ocaml/testsuite/tests/typing-labels/mixin2.ml

191 lines
5.5 KiB
OCaml

(* Full fledge version, using objects to structure code *)
open StdLabels
open MoreLabels
(* Use maps for substitutions and sets for free variables *)
module Subst = Map.Make(struct type t = string let compare = compare end)
module Names = Set.Make(struct type t = string let compare = compare end)
(* To build recursive objects *)
let lazy_fix make =
let rec obj () = make (lazy (obj ()) : _ Lazy.t) in
obj ()
let (!!) = Lazy.force
(* The basic operations *)
class type ['a, 'b] ops =
object
method free : 'b -> Names.t
method subst : sub:'a Subst.t -> 'b -> 'a
method eval : 'b -> 'a
end
(* Variables are common to lambda and expr *)
type var = [`Var of string]
class ['a] var_ops = object (self : ('a, var) #ops)
constraint 'a = [> var]
method subst ~sub (`Var s as x) =
try Subst.find s sub with Not_found -> x
method free (`Var s) =
Names.singleton s
method eval (#var as v) = v
end
(* The lambda language: free variables, substitutions, and evaluation *)
type 'a lambda = [`Var of string | `Abs of string * 'a | `App of 'a * 'a]
let next_id =
let current = ref 3 in
fun () -> incr current; !current
class ['a] lambda_ops (ops : ('a,'a) #ops Lazy.t) =
let var : 'a var_ops = new var_ops
and free = lazy !!ops#free
and subst = lazy !!ops#subst
and eval = lazy !!ops#eval in
object (self : ('a, 'a lambda) #ops)
constraint 'a = [> 'a lambda]
method free = function
#var as x -> var#free x
| `Abs (s, t) -> Names.remove s (!!free t)
| `App (t1, t2) -> Names.union (!!free t1) (!!free t2)
method map ~f = function
#var as x -> x
| `Abs (s, t) as l ->
let t' = f t in
if t == t' then l else `Abs(s, t')
| `App (t1, t2) as l ->
let t'1 = f t1 and t'2 = f t2 in
if t'1 == t1 && t'2 == t2 then l else `App (t'1, t'2)
method subst ~sub = function
#var as x -> var#subst ~sub x
| `Abs(s, t) as l ->
let used = !!free t in
let used_expr =
Subst.fold sub ~init:[]
~f:(fun ~key ~data acc ->
if Names.mem s used then data::acc else acc) in
if List.exists used_expr ~f:(fun t -> Names.mem s (!!free t)) then
let name = s ^ string_of_int (next_id ()) in
`Abs(name,
!!subst ~sub:(Subst.add ~key:s ~data:(`Var name) sub) t)
else
self#map ~f:(!!subst ~sub:(Subst.remove s sub)) l
| `App _ as l ->
self#map ~f:(!!subst ~sub) l
method eval l =
match self#map ~f:!!eval l with
`App(`Abs(s,t1), t2) ->
!!eval (!!subst ~sub:(Subst.add ~key:s ~data:t2 Subst.empty) t1)
| t -> t
end
(* Operations specialized to lambda *)
let lambda = lazy_fix (new lambda_ops)
(* The expr language of arithmetic expressions *)
type 'a expr =
[ `Var of string | `Num of int | `Add of 'a * 'a
| `Neg of 'a | `Mult of 'a * 'a]
class ['a] expr_ops (ops : ('a,'a) #ops Lazy.t) =
let var : 'a var_ops = new var_ops
and free = lazy !!ops#free
and subst = lazy !!ops#subst
and eval = lazy !!ops#eval in
object (self : ('a, 'a expr) #ops)
constraint 'a = [> 'a expr]
method free = function
#var as x -> var#free x
| `Num _ -> Names.empty
| `Add(x, y) -> Names.union (!!free x) (!!free y)
| `Neg x -> !!free x
| `Mult(x, y) -> Names.union (!!free x) (!!free y)
method map ~f = function
#var as x -> x
| `Num _ as x -> x
| `Add(x, y) as e ->
let x' = f x and y' = f y in
if x == x' && y == y' then e
else `Add(x', y')
| `Neg x as e ->
let x' = f x in
if x == x' then e else `Neg x'
| `Mult(x, y) as e ->
let x' = f x and y' = f y in
if x == x' && y == y' then e
else `Mult(x', y')
method subst ~sub = function
#var as x -> var#subst ~sub x
| #expr as e -> self#map ~f:(!!subst ~sub) e
method eval (#expr as e) =
match self#map ~f:!!eval e with
`Add(`Num m, `Num n) -> `Num (m+n)
| `Neg(`Num n) -> `Num (-n)
| `Mult(`Num m, `Num n) -> `Num (m*n)
| e -> e
end
(* Specialized versions *)
let expr = lazy_fix (new expr_ops)
(* The lexpr language, reunion of lambda and expr *)
type 'a lexpr = [ 'a lambda | 'a expr ]
class ['a] lexpr_ops (ops : ('a,'a) #ops Lazy.t) =
let lambda = new lambda_ops ops in
let expr = new expr_ops ops in
object (self : ('a, 'a lexpr) #ops)
constraint 'a = [> 'a lexpr]
method free = function
#lambda as x -> lambda#free x
| #expr as x -> expr#free x
method subst ~sub = function
#lambda as x -> lambda#subst ~sub x
| #expr as x -> expr#subst ~sub x
method eval = function
#lambda as x -> lambda#eval x
| #expr as x -> expr#eval x
end
let lexpr = lazy_fix (new lexpr_ops)
let rec print = function
| `Var id -> print_string id
| `Abs (id, l) -> print_string ("\ " ^ id ^ " . "); print l
| `App (l1, l2) -> print l1; print_string " "; print l2
| `Num x -> print_int x
| `Add (e1, e2) -> print e1; print_string " + "; print e2
| `Neg e -> print_string "-"; print e
| `Mult (e1, e2) -> print e1; print_string " * "; print e2
let () =
let e1 = lambda#eval (`App(`Abs("x",`Var"x"), `Var"y")) in
let e2 = expr#eval (`Add(`Mult(`Num 3,`Neg(`Num 2)), `Var"x")) in
let e3 =
lexpr#eval (`Add(`App(`Abs("x",`Mult(`Var"x",`Var"x")),`Num 2), `Num 5))
in
print e1; print_newline ();
print e2; print_newline ();
print e3; print_newline ()