ocaml/typing/typedecl.ml

407 lines
14 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt*)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(**** Typing of type definitions ****)
open Misc
open Parsetree
open Types
open Typedtree
open Typetexp
type error =
Repeated_parameter
| Duplicate_constructor of string
| Too_many_constructors
| Duplicate_label of string
| Recursive_abbrev of string
| Definition_mismatch of type_expr
| Constraint_failed of Path.t * type_expr * type_expr
| Unconsistent_constraint
| Type_clash of (type_expr * type_expr) list
| Null_arity_external
| Unbound_type_var
| Unbound_exception of Longident.t
| Not_an_exception of Longident.t
exception Error of Location.t * error
(* Enter all declared types in the environment as abstract types *)
let enter_type env (name, sdecl) id =
let decl =
{ type_params =
List.map (fun _ -> Btype.newgenvar ()) sdecl.ptype_params;
type_arity = List.length sdecl.ptype_params;
type_kind = Type_abstract;
type_manifest = None }
in
Env.add_type id decl env
(* Determine if a type is (an abbreviation for) the type "float" *)
let is_float env ty =
match Ctype.repr (Ctype.expand_head env ty) with
{desc = Tconstr(p, _, _)} -> Path.same p Predef.path_float
| _ -> false
(* Translate one type declaration *)
module StringSet =
Set.Make(struct
type t = string
let compare = compare
end)
let transl_declaration env (name, sdecl) id =
(* Bind type parameters *)
reset_type_variables();
let params = List.map (enter_type_variable true) sdecl.ptype_params in
let decl =
{ type_params = params;
type_arity = List.length params;
type_kind =
begin match sdecl.ptype_kind with
Ptype_abstract ->
Type_abstract
| Ptype_variant cstrs ->
let all_constrs = ref StringSet.empty in
List.iter
(fun (name, args) ->
if StringSet.mem name !all_constrs then
raise(Error(sdecl.ptype_loc, Duplicate_constructor name));
all_constrs := StringSet.add name !all_constrs)
cstrs;
if List.length (List.filter (fun (name, args) -> args <> []) cstrs)
> Config.max_tag then
raise(Error(sdecl.ptype_loc, Too_many_constructors));
Type_variant(List.map
(fun (name, args) ->
(name, List.map (transl_simple_type env true) args))
cstrs)
| Ptype_record lbls ->
let all_labels = ref StringSet.empty in
List.iter
(fun (name, mut, arg) ->
if StringSet.mem name !all_labels then
raise(Error(sdecl.ptype_loc, Duplicate_label name));
all_labels := StringSet.add name !all_labels)
lbls;
let lbls' =
List.map
(fun (name, mut, arg) ->
(name, mut, transl_simple_type env true arg))
lbls in
let rep =
if List.for_all (fun (name, mut, arg) -> is_float env arg) lbls'
then Record_float
else Record_regular in
Type_record(lbls', rep)
end;
type_manifest =
begin match sdecl.ptype_manifest with
None -> None
| Some sty ->
let ty = transl_simple_type env true sty in
if Ctype.cyclic_abbrev env id ty then
raise(Error(sdecl.ptype_loc, Recursive_abbrev name));
Some ty
end; } in
(* Check constraints *)
List.iter
(function (sty, sty', loc) ->
try
Ctype.unify env (transl_simple_type env false sty)
(transl_simple_type env false sty')
with Ctype.Unify _ ->
raise(Error(loc, Unconsistent_constraint)))
sdecl.ptype_cstrs;
(id, decl)
(* Generalize a type declaration *)
let generalize_decl decl =
List.iter Ctype.generalize decl.type_params;
begin match decl.type_kind with
Type_abstract ->
()
| Type_variant v ->
List.iter (fun (_, tyl) -> List.iter Ctype.generalize tyl) v
| Type_record(r, rep) ->
List.iter (fun (_, _, ty) -> Ctype.generalize ty) r
end;
begin match decl.type_manifest with
None -> ()
| Some ty -> Ctype.generalize ty
end
(* Check that all constraints are enforced *)
let rec check_constraints_rec env loc ty =
let ty = Ctype.repr ty in
match ty.desc with
| Tconstr (path, args, _) ->
Ctype.begin_def ();
let args' = List.map (fun _ -> Ctype.newvar ()) args in
let ty' = Ctype.newty (Tconstr(path, args', ref Mnil)) in
begin try Ctype.enforce_constraints env ty'
with Ctype.Unify _ -> assert false
end;
Ctype.end_def ();
Ctype.generalize ty';
List.iter2
(fun ty ty' ->
if not (Ctype.moregeneral env false ty' ty) then
raise (Error(loc, Constraint_failed (path, ty, ty'))))
args args';
List.iter (check_constraints_rec env loc) args
| _ ->
Btype.iter_type_expr (check_constraints_rec env loc) ty
let check_constraints env (_, sdecl) (_, decl) =
begin match decl.type_kind with
| Type_abstract -> ()
| Type_variant l ->
let pl =
match sdecl.ptype_kind with Ptype_variant pl -> pl | _ -> assert false
in
List.iter
(fun (name, tyl) ->
let styl = try List.assoc name pl with Not_found -> assert false in
List.iter2
(fun sty ty -> check_constraints_rec env sty.ptyp_loc ty)
styl tyl)
l
| Type_record (l, _) ->
let pl =
match sdecl.ptype_kind with Ptype_record pl -> pl | _ -> assert false
in
let rec get_loc name = function
[] -> assert false
| (name', _, sty) :: tl ->
if name = name' then sty.ptyp_loc else get_loc name tl
in
List.iter
(fun (name, _, ty) -> check_constraints_rec env (get_loc name pl) ty)
l
end;
begin match decl.type_manifest with
| None -> ()
| Some ty ->
let sty =
match sdecl.ptype_manifest with Some sty -> sty | _ -> assert false
in
check_constraints_rec env sty.ptyp_loc ty
end
(*
If both a variant/record definition and a type equation are given,
need to check that the equation refers to a type of the same kind
with the same constructors and labels.
*)
let check_abbrev env (_, sdecl) (id, decl) =
match decl with
{type_kind = (Type_variant _ | Type_record _); type_manifest = Some ty} ->
begin match (Ctype.repr ty).desc with
Tconstr(path, args, _) ->
begin try
let decl' = Env.find_type path env in
if List.length args = List.length decl.type_params
&& Ctype.equal env false args decl.type_params
&& Includecore.type_declarations env id
decl'
(Subst.type_declaration (Subst.add_type id path Subst.identity)
decl)
then ()
else raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
with Not_found ->
raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
end
| _ -> raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
end
| _ -> ()
(* Check for ill-defined abbrevs *)
(* Occur check *)
let check_recursive_abbrev env (name, sdecl) (id, decl) =
match decl.type_manifest with
Some ty ->
begin try Ctype.correct_abbrev env id decl.type_params ty with
Ctype.Recursive_abbrev ->
raise(Error(sdecl.ptype_loc, Recursive_abbrev name))
end
| _ ->
()
(* Translate a set of mutually recursive type declarations *)
let transl_type_decl env name_sdecl_list =
(* Create identifiers. *)
let id_list =
List.map (fun (name, _) -> Ident.create name) name_sdecl_list
in
(*
Since we've introduced fresh idents, make sure the definition
level is at least the binding time of these events. Otherwise,
passing one of the recursively-defined type constrs as argument
to an abbreviation may fail.
*)
Ctype.init_def(Ident.current_time());
Ctype.begin_def();
(* Enter types. *)
let temp_env = List.fold_left2 enter_type env name_sdecl_list id_list in
(* Translate each declaration. *)
let decls =
List.map2 (transl_declaration temp_env) name_sdecl_list id_list in
(* Generalize type declarations. *)
Ctype.end_def();
List.iter (function (_, decl) -> generalize_decl decl) decls;
(* Build the final env. *)
let newenv =
List.fold_right
(fun (id, decl) env -> Env.add_type id decl env)
decls env
in
(* Check for recursive abbrevs *)
List.iter2 (check_recursive_abbrev newenv) name_sdecl_list decls;
(* Check that all type variable are closed *)
List.iter2
(fun (_, sdecl) (id, decl) ->
match Ctype.closed_type_decl decl with
Some _ -> raise(Error(sdecl.ptype_loc, Unbound_type_var))
| None -> ())
name_sdecl_list decls;
(* Check re-exportation *)
List.iter2 (check_abbrev newenv) name_sdecl_list decls;
(* Check that constraints are enforced *)
List.iter2 (check_constraints newenv) name_sdecl_list decls;
(* Done *)
(decls, newenv)
(* Translate an exception declaration *)
let transl_exception env excdecl =
reset_type_variables();
Ctype.begin_def();
let types = List.map (transl_simple_type env true) excdecl in
Ctype.end_def();
List.iter Ctype.generalize types;
types
(* Translate an exception rebinding *)
let transl_exn_rebind env loc lid =
let cdescr =
try
Env.lookup_constructor lid env
with Not_found ->
raise(Error(loc, Unbound_exception lid)) in
match cdescr.cstr_tag with
Cstr_exception path -> (path, cdescr.cstr_args)
| _ -> raise(Error(loc, Not_an_exception lid))
(* Translate a value declaration *)
let transl_value_decl env valdecl =
let ty = Typetexp.transl_type_scheme env valdecl.pval_type in
match valdecl.pval_prim with
[] ->
{ val_type = ty; val_kind = Val_reg }
| decl ->
let arity = Ctype.arity ty in
if arity = 0 then
raise(Error(valdecl.pval_type.ptyp_loc, Null_arity_external));
let prim = Primitive.parse_declaration arity decl in
{ val_type = ty; val_kind = Val_prim prim }
(* Translate a "with" constraint -- much simplified version of
transl_type_decl. *)
let transl_with_constraint env sdecl =
reset_type_variables();
Ctype.begin_def();
let params =
try
List.map (enter_type_variable true) sdecl.ptype_params
with Already_bound ->
raise(Error(sdecl.ptype_loc, Repeated_parameter)) in
List.iter
(function (ty, ty', loc) ->
try
Ctype.unify env (transl_simple_type env false ty)
(transl_simple_type env false ty')
with Ctype.Unify _ ->
raise(Error(loc, Unconsistent_constraint)))
sdecl.ptype_cstrs;
let decl =
{ type_params = params;
type_arity = List.length params;
type_kind = Type_abstract;
type_manifest =
begin match sdecl.ptype_manifest with
None -> None
| Some sty -> Some(transl_simple_type env true sty)
end }
in
Ctype.end_def();
generalize_decl decl;
decl
(**** Error report ****)
open Format
let report_error ppf = function
| Repeated_parameter ->
fprintf ppf "A type parameter occurs several times"
| Duplicate_constructor s ->
fprintf ppf "Two constructors are named %s" s
| Too_many_constructors ->
fprintf ppf "Too many non-constant constructors -- \
maximum is %i non-constant constructors"
Config.max_tag
| Duplicate_label s ->
fprintf ppf "Two labels are named %s" s
| Recursive_abbrev s ->
fprintf ppf "The type abbreviation %s is cyclic" s
| Definition_mismatch ty ->
Printtyp.reset_and_mark_loops ty;
fprintf ppf
"The variant or record definition does not match that of type@ %a"
Printtyp.type_expr ty
| Constraint_failed (path, ty, ty') ->
fprintf ppf
"Constraints are not satisfied for type constructor %a.@."
Printtyp.path path;
Printtyp.reset_and_mark_loops ty;
Printtyp.mark_loops ty';
fprintf ppf "@[<hv>Type@ %a should be an instance of@ %a.@]"
Printtyp.type_expr ty Printtyp.type_expr ty'
| Unconsistent_constraint ->
fprintf ppf "The type constraints are not consistent"
| Type_clash trace ->
Printtyp.report_unification_error ppf trace
(function ppf ->
fprintf ppf "This type constructor expands to type")
(function ppf ->
fprintf ppf "but is here used with type")
| Null_arity_external ->
fprintf ppf "External identifiers must be functions"
| Unbound_type_var ->
fprintf ppf "A type variable is unbound in this type declaration"
| Unbound_exception lid ->
fprintf ppf "Unbound exception constructor@ %a" Printtyp.longident lid
| Not_an_exception lid ->
fprintf ppf "The constructor@ %a@ is not an exception"
Printtyp.longident lid