ocaml/asmcomp/amd64/selection.ml

264 lines
9.2 KiB
OCaml

(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 2000 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* Instruction selection for the AMD64 *)
open Arch
open Proc
open Cmm
open Mach
(* Auxiliary for recognizing addressing modes *)
type addressing_expr =
Asymbol of string
| Alinear of expression
| Aadd of expression * expression
| Ascale of expression * int
| Ascaledadd of expression * expression * int
let rec select_addr exp =
match exp with
Cconst_symbol s when not !Clflags.dlcode ->
(Asymbol s, 0)
| Cop((Caddi | Cadda), [arg; Cconst_int m]) ->
let (a, n) = select_addr arg in (a, n + m)
| Cop((Csubi | Csuba), [arg; Cconst_int m]) ->
let (a, n) = select_addr arg in (a, n - m)
| Cop((Caddi | Cadda), [Cconst_int m; arg]) ->
let (a, n) = select_addr arg in (a, n + m)
| Cop(Clsl, [arg; Cconst_int(1|2|3 as shift)]) ->
begin match select_addr arg with
(Alinear e, n) -> (Ascale(e, 1 lsl shift), n lsl shift)
| _ -> (Alinear exp, 0)
end
| Cop(Cmuli, [arg; Cconst_int(2|4|8 as mult)]) ->
begin match select_addr arg with
(Alinear e, n) -> (Ascale(e, mult), n * mult)
| _ -> (Alinear exp, 0)
end
| Cop(Cmuli, [Cconst_int(2|4|8 as mult); arg]) ->
begin match select_addr arg with
(Alinear e, n) -> (Ascale(e, mult), n * mult)
| _ -> (Alinear exp, 0)
end
| Cop((Caddi | Cadda), [arg1; arg2]) ->
begin match (select_addr arg1, select_addr arg2) with
((Alinear e1, n1), (Alinear e2, n2)) ->
(Aadd(e1, e2), n1 + n2)
| ((Alinear e1, n1), (Ascale(e2, scale), n2)) ->
(Ascaledadd(e1, e2, scale), n1 + n2)
| ((Ascale(e1, scale), n1), (Alinear e2, n2)) ->
(Ascaledadd(e2, e1, scale), n1 + n2)
| (_, (Ascale(e2, scale), n2)) ->
(Ascaledadd(arg1, e2, scale), n2)
| ((Ascale(e1, scale), n1), _) ->
(Ascaledadd(arg2, e1, scale), n1)
| _ ->
(Aadd(arg1, arg2), 0)
end
| arg ->
(Alinear arg, 0)
(* Special constraints on operand and result registers *)
exception Use_default
let rax = phys_reg 0
let rcx = phys_reg 5
let rdx = phys_reg 4
let pseudoregs_for_operation op arg res =
match op with
(* Two-address binary operations: arg.(0) and res.(0) must be the same *)
Iintop(Iadd|Isub|Imul|Iand|Ior|Ixor) | Iaddf|Isubf|Imulf|Idivf ->
([|res.(0); arg.(1)|], res)
(* One-address unary operations: arg.(0) and res.(0) must be the same *)
| Iintop_imm((Iadd|Isub|Imul|Iand|Ior|Ixor|Ilsl|Ilsr|Iasr), _)
| Iabsf | Inegf
| Ispecific(Ibswap (32|64)) ->
(res, res)
(* For xchg, args must be a register allowing access to high 8 bit register
(rax, rbx, rcx or rdx). Keep it simple, just force the argument in rax. *)
| Ispecific(Ibswap 16) ->
([| rax |], [| rax |])
| Ispecific(Ifloatarithmem(_,_)) ->
let arg' = Array.copy arg in
arg'.(0) <- res.(0);
(arg', res)
(* For shifts with variable shift count, second arg must be in rcx *)
| Iintop(Ilsl|Ilsr|Iasr) ->
([|res.(0); rcx|], res)
(* For div and mod, first arg must be in rax, rdx is clobbered,
and result is in rax or rdx respectively.
Keep it simple, just force second argument in rcx. *)
| Iintop(Idiv) ->
([| rax; rcx |], [| rax |])
| Iintop(Imod) ->
([| rax; rcx |], [| rdx |])
(* For div and mod with immediate operand, arg must not be in rax.
Keep it simple, force it in rdx. *)
| Iintop_imm((Idiv|Imod), _) ->
([| rdx |], [| rdx |])
(* Other instructions are regular *)
| _ -> raise Use_default
let inline_ops =
[ "sqrt"; "caml_bswap16_direct"; "caml_int32_direct_bswap";
"caml_int64_direct_bswap"; "caml_nativeint_direct_bswap" ]
(* The selector class *)
class selector = object (self)
inherit Selectgen.selector_generic as super
method is_immediate n = n <= 0x7FFFFFFF && n >= -0x80000000
method is_immediate_natint n = n <= 0x7FFFFFFFn && n >= -0x80000000n
method! is_simple_expr e =
match e with
| Cop(Cextcall(fn, _, _, _), args)
when List.mem fn inline_ops ->
(* inlined ops are simple if their arguments are *)
List.for_all self#is_simple_expr args
| _ ->
super#is_simple_expr e
method select_addressing chunk exp =
let (a, d) = select_addr exp in
(* PR#4625: displacement must be a signed 32-bit immediate *)
if d < -0x8000_0000 || d > 0x7FFF_FFFF
then (Iindexed 0, exp)
else match a with
| Asymbol s ->
(Ibased(s, d), Ctuple [])
| Alinear e ->
(Iindexed d, e)
| Aadd(e1, e2) ->
(Iindexed2 d, Ctuple[e1; e2])
| Ascale(e, scale) ->
(Iscaled(scale, d), e)
| Ascaledadd(e1, e2, scale) ->
(Iindexed2scaled(scale, d), Ctuple[e1; e2])
method! select_store addr exp =
match exp with
Cconst_int n when self#is_immediate n ->
(Ispecific(Istore_int(Nativeint.of_int n, addr)), Ctuple [])
| Cconst_natint n when self#is_immediate_natint n ->
(Ispecific(Istore_int(n, addr)), Ctuple [])
| Cconst_pointer n when self#is_immediate n ->
(Ispecific(Istore_int(Nativeint.of_int n, addr)), Ctuple [])
| Cconst_natpointer n when self#is_immediate_natint n ->
(Ispecific(Istore_int(n, addr)), Ctuple [])
| Cconst_symbol s when not (!pic_code || !Clflags.dlcode) ->
(Ispecific(Istore_symbol(s, addr)), Ctuple [])
| _ ->
super#select_store addr exp
method! select_operation op args =
match op with
(* Recognize the LEA instruction *)
Caddi | Cadda | Csubi | Csuba ->
begin match self#select_addressing Word (Cop(op, args)) with
(Iindexed d, _) -> super#select_operation op args
| (Iindexed2 0, _) -> super#select_operation op args
| (addr, arg) -> (Ispecific(Ilea addr), [arg])
end
(* Recognize (x / cst) and (x % cst) only if cst is a power of 2. *)
| Cdivi ->
begin match args with
[arg1; Cconst_int n] when self#is_immediate n
&& n = 1 lsl (Misc.log2 n) ->
(Iintop_imm(Idiv, n), [arg1])
| _ -> (Iintop Idiv, args)
end
| Cmodi ->
begin match args with
[arg1; Cconst_int n] when self#is_immediate n
&& n = 1 lsl (Misc.log2 n) ->
(Iintop_imm(Imod, n), [arg1])
| _ -> (Iintop Imod, args)
end
(* Recognize float arithmetic with memory. *)
| Caddf ->
self#select_floatarith true Iaddf Ifloatadd args
| Csubf ->
self#select_floatarith false Isubf Ifloatsub args
| Cmulf ->
self#select_floatarith true Imulf Ifloatmul args
| Cdivf ->
self#select_floatarith false Idivf Ifloatdiv args
| Cextcall("sqrt", _, false, _) ->
begin match args with
[Cop(Cload (Double|Double_u as chunk), [loc])] ->
let (addr, arg) = self#select_addressing chunk loc in
(Ispecific(Ifloatsqrtf addr), [arg])
| [arg] ->
(Ispecific Isqrtf, [arg])
| _ ->
assert false
end
(* Recognize store instructions *)
| Cstore Word ->
begin match args with
[loc; Cop(Caddi, [Cop(Cload _, [loc']); Cconst_int n])]
when loc = loc' && self#is_immediate n ->
let (addr, arg) = self#select_addressing Word loc in
(Ispecific(Ioffset_loc(n, addr)), [arg])
| _ ->
super#select_operation op args
end
| Cextcall("caml_bswap16_direct", _, _, _) ->
(Ispecific (Ibswap 16), args)
| Cextcall("caml_int32_direct_bswap", _, _, _) ->
(Ispecific (Ibswap 32), args)
| Cextcall("caml_int64_direct_bswap", _, _, _)
| Cextcall("caml_nativeint_direct_bswap", _, _, _) ->
(Ispecific (Ibswap 64), args)
| _ -> super#select_operation op args
(* Recognize float arithmetic with mem *)
method select_floatarith commutative regular_op mem_op args =
match args with
[arg1; Cop(Cload (Double|Double_u as chunk), [loc2])] ->
let (addr, arg2) = self#select_addressing chunk loc2 in
(Ispecific(Ifloatarithmem(mem_op, addr)),
[arg1; arg2])
| [Cop(Cload (Double|Double_u as chunk), [loc1]); arg2] when commutative ->
let (addr, arg1) = self#select_addressing chunk loc1 in
(Ispecific(Ifloatarithmem(mem_op, addr)),
[arg2; arg1])
| [arg1; arg2] ->
(regular_op, [arg1; arg2])
| _ ->
assert false
(* Deal with register constraints *)
method! insert_op_debug op dbg rs rd =
try
let (rsrc, rdst) = pseudoregs_for_operation op rs rd in
self#insert_moves rs rsrc;
self#insert_debug (Iop op) dbg rsrc rdst;
self#insert_moves rdst rd;
rd
with Use_default ->
super#insert_op_debug op dbg rs rd
end
let fundecl f = (new selector)#emit_fundecl f