ocaml/otherlibs/num/big_int.ml

839 lines
30 KiB
OCaml

(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Valerie Menissier-Morain, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../../LICENSE. *)
(* *)
(***********************************************************************)
open Int_misc
open Nat
type big_int =
{ sign : int;
abs_value : nat }
let create_big_int sign nat =
if sign = 1 || sign = -1 ||
(sign = 0 &&
is_zero_nat nat 0 (num_digits_nat nat 0 (length_nat nat)))
then { sign = sign;
abs_value = nat }
else invalid_arg "create_big_int"
(* Sign of a big_int *)
let sign_big_int bi = bi.sign
let zero_big_int =
{ sign = 0;
abs_value = make_nat 1 }
let unit_big_int =
{ sign = 1;
abs_value = nat_of_int 1 }
(* Number of digits in a big_int *)
let num_digits_big_int bi =
num_digits_nat (bi.abs_value) 0 (length_nat bi.abs_value)
(* Opposite of a big_int *)
let minus_big_int bi =
{ sign = - bi.sign;
abs_value = copy_nat (bi.abs_value) 0 (num_digits_big_int bi)}
(* Absolute value of a big_int *)
let abs_big_int bi =
{ sign = if bi.sign = 0 then 0 else 1;
abs_value = copy_nat (bi.abs_value) 0 (num_digits_big_int bi)}
(* Comparison operators on big_int *)
(*
compare_big_int (bi, bi2) = sign of (bi-bi2)
i.e. 1 if bi > bi2
0 if bi = bi2
-1 if bi < bi2
*)
let compare_big_int bi1 bi2 =
if bi1.sign = 0 && bi2.sign = 0 then 0
else if bi1.sign < bi2.sign then -1
else if bi1.sign > bi2.sign then 1
else if bi1.sign = 1 then
compare_nat (bi1.abs_value) 0 (num_digits_big_int bi1)
(bi2.abs_value) 0 (num_digits_big_int bi2)
else
compare_nat (bi2.abs_value) 0 (num_digits_big_int bi2)
(bi1.abs_value) 0 (num_digits_big_int bi1)
let eq_big_int bi1 bi2 = compare_big_int bi1 bi2 = 0
and le_big_int bi1 bi2 = compare_big_int bi1 bi2 <= 0
and ge_big_int bi1 bi2 = compare_big_int bi1 bi2 >= 0
and lt_big_int bi1 bi2 = compare_big_int bi1 bi2 < 0
and gt_big_int bi1 bi2 = compare_big_int bi1 bi2 > 0
let max_big_int bi1 bi2 = if lt_big_int bi1 bi2 then bi2 else bi1
and min_big_int bi1 bi2 = if gt_big_int bi1 bi2 then bi2 else bi1
(* Operations on big_int *)
let pred_big_int bi =
match bi.sign with
0 -> { sign = -1; abs_value = nat_of_int 1}
| 1 -> let size_bi = num_digits_big_int bi in
let copy_bi = copy_nat (bi.abs_value) 0 size_bi in
ignore (decr_nat copy_bi 0 size_bi 0);
{ sign = if is_zero_nat copy_bi 0 size_bi then 0 else 1;
abs_value = copy_bi }
| _ -> let size_bi = num_digits_big_int bi in
let size_res = succ (size_bi) in
let copy_bi = create_nat (size_res) in
blit_nat copy_bi 0 (bi.abs_value) 0 size_bi;
set_digit_nat copy_bi size_bi 0;
ignore (incr_nat copy_bi 0 size_res 1);
{ sign = -1;
abs_value = copy_bi }
let succ_big_int bi =
match bi.sign with
0 -> {sign = 1; abs_value = nat_of_int 1}
| -1 -> let size_bi = num_digits_big_int bi in
let copy_bi = copy_nat (bi.abs_value) 0 size_bi in
ignore (decr_nat copy_bi 0 size_bi 0);
{ sign = if is_zero_nat copy_bi 0 size_bi then 0 else -1;
abs_value = copy_bi }
| _ -> let size_bi = num_digits_big_int bi in
let size_res = succ (size_bi) in
let copy_bi = create_nat (size_res) in
blit_nat copy_bi 0 (bi.abs_value) 0 size_bi;
set_digit_nat copy_bi size_bi 0;
ignore (incr_nat copy_bi 0 size_res 1);
{ sign = 1;
abs_value = copy_bi }
let add_big_int bi1 bi2 =
let size_bi1 = num_digits_big_int bi1
and size_bi2 = num_digits_big_int bi2 in
if bi1.sign = bi2.sign
then (* Add absolute values if signs are the same *)
{ sign = bi1.sign;
abs_value =
match compare_nat (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2 with
-1 -> let res = create_nat (succ size_bi2) in
(blit_nat res 0 (bi2.abs_value) 0 size_bi2;
set_digit_nat res size_bi2 0;
ignore
(add_nat res 0 (succ size_bi2)
(bi1.abs_value) 0 size_bi1 0);
res)
|_ -> let res = create_nat (succ size_bi1) in
(blit_nat res 0 (bi1.abs_value) 0 size_bi1;
set_digit_nat res size_bi1 0;
ignore (add_nat res 0 (succ size_bi1)
(bi2.abs_value) 0 size_bi2 0);
res)}
else (* Subtract absolute values if signs are different *)
match compare_nat (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2 with
0 -> zero_big_int
| 1 -> { sign = bi1.sign;
abs_value =
let res = copy_nat (bi1.abs_value) 0 size_bi1 in
(ignore (sub_nat res 0 size_bi1
(bi2.abs_value) 0 size_bi2 1);
res) }
| _ -> { sign = bi2.sign;
abs_value =
let res = copy_nat (bi2.abs_value) 0 size_bi2 in
(ignore (sub_nat res 0 size_bi2
(bi1.abs_value) 0 size_bi1 1);
res) }
(* Coercion with int type *)
let big_int_of_int i =
{ sign = sign_int i;
abs_value =
let res = (create_nat 1)
in (if i = monster_int
then (set_digit_nat res 0 biggest_int;
ignore (incr_nat res 0 1 1))
else set_digit_nat res 0 (abs i));
res }
let add_int_big_int i bi = add_big_int (big_int_of_int i) bi
let sub_big_int bi1 bi2 = add_big_int bi1 (minus_big_int bi2)
(* Returns i * bi *)
let mult_int_big_int i bi =
let size_bi = num_digits_big_int bi in
let size_res = succ size_bi in
if i = monster_int
then let res = create_nat size_res in
blit_nat res 0 (bi.abs_value) 0 size_bi;
set_digit_nat res size_bi 0;
ignore (mult_digit_nat res 0 size_res (bi.abs_value) 0 size_bi
(nat_of_int biggest_int) 0);
{ sign = - (sign_big_int bi);
abs_value = res }
else let res = make_nat (size_res) in
ignore (mult_digit_nat res 0 size_res (bi.abs_value) 0 size_bi
(nat_of_int (abs i)) 0);
{ sign = (sign_int i) * (sign_big_int bi);
abs_value = res }
let mult_big_int bi1 bi2 =
let size_bi1 = num_digits_big_int bi1
and size_bi2 = num_digits_big_int bi2 in
let size_res = size_bi1 + size_bi2 in
let res = make_nat (size_res) in
{ sign = bi1.sign * bi2.sign;
abs_value =
if size_bi2 > size_bi1
then (ignore (mult_nat res 0 size_res (bi2.abs_value) 0 size_bi2
(bi1.abs_value) 0 size_bi1);res)
else (ignore (mult_nat res 0 size_res (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2);res) }
(* (quotient, rest) of the euclidian division of 2 big_int *)
let quomod_big_int bi1 bi2 =
if bi2.sign = 0 then raise Division_by_zero
else
let size_bi1 = num_digits_big_int bi1
and size_bi2 = num_digits_big_int bi2 in
match compare_nat (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2 with
-1 -> (* 1/2 -> 0, reste 1, -1/2 -> -1, reste 1 *)
(* 1/-2 -> 0, reste 1, -1/-2 -> 1, reste 1 *)
if bi1.sign >= 0 then
(big_int_of_int 0, bi1)
else if bi2.sign >= 0 then
(big_int_of_int(-1), add_big_int bi2 bi1)
else
(big_int_of_int 1, sub_big_int bi1 bi2)
| 0 -> (big_int_of_int (bi1.sign * bi2.sign), zero_big_int)
| _ -> let bi1_negatif = bi1.sign = -1 in
let size_q =
if bi1_negatif
then succ (max (succ (size_bi1 - size_bi2)) 1)
else max (succ (size_bi1 - size_bi2)) 1
and size_r = succ (max size_bi1 size_bi2)
(* r is long enough to contain both quotient and remainder *)
(* of the euclidian division *)
in
(* set up quotient, remainder *)
let q = create_nat size_q
and r = create_nat size_r in
blit_nat r 0 (bi1.abs_value) 0 size_bi1;
set_to_zero_nat r size_bi1 (size_r - size_bi1);
(* do the division of |bi1| by |bi2|
- at the beginning, r contains |bi1|
- at the end, r contains
* in the size_bi2 least significant digits, the remainder
* in the size_r-size_bi2 most significant digits, the quotient
note the conditions for application of div_nat are verified here
*)
div_nat r 0 size_r (bi2.abs_value) 0 size_bi2;
(* separate quotient and remainder *)
blit_nat q 0 r size_bi2 (size_r - size_bi2);
let not_null_mod = not (is_zero_nat r 0 size_bi2) in
(* correct the signs, adjusting the quotient and remainder *)
if bi1_negatif && not_null_mod
then
(* bi1<0, r>0, noting r for (r, size_bi2) the remainder, *)
(* we have |bi1|=q * |bi2| + r with 0 < r < |bi2|, *)
(* thus -bi1 = q * |bi2| + r *)
(* and bi1 = (-q) * |bi2| + (-r) with -|bi2| < (-r) < 0 *)
(* thus bi1 = -(q+1) * |bi2| + (|bi2|-r) *)
(* with 0 < (|bi2|-r) < |bi2| *)
(* so the quotient has for sign the opposite of the bi2'one *)
(* and for value q+1 *)
(* and the remainder is strictly positive *)
(* has for value |bi2|-r *)
(let new_r = copy_nat (bi2.abs_value) 0 size_bi2 in
(* new_r contains (r, size_bi2) the remainder *)
{ sign = - bi2.sign;
abs_value = (set_digit_nat q (pred size_q) 0;
ignore (incr_nat q 0 size_q 1); q) },
{ sign = 1;
abs_value =
(ignore (sub_nat new_r 0 size_bi2 r 0 size_bi2 1);
new_r) })
else
(if bi1_negatif then set_digit_nat q (pred size_q) 0;
{ sign = if is_zero_nat q 0 size_q
then 0
else bi1.sign * bi2.sign;
abs_value = q },
{ sign = if not_null_mod then 1 else 0;
abs_value = copy_nat r 0 size_bi2 })
let div_big_int bi1 bi2 = fst (quomod_big_int bi1 bi2)
and mod_big_int bi1 bi2 = snd (quomod_big_int bi1 bi2)
let gcd_big_int bi1 bi2 =
let size_bi1 = num_digits_big_int bi1
and size_bi2 = num_digits_big_int bi2 in
if is_zero_nat (bi1.abs_value) 0 size_bi1 then abs_big_int bi2
else if is_zero_nat (bi2.abs_value) 0 size_bi2 then
{ sign = 1;
abs_value = bi1.abs_value }
else
{ sign = 1;
abs_value =
match compare_nat (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2 with
0 -> bi1.abs_value
| 1 ->
let res = copy_nat (bi1.abs_value) 0 size_bi1 in
let len =
gcd_nat res 0 size_bi1 (bi2.abs_value) 0 size_bi2 in
copy_nat res 0 len
| _ ->
let res = copy_nat (bi2.abs_value) 0 size_bi2 in
let len =
gcd_nat res 0 size_bi2 (bi1.abs_value) 0 size_bi1 in
copy_nat res 0 len
}
(* Coercion operators *)
let monster_big_int = big_int_of_int monster_int;;
let monster_nat = monster_big_int.abs_value;;
let is_int_big_int bi =
num_digits_big_int bi == 1 &&
match compare_nat bi.abs_value 0 1 monster_nat 0 1 with
| 0 -> bi.sign == -1
| -1 -> true
| _ -> false;;
let int_of_big_int bi =
try let n = int_of_nat bi.abs_value in
if bi.sign = -1 then - n else n
with Failure _ ->
if eq_big_int bi monster_big_int then monster_int
else failwith "int_of_big_int";;
let big_int_of_nativeint i =
if i = 0n then
zero_big_int
else if i > 0n then begin
let res = create_nat 1 in
set_digit_nat_native res 0 i;
{ sign = 1; abs_value = res }
end else begin
let res = create_nat 1 in
set_digit_nat_native res 0 (Nativeint.neg i);
{ sign = -1; abs_value = res }
end
let nativeint_of_big_int bi =
if num_digits_big_int bi > 1 then failwith "nativeint_of_big_int";
let i = nth_digit_nat_native bi.abs_value 0 in
if bi.sign >= 0 then
if i >= 0n then i else failwith "nativeint_of_big_int"
else
if i >= 0n || i = Nativeint.min_int
then Nativeint.neg i
else failwith "nativeint_of_big_int"
let big_int_of_int32 i = big_int_of_nativeint (Nativeint.of_int32 i)
let int32_of_big_int bi =
let i = nativeint_of_big_int bi in
if i <= 0x7FFF_FFFFn && i >= -0x8000_0000n
then Nativeint.to_int32 i
else failwith "int32_of_big_int"
let big_int_of_int64 i =
if Sys.word_size = 64 then
big_int_of_nativeint (Int64.to_nativeint i)
else begin
let (sg, absi) =
if i = 0L then (0, 0L)
else if i > 0L then (1, i)
else (-1, Int64.neg i) in
let res = create_nat 2 in
set_digit_nat_native res 0 (Int64.to_nativeint absi);
set_digit_nat_native res 1 (Int64.to_nativeint (Int64.shift_right absi 32));
{ sign = sg; abs_value = res }
end
let int64_of_big_int bi =
if Sys.word_size = 64 then
Int64.of_nativeint (nativeint_of_big_int bi)
else begin
let i =
match num_digits_big_int bi with
| 1 -> Int64.logand
(Int64.of_nativeint (nth_digit_nat_native bi.abs_value 0))
0xFFFFFFFFL
| 2 -> Int64.logor
(Int64.logand
(Int64.of_nativeint (nth_digit_nat_native bi.abs_value 0))
0xFFFFFFFFL)
(Int64.shift_left
(Int64.of_nativeint (nth_digit_nat_native bi.abs_value 1))
32)
| _ -> failwith "int64_of_big_int" in
if bi.sign >= 0 then
if i >= 0L then i else failwith "int64_of_big_int"
else
if i >= 0L || i = Int64.min_int
then Int64.neg i
else failwith "int64_of_big_int"
end
(* Coercion with nat type *)
let nat_of_big_int bi =
if bi.sign = -1
then failwith "nat_of_big_int"
else copy_nat (bi.abs_value) 0 (num_digits_big_int bi)
let sys_big_int_of_nat nat off len =
let length = num_digits_nat nat off len in
{ sign = if is_zero_nat nat off length then 0 else 1;
abs_value = copy_nat nat off length }
let big_int_of_nat nat =
sys_big_int_of_nat nat 0 (length_nat nat)
(* Coercion with string type *)
let string_of_big_int bi =
if bi.sign = -1
then "-" ^ string_of_nat bi.abs_value
else string_of_nat bi.abs_value
let sys_big_int_of_string_aux s ofs len sgn base =
if len < 1 then failwith "sys_big_int_of_string";
let n = sys_nat_of_string base s ofs len in
if is_zero_nat n 0 (length_nat n) then zero_big_int
else {sign = sgn; abs_value = n}
;;
let sys_big_int_of_string_base s ofs len sgn =
if len < 1 then failwith "sys_big_int_of_string";
if len < 2 then sys_big_int_of_string_aux s ofs len sgn 10
else
match (s.[ofs], s.[ofs+1]) with
| ('0', 'x') | ('0', 'X') -> sys_big_int_of_string_aux s (ofs+2) (len-2) sgn 16
| ('0', 'o') | ('0', 'O') -> sys_big_int_of_string_aux s (ofs+2) (len-2) sgn 8
| ('0', 'b') | ('0', 'B') -> sys_big_int_of_string_aux s (ofs+2) (len-2) sgn 2
| _ -> sys_big_int_of_string_aux s ofs len sgn 10
;;
let sys_big_int_of_string s ofs len =
if len < 1 then failwith "sys_big_int_of_string";
match s.[ofs] with
| '-' -> sys_big_int_of_string_base s (ofs+1) (len-1) (-1)
| '+' -> sys_big_int_of_string_base s (ofs+1) (len-1) 1
| _ -> sys_big_int_of_string_base s ofs len 1
;;
let big_int_of_string s =
sys_big_int_of_string s 0 (String.length s)
let power_base_nat base nat off len =
if base = 0 then nat_of_int 0 else
if is_zero_nat nat off len || base = 1 then nat_of_int 1 else
let power_base = make_nat (succ length_of_digit) in
let (pmax, pint) = make_power_base base power_base in
let (n, rem) =
let (x, y) = quomod_big_int (sys_big_int_of_nat nat off len)
(big_int_of_int (succ pmax)) in
(int_of_big_int x, int_of_big_int y) in
if n = 0 then copy_nat power_base (pred rem) 1 else
begin
let res = make_nat n
and res2 = make_nat (succ n)
and l = num_bits_int n - 2 in
blit_nat res 0 power_base pmax 1;
for i = l downto 0 do
let len = num_digits_nat res 0 n in
let len2 = min n (2 * len) in
let succ_len2 = succ len2 in
ignore (square_nat res2 0 len2 res 0 len);
begin
if n land (1 lsl i) > 0
then (set_to_zero_nat res 0 len;
ignore (mult_digit_nat res 0 succ_len2
res2 0 len2 power_base pmax))
else blit_nat res 0 res2 0 len2
end;
set_to_zero_nat res2 0 len2
done;
if rem > 0
then (ignore (mult_digit_nat res2 0 (succ n)
res 0 n power_base (pred rem));
res2)
else res
end
let power_int_positive_int i n =
match sign_int n with
0 -> unit_big_int
| -1 -> invalid_arg "power_int_positive_int"
| _ -> let nat = power_base_int (abs i) n in
{ sign = if i >= 0
then sign_int i
else if n land 1 = 0
then 1
else -1;
abs_value = nat}
let power_big_int_positive_int bi n =
match sign_int n with
0 -> unit_big_int
| -1 -> invalid_arg "power_big_int_positive_int"
| _ -> let bi_len = num_digits_big_int bi in
let res_len = bi_len * n in
let res = make_nat res_len
and res2 = make_nat res_len
and l = num_bits_int n - 2 in
blit_nat res 0 bi.abs_value 0 bi_len;
for i = l downto 0 do
let len = num_digits_nat res 0 res_len in
let len2 = min res_len (2 * len) in
set_to_zero_nat res2 0 len2;
ignore (square_nat res2 0 len2 res 0 len);
if n land (1 lsl i) > 0 then begin
let lenp = min res_len (len2 + bi_len) in
set_to_zero_nat res 0 lenp;
ignore(mult_nat res 0 lenp res2 0 len2 (bi.abs_value) 0 bi_len)
end else begin
blit_nat res 0 res2 0 len2
end
done;
{sign = if bi.sign >= 0 then bi.sign
else if n land 1 = 0 then 1 else -1;
abs_value = res}
let power_int_positive_big_int i bi =
match sign_big_int bi with
0 -> unit_big_int
| -1 -> invalid_arg "power_int_positive_big_int"
| _ -> let nat = power_base_nat
(abs i) (bi.abs_value) 0 (num_digits_big_int bi) in
{ sign = if i >= 0
then sign_int i
else if is_digit_odd (bi.abs_value) 0
then -1
else 1;
abs_value = nat }
let power_big_int_positive_big_int bi1 bi2 =
match sign_big_int bi2 with
0 -> unit_big_int
| -1 -> invalid_arg "power_big_int_positive_big_int"
| _ -> try
power_big_int_positive_int bi1 (int_of_big_int bi2)
with Failure _ ->
try
power_int_positive_big_int (int_of_big_int bi1) bi2
with Failure _ ->
raise Out_of_memory
(* If neither bi1 nor bi2 is a small integer, bi1^bi2 is not
representable. Indeed, on a 32-bit platform,
|bi1| >= 2 and |bi2| >= 2^30, hence bi1^bi2 has at least
2^30 bits = 2^27 bytes, greater than the max size of
allocated blocks. On a 64-bit platform,
|bi1| >= 2 and |bi2| >= 2^62, hence bi1^bi2 has at least
2^62 bits = 2^59 bytes, greater than the max size of
allocated blocks. *)
(* base_power_big_int compute bi*base^n *)
let base_power_big_int base n bi =
match sign_int n with
0 -> bi
| -1 -> let nat = power_base_int base (-n) in
let len_nat = num_digits_nat nat 0 (length_nat nat)
and len_bi = num_digits_big_int bi in
if len_bi < len_nat then
invalid_arg "base_power_big_int"
else if len_bi = len_nat &&
compare_digits_nat (bi.abs_value) len_bi nat len_nat = -1
then invalid_arg "base_power_big_int"
else
let copy = create_nat (succ len_bi) in
blit_nat copy 0 (bi.abs_value) 0 len_bi;
set_digit_nat copy len_bi 0;
div_nat copy 0 (succ len_bi)
nat 0 len_nat;
if not (is_zero_nat copy 0 len_nat)
then invalid_arg "base_power_big_int"
else { sign = bi.sign;
abs_value = copy_nat copy len_nat 1 }
| _ -> let nat = power_base_int base n in
let len_nat = num_digits_nat nat 0 (length_nat nat)
and len_bi = num_digits_big_int bi in
let new_len = len_bi + len_nat in
let res = make_nat new_len in
ignore
(if len_bi > len_nat
then mult_nat res 0 new_len
(bi.abs_value) 0 len_bi
nat 0 len_nat
else mult_nat res 0 new_len
nat 0 len_nat
(bi.abs_value) 0 len_bi)
; if is_zero_nat res 0 new_len
then zero_big_int
else create_big_int (bi.sign) res
(* Coercion with float type *)
let float_of_big_int bi =
float_of_string (string_of_big_int bi)
(* XL: suppression de big_int_of_float et nat_of_float. *)
(* Other functions needed *)
(* Integer part of the square root of a big_int *)
let sqrt_big_int bi =
match bi.sign with
| 0 -> zero_big_int
| -1 -> invalid_arg "sqrt_big_int"
| _ -> {sign = 1;
abs_value = sqrt_nat (bi.abs_value) 0 (num_digits_big_int bi)}
let square_big_int bi =
if bi.sign == 0 then zero_big_int else
let len_bi = num_digits_big_int bi in
let len_res = 2 * len_bi in
let res = make_nat len_res in
ignore (square_nat res 0 len_res (bi.abs_value) 0 len_bi);
{sign = 1; abs_value = res}
(* round off of the futur last digit (of the integer represented by the string
argument of the function) that is now the previous one.
if s contains an integer of the form (10^n)-1
then s <- only 0 digits and the result_int is true
else s <- the round number and the result_int is false *)
let round_futur_last_digit s off_set length =
let l = pred (length + off_set) in
if Char.code(Bytes.get s l) >= Char.code '5'
then
let rec round_rec l =
if l < off_set then true else begin
let current_char = Bytes.get s l in
if current_char = '9' then
(Bytes.set s l '0'; round_rec (pred l))
else
(Bytes.set s l (Char.chr (succ (Char.code current_char)));
false)
end
in round_rec (pred l)
else false
(* Approximation with floating decimal point a` la approx_ratio_exp *)
let approx_big_int prec bi =
let len_bi = num_digits_big_int bi in
let n =
max 0
(int_of_big_int (
add_int_big_int
(-prec)
(div_big_int (mult_big_int (big_int_of_int (pred len_bi))
(big_int_of_string "963295986"))
(big_int_of_string "100000000")))) in
let s =
Bytes.unsafe_of_string
(string_of_big_int (div_big_int bi (power_int_positive_int 10 n)))
in
let (sign, off, len) =
if Bytes.get s 0 = '-'
then ("-", 1, succ prec)
else ("", 0, prec) in
if (round_futur_last_digit s off (succ prec))
then (sign^"1."^(String.make prec '0')^"e"^
(string_of_int (n + 1 - off + Bytes.length s)))
else (sign^(Bytes.sub_string s off 1)^"."^
(Bytes.sub_string s (succ off) (pred prec))
^"e"^(string_of_int (n - succ off + Bytes.length s)))
(* Logical operations *)
(* Shift left by N bits *)
let shift_left_big_int bi n =
if n < 0 then invalid_arg "shift_left_big_int"
else if n = 0 then bi
else if bi.sign = 0 then bi
else begin
let size_bi = num_digits_big_int bi in
let size_res = size_bi + ((n + length_of_digit - 1) / length_of_digit) in
let res = create_nat size_res in
let ndigits = n / length_of_digit in
set_to_zero_nat res 0 ndigits;
blit_nat res ndigits bi.abs_value 0 size_bi;
let nbits = n mod length_of_digit in
if nbits > 0 then
shift_left_nat res ndigits size_bi res (ndigits + size_bi) nbits;
{ sign = bi.sign; abs_value = res }
end
(* Shift right by N bits (rounds toward zero) *)
let shift_right_towards_zero_big_int bi n =
if n < 0 then invalid_arg "shift_right_towards_zero_big_int"
else if n = 0 then bi
else if bi.sign = 0 then bi
else begin
let size_bi = num_digits_big_int bi in
let ndigits = n / length_of_digit in
let nbits = n mod length_of_digit in
if ndigits >= size_bi then zero_big_int else begin
let size_res = size_bi - ndigits in
let res = create_nat size_res in
blit_nat res 0 bi.abs_value ndigits size_res;
if nbits > 0 then begin
let tmp = create_nat 1 in
shift_right_nat res 0 size_res tmp 0 nbits
end;
if is_zero_nat res 0 size_res
then zero_big_int
else { sign = bi.sign; abs_value = res }
end
end
(* Compute 2^n - 1 *)
let two_power_m1_big_int n =
if n < 0 then invalid_arg "two_power_m1_big_int"
else if n = 0 then zero_big_int
else begin
let size_res = (n + length_of_digit - 1) / length_of_digit in
let res = make_nat size_res in
set_digit_nat_native res (n / length_of_digit)
(Nativeint.shift_left 1n (n mod length_of_digit));
ignore (decr_nat res 0 size_res 0);
{ sign = 1; abs_value = res }
end
(* Shift right by N bits (rounds toward minus infinity) *)
let shift_right_big_int bi n =
if n < 0 then invalid_arg "shift_right_big_int"
else if bi.sign >= 0 then shift_right_towards_zero_big_int bi n
else shift_right_towards_zero_big_int (sub_big_int bi (two_power_m1_big_int n)) n
(* Extract N bits starting at ofs.
Treats bi in two's complement.
Result is always positive. *)
let extract_big_int bi ofs n =
if ofs < 0 || n < 0 then invalid_arg "extract_big_int"
else if bi.sign = 0 then bi
else begin
let size_bi = num_digits_big_int bi in
let size_res = (n + length_of_digit - 1) / length_of_digit in
let ndigits = ofs / length_of_digit in
let nbits = ofs mod length_of_digit in
let res = make_nat size_res in
if ndigits < size_bi then
blit_nat res 0 bi.abs_value ndigits (min size_res (size_bi - ndigits));
if bi.sign < 0 then begin
(* Two's complement *)
complement_nat res 0 size_res;
(* PR#6010: need to increment res iff digits 0...ndigits-1 of bi are 0.
In this case, digits 0...ndigits-1 of not(bi) are all 0xFF...FF,
and adding 1 to them produces a carry out at ndigits. *)
let rec carry_incr i =
i >= ndigits || i >= size_bi ||
(is_digit_zero bi.abs_value i && carry_incr (i + 1)) in
if carry_incr 0 then ignore (incr_nat res 0 size_res 1)
end;
if nbits > 0 then begin
let tmp = create_nat 1 in
shift_right_nat res 0 size_res tmp 0 nbits
end;
let n' = n mod length_of_digit in
if n' > 0 then begin
let tmp = create_nat 1 in
set_digit_nat_native tmp 0
(Nativeint.shift_right_logical (-1n) (length_of_digit - n'));
land_digit_nat res (size_res - 1) tmp 0
end;
if is_zero_nat res 0 size_res
then zero_big_int
else { sign = 1; abs_value = res }
end
(* Bitwise logical operations. Arguments must be >= 0. *)
let and_big_int a b =
if a.sign < 0 || b.sign < 0 then invalid_arg "and_big_int"
else if a.sign = 0 || b.sign = 0 then zero_big_int
else begin
let size_a = num_digits_big_int a
and size_b = num_digits_big_int b in
let size_res = min size_a size_b in
let res = create_nat size_res in
blit_nat res 0 a.abs_value 0 size_res;
for i = 0 to size_res - 1 do
land_digit_nat res i b.abs_value i
done;
if is_zero_nat res 0 size_res
then zero_big_int
else { sign = 1; abs_value = res }
end
let or_big_int a b =
if a.sign < 0 || b.sign < 0 then invalid_arg "or_big_int"
else if a.sign = 0 then b
else if b.sign = 0 then a
else begin
let size_a = num_digits_big_int a
and size_b = num_digits_big_int b in
let size_res = max size_a size_b in
let res = create_nat size_res in
let or_aux a' b' size_b' =
blit_nat res 0 a'.abs_value 0 size_res;
for i = 0 to size_b' - 1 do
lor_digit_nat res i b'.abs_value i
done in
if size_a >= size_b
then or_aux a b size_b
else or_aux b a size_a;
if is_zero_nat res 0 size_res
then zero_big_int
else { sign = 1; abs_value = res }
end
let xor_big_int a b =
if a.sign < 0 || b.sign < 0 then invalid_arg "xor_big_int"
else if a.sign = 0 then b
else if b.sign = 0 then a
else begin
let size_a = num_digits_big_int a
and size_b = num_digits_big_int b in
let size_res = max size_a size_b in
let res = create_nat size_res in
let xor_aux a' b' size_b' =
blit_nat res 0 a'.abs_value 0 size_res;
for i = 0 to size_b' - 1 do
lxor_digit_nat res i b'.abs_value i
done in
if size_a >= size_b
then xor_aux a b size_b
else xor_aux b a size_a;
if is_zero_nat res 0 size_res
then zero_big_int
else { sign = 1; abs_value = res }
end