
let sign = Ctype.signature_of_class_type cl.clty_type in
let virt =
let (fields, _) =
Ctype.flatten_fields (Ctype.object_fields sign.cty_self) in
List.exists
(fun (lab, _, ty) ->
not (lab = dummy_method || Concr.mem lab sign.cty_concr))
fields
|| Vars.fold (fun _ (_,vr,_) b -> vr = Virtual || b) sign.cty_vars false
in
Osig_class_type
(virt, Ident.name id,
List.map2 tree_of_class_param params cl.clty_variance,
tree_of_class_type true params cl.clty_type,
tree_of_rec rs)
let cltype_declaration id ppf cl =
!Oprint.out_sig_item ppf (tree_of_cltype_declaration id cl Trec_first)
(* Print a module type *)
let rec tree_of_modtype = function
| Tmty_ident p ->
Omty_ident (tree_of_path p)
| Tmty_signature sg ->
Omty_signature (tree_of_signature sg)
| Tmty_functor(param, ty_arg, ty_res) ->
Omty_functor
(Ident.name param, tree_of_modtype ty_arg, tree_of_modtype ty_res)
and tree_of_signature = function
| [] -> []
| Tsig_value(id, decl) :: rem ->
tree_of_value_description id decl :: tree_of_signature rem
| Tsig_type(id, _, _) :: rem when is_row_name (Ident.name id) ->
tree_of_signature rem
| Tsig_type(id, decl, rs) :: rem ->
Osig_type(tree_of_type_decl id decl, tree_of_rec rs) ::
tree_of_signature rem
| Tsig_exception(id, decl) :: rem ->
tree_of_exception_declaration id decl :: tree_of_signature rem
| Tsig_module(id, mty, rs) :: rem ->
Osig_module (Ident.name id, tree_of_modtype mty, tree_of_rec rs) ::
tree_of_signature rem
| Tsig_modtype(id, decl) :: rem ->
tree_of_modtype_declaration id decl :: tree_of_signature rem
| Tsig_class(id, decl, rs) :: ctydecl :: tydecl1 :: tydecl2 :: rem ->
tree_of_class_declaration id decl rs :: tree_of_signature rem
| Tsig_cltype(id, decl, rs) :: tydecl1 :: tydecl2 :: rem ->
tree_of_cltype_declaration id decl rs :: tree_of_signature rem
| _ ->
assert false
and tree_of_modtype_declaration id decl =
let mty =
match decl with
| Tmodtype_abstract -> Omty_abstract
| Tmodtype_manifest mty -> tree_of_modtype mty
in
Osig_modtype (Ident.name id, mty)
let tree_of_module id mty rs =
Osig_module (Ident.name id, tree_of_modtype mty, tree_of_rec rs)
let modtype ppf mty = !Oprint.out_module_type ppf (tree_of_modtype mty)
let modtype_declaration id ppf decl =
!Oprint.out_sig_item ppf (tree_of_modtype_declaration id decl)
(* Print a signature body (used by -i when compiling a .ml) *)
let print_signature ppf tree =
fprintf ppf "@[<v>%a@]" !Oprint.out_signature tree
let signature ppf sg =
fprintf ppf "%a" print_signature (tree_of_signature sg)
(* Print an unification error *)
let type_expansion t ppf t' =
if t == t' then type_expr ppf t else
let t' = if proxy t == proxy t' then unalias t' else t' in
fprintf ppf "@[<2>%a@ =@ %a@]" type_expr t type_expr t'
let rec trace fst txt ppf = function
| (t1, t1') :: (t2, t2') :: rem ->
if not fst then fprintf ppf "@,";
fprintf ppf "@[Type@;<1 2>%a@ %s@;<1 2>%a@] %a"
(type_expansion t1) t1' txt (type_expansion t2) t2'
(trace false txt) rem
| _ -> ()
let rec filter_trace = function
| (t1, t1') :: (t2, t2') :: rem ->
let rem' = filter_trace rem in
if t1 == t1' && t2 == t2'
then rem'
else (t1, t1') :: (t2, t2') :: rem'
| _ -> []
(* Hide variant name and var, to force printing the expanded type *)
let hide_variant_name t =
match repr t with
| {desc = Tvariant row} as t when (row_repr row).row_name <> None ->
newty2 t.level
(Tvariant {(row_repr row) with row_name = None;
row_more = newty2 (row_more row).level Tvar})
| _ -> t
let prepare_expansion (t, t') =
let t' = hide_variant_name t' in
mark_loops t; if t != t' then mark_loops t';
(t, t')
let may_prepare_expansion compact (t, t') =
match (repr t').desc with
Tvariant _ | Tobject _ when compact ->
mark_loops t; (t, t)
| _ -> prepare_expansion (t, t')
let print_tags ppf fields =
match fields with [] -> ()
| (t, _) :: fields ->
fprintf ppf "`%s" t;
List.iter (fun (t, _) -> fprintf ppf ",@ `%s" t) fields
let has_explanation unif t3 t4 =
match t3.desc, t4.desc with
Tfield _, _ | _, Tfield _
| Tunivar, Tvar | Tvar, Tunivar
| Tvariant _, Tvariant _ -> true
| Tconstr (p, _, _), Tvar | Tvar, Tconstr (p, _, _) ->
unif && min t3.level t4.level < Path.binding_time p
| _ -> false
let rec mismatch unif = function
(_, t) :: (_, t') :: rem ->
begin match mismatch unif rem with
Some _ as m -> m
| None ->
if has_explanation unif t t' then Some(t,t') else None
end
| [] -> None
| _ -> assert false
let explanation unif t3 t4 ppf =
match t3.desc, t4.desc with
| Tfield _, Tvar | Tvar, Tfield _ ->
fprintf ppf "@,Self type cannot escape its class"
| Tconstr (p, _, _), Tvar
when unif && t4.level < Path.binding_time p ->
fprintf ppf
"@,@[The type constructor@;<1 2>%a@ would escape its scope@]"
path p
| Tvar, Tconstr (p, _, _)
when unif && t3.level < Path.binding_time p ->
fprintf ppf
"@,@[The type constructor@;<1 2>%a@ would escape its scope@]"
path p
| Tvar, Tunivar | Tunivar, Tvar ->
fprintf ppf "@,The universal variable %a would escape its scope"
type_expr (if t3.desc = Tunivar then t3 else t4)
| Tfield (lab, _, _, _), _
| _, Tfield (lab, _, _, _) when lab = dummy_method ->
fprintf ppf
"@,Self type cannot be unified with a closed object type"
| Tfield (l, _, _, _), Tfield (l', _, _, _) when l = l' ->
fprintf ppf "@,Types for method %s are incompatible" l
| _, Tfield (l, _, _, _) ->
fprintf ppf
"@,@[The first object type has no method %s@]" l
| Tfield (l, _, _, _), _ ->
fprintf ppf
"@,@[The second object type has no method %s@]" l
| Tvariant row1, Tvariant row2 ->
let row1 = row_repr row1 and row2 = row_repr row2 in
begin match
row1.row_fields, row1.row_closed, row2.row_fields, row2.row_closed with
| [], true, [], true ->
fprintf ppf "@,These two variant types have no intersection"
| [], true, fields, _ ->
fprintf ppf
"@,@[The first variant type does not allow tag(s)@ @[<hov>%a@]@]"
print_tags fields
| fields, _, [], true ->
fprintf ppf
"@,@[The second variant type does not allow tag(s)@ @[<hov>%a@]@]"
print_tags fields
| [l1,_], true, [l2,_], true when l1 = l2 ->
fprintf ppf "@,Types for tag `%s are incompatible" l1
| _ -> ()
end
| _ -> ()
let explanation unif mis ppf =
match mis with
None -> ()
| Some (t3, t4) -> explanation unif t3 t4 ppf
let unification_error unif tr txt1 ppf txt2 =
reset ();
let tr = List.map (fun (t, t') -> (t, hide_variant_name t')) tr in
let mis = mismatch unif tr in
match tr with
| [] | _ :: [] -> assert false
| t1 :: t2 :: tr ->
try
let tr = filter_trace tr in
let t1, t1' = may_prepare_expansion (tr = []) t1
and t2, t2' = may_prepare_expansion (tr = []) t2 in
print_labels := not !Clflags.classic;
let tr = List.map prepare_expansion tr in
fprintf ppf
"@[<v>\
@[%t@;<1 2>%a@ \
%t@;<1 2>%a\
@]%a%t\
@]"
txt1 (type_expansion t1) t1'
txt2 (type_expansion t2) t2'
(trace false "is not compatible with type") tr
(explanation unif mis);
print_labels := true
with exn ->
print_labels := true;
raise exn
let report_unification_error ppf tr txt1 txt2 =
unification_error true tr txt1 ppf txt2;;
let trace fst txt ppf tr =
print_labels := not !Clflags.classic;
try match tr with
t1 :: t2 :: tr' ->
if fst then trace fst txt ppf (t1 :: t2 :: filter_trace tr')
else trace fst txt ppf (filter_trace tr);
print_labels := true
| _ -> ()
with exn ->
print_labels := true;
raise exn
let report_subtyping_error ppf tr1 txt1 tr2 =
reset ();
let tr1 = List.map prepare_expansion tr1
and tr2 = List.map prepare_expansion tr2 in
trace true txt1 ppf tr1;
if tr2 = [] then () else
let mis = mismatch true tr2 in
trace false "is not compatible with type" ppf tr2;
explanation true mis ppf