ocaml/typing/typedecl.ml

646 lines
22 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt*)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(**** Typing of type definitions ****)
open Misc
open Asttypes
open Parsetree
open Primitive
open Types
open Typedtree
open Typetexp
type error =
Repeated_parameter
| Duplicate_constructor of string
| Too_many_constructors
| Duplicate_label of string
| Recursive_abbrev of string
| Definition_mismatch of type_expr
| Constraint_failed of type_expr * type_expr
| Unconsistent_constraint
| Type_clash of (type_expr * type_expr) list
| Parameters_differ of type_expr * type_expr
| Null_arity_external
| Missing_native_external
| Unbound_type_var
| Unbound_exception of Longident.t
| Not_an_exception of Longident.t
| Bad_variance
| Unavailable_type_constructor of Path.t
exception Error of Location.t * error
(* Enter all declared types in the environment as abstract types *)
let enter_type env (name, sdecl) id =
let decl =
{ type_params =
List.map (fun _ -> Btype.newgenvar ()) sdecl.ptype_params;
type_arity = List.length sdecl.ptype_params;
type_kind = Type_abstract;
type_manifest =
begin match sdecl.ptype_manifest with None -> None
| Some _ -> Some(Ctype.newvar ()) end;
type_variance = List.map (fun _ -> true, true) sdecl.ptype_params;
}
in
Env.add_type id decl env
let update_type temp_env env id loc =
let path = Path.Pident id in
let decl = Env.find_type path temp_env in
match decl.type_manifest with None -> ()
| Some ty ->
let params = List.map (fun _ -> Ctype.newvar ()) decl.type_params in
try Ctype.unify env (Ctype.newconstr path params) ty
with Ctype.Unify trace ->
raise (Error(loc, Type_clash trace))
(* Determine if a type is (an abbreviation for) the type "float" *)
let is_float env ty =
match Ctype.repr (Ctype.expand_head env ty) with
{desc = Tconstr(p, _, _)} -> Path.same p Predef.path_float
| _ -> false
(* Translate one type declaration *)
module StringSet =
Set.Make(struct
type t = string
let compare = compare
end)
let transl_declaration env (name, sdecl) id =
(* Bind type parameters *)
reset_type_variables();
let params =
try List.map (enter_type_variable true) sdecl.ptype_params
with Already_bound ->
raise(Error(sdecl.ptype_loc, Repeated_parameter))
in
let decl =
{ type_params = params;
type_arity = List.length params;
type_kind =
begin match sdecl.ptype_kind with
Ptype_abstract ->
Type_abstract
| Ptype_variant cstrs ->
let all_constrs = ref StringSet.empty in
List.iter
(fun (name, args) ->
if StringSet.mem name !all_constrs then
raise(Error(sdecl.ptype_loc, Duplicate_constructor name));
all_constrs := StringSet.add name !all_constrs)
cstrs;
if List.length (List.filter (fun (name, args) -> args <> []) cstrs)
> Config.max_tag then
raise(Error(sdecl.ptype_loc, Too_many_constructors));
Type_variant(List.map
(fun (name, args) ->
(name, List.map (transl_simple_type env true) args))
cstrs)
| Ptype_record lbls ->
let all_labels = ref StringSet.empty in
List.iter
(fun (name, mut, arg) ->
if StringSet.mem name !all_labels then
raise(Error(sdecl.ptype_loc, Duplicate_label name));
all_labels := StringSet.add name !all_labels)
lbls;
let lbls' =
List.map
(fun (name, mut, arg) ->
(name, mut, transl_simple_type env true arg))
lbls in
let rep =
if List.for_all (fun (name, mut, arg) -> is_float env arg) lbls'
then Record_float
else Record_regular in
Type_record(lbls', rep)
end;
type_manifest =
begin match sdecl.ptype_manifest with
None -> None
| Some sty ->
let ty = transl_simple_type env true sty in
if Ctype.cyclic_abbrev env id ty then
raise(Error(sdecl.ptype_loc, Recursive_abbrev name));
Some ty
end;
type_variance = List.map (fun _ -> true, true) params;
} in
(* Check constraints *)
List.iter
(function (sty, sty', loc) ->
try
Ctype.unify env (transl_simple_type env false sty)
(transl_simple_type env false sty')
with Ctype.Unify _ ->
raise(Error(loc, Unconsistent_constraint)))
sdecl.ptype_cstrs;
(id, decl)
(* Generalize a type declaration *)
let generalize_decl decl =
List.iter Ctype.generalize decl.type_params;
begin match decl.type_kind with
Type_abstract ->
()
| Type_variant v ->
List.iter (fun (_, tyl) -> List.iter Ctype.generalize tyl) v
| Type_record(r, rep) ->
List.iter (fun (_, _, ty) -> Ctype.generalize ty) r
end;
begin match decl.type_manifest with
None -> ()
| Some ty -> Ctype.generalize ty
end
(* Check that all constraints are enforced *)
module TypeSet =
Set.Make
(struct
type t = type_expr
let compare t1 t2 = t1.id - t2.id
end)
let rec check_constraints_rec env loc visited ty =
let ty = Ctype.repr ty in
if TypeSet.mem ty !visited then () else begin
visited := TypeSet.add ty !visited;
match ty.desc with
| Tconstr (path, args, _) ->
Ctype.begin_def ();
let args' = List.map (fun _ -> Ctype.newvar ()) args in
let ty' = Ctype.newconstr path args' in
begin try Ctype.enforce_constraints env ty'
with Ctype.Unify _ -> assert false
| Not_found -> raise (Error(loc, Unavailable_type_constructor path))
end;
Ctype.end_def ();
Ctype.generalize ty';
if not (List.for_all2 (Ctype.moregeneral env false) args' args) then
raise (Error(loc, Constraint_failed (ty, ty')));
List.iter (check_constraints_rec env loc visited) args
| _ ->
Btype.iter_type_expr (check_constraints_rec env loc visited) ty
end
let check_constraints env (_, sdecl) (_, decl) =
let visited = ref TypeSet.empty in
begin match decl.type_kind with
| Type_abstract -> ()
| Type_variant l ->
let pl =
match sdecl.ptype_kind with Ptype_variant pl -> pl | _ -> assert false
in
List.iter
(fun (name, tyl) ->
let styl = try List.assoc name pl with Not_found -> assert false in
List.iter2
(fun sty ty -> check_constraints_rec env sty.ptyp_loc visited ty)
styl tyl)
l
| Type_record (l, _) ->
let pl =
match sdecl.ptype_kind with Ptype_record pl -> pl | _ -> assert false
in
let rec get_loc name = function
[] -> assert false
| (name', _, sty) :: tl ->
if name = name' then sty.ptyp_loc else get_loc name tl
in
List.iter
(fun (name, _, ty) ->
check_constraints_rec env (get_loc name pl) visited ty)
l
end;
begin match decl.type_manifest with
| None -> ()
| Some ty ->
let sty =
match sdecl.ptype_manifest with Some sty -> sty | _ -> assert false
in
check_constraints_rec env sty.ptyp_loc visited ty
end
(*
If both a variant/record definition and a type equation are given,
need to check that the equation refers to a type of the same kind
with the same constructors and labels.
*)
let check_abbrev env (_, sdecl) (id, decl) =
match decl with
{type_kind = (Type_variant _ | Type_record _); type_manifest = Some ty} ->
begin match (Ctype.repr ty).desc with
Tconstr(path, args, _) ->
begin try
let decl' = Env.find_type path env in
if List.length args = List.length decl.type_params
&& Ctype.equal env false args decl.type_params
&& Includecore.type_declarations env id
decl'
(Subst.type_declaration (Subst.add_type id path Subst.identity)
decl)
then ()
else raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
with Not_found ->
raise(Error(sdecl.ptype_loc, Unavailable_type_constructor path))
end
| _ -> raise(Error(sdecl.ptype_loc, Definition_mismatch ty))
end
| _ -> ()
(* Check for ill-defined abbrevs *)
(* Occur check *)
let check_recursive_abbrev env (name, sdecl) (id, decl) =
match decl.type_manifest with
Some ty ->
begin try Ctype.correct_abbrev env id decl.type_params ty with
Ctype.Recursive_abbrev ->
raise(Error(sdecl.ptype_loc, Recursive_abbrev name))
end
| _ ->
()
(* Recursive expansion check *)
let rec check_expansion_rec env id args loc id_check_list visited ty =
let ty = Ctype.repr ty in
if List.memq ty visited then () else
let visited = ty :: visited in
begin match ty.desc with
| Tconstr(Path.Pident id' as path, args', _) ->
if Ident.same id id' then begin
if not (Ctype.equal env false args args') then
raise (Error(loc, Parameters_differ(ty, Ctype.newconstr path args)))
end else begin try
let (loc, checked) = List.assoc id' id_check_list in
if List.exists (Ctype.equal env false args') !checked then () else
begin
checked := args' :: !checked;
let id_check_list = List.remove_assoc id' id_check_list in
let (params, body) = Env.find_type_expansion path env in
let (params, body) = Ctype.instance_parameterized_type params body in
begin
try List.iter2 (Ctype.unify env) params args'
with Ctype.Unify _ -> assert false
end;
check_expansion_rec env id args loc id_check_list visited body
end
with Not_found -> ()
end
| _ -> ()
end;
Btype.iter_type_expr
(check_expansion_rec env id args loc id_check_list visited) ty
let check_expansion env id_loc_list (id, decl) =
if decl.type_params = [] then () else
match decl.type_manifest with
| None -> ()
| Some body ->
let (args, body) =
Ctype.instance_parameterized_type decl.type_params body in
let id_check_list =
List.map (fun (id, loc) -> (id, (loc, ref []))) id_loc_list in
check_expansion_rec env id args
(List.assoc id id_loc_list) id_check_list [] body
(* Compute variance *)
let compute_variance env tvl nega posi ty =
let pvisited = ref TypeSet.empty
and nvisited = ref TypeSet.empty in
let rec compute_variance_rec posi nega ty =
let ty = Ctype.repr ty in
if (not posi || TypeSet.mem ty !pvisited)
&& (not nega || TypeSet.mem ty !nvisited) then
()
else begin
if posi then pvisited := TypeSet.add ty !pvisited;
if nega then nvisited := TypeSet.add ty !nvisited;
match ty.desc with
Tarrow (_, ty1, ty2, _) ->
compute_variance_rec nega posi ty1;
compute_variance_rec posi nega ty2
| Ttuple tl ->
List.iter (compute_variance_rec posi nega) tl
| Tconstr (path, tl, _) ->
if tl = [] then () else begin
try
let decl = Env.find_type path env in
List.iter2
(fun ty (co,cn) ->
compute_variance_rec
(posi && co || nega && cn)
(posi && cn || nega && co)
ty)
tl decl.type_variance
with Not_found ->
List.iter (compute_variance_rec true true) tl
end
| Tobject (ty, _) ->
compute_variance_rec posi nega ty
| Tfield (_, _, ty1, ty2) ->
compute_variance_rec posi nega ty1;
compute_variance_rec posi nega ty2
| Tsubst ty ->
compute_variance_rec posi nega ty
| Tvariant row ->
List.iter
(fun (_,f) ->
match Btype.row_field_repr f with
Rpresent (Some ty) ->
compute_variance_rec posi nega ty
| Reither (_, tyl, _, _) ->
List.iter (compute_variance_rec posi nega) tyl
| _ -> ())
(Btype.row_repr row).row_fields
| Tvar | Tnil | Tlink _ -> ()
end
in
compute_variance_rec nega posi ty;
List.iter
(fun (ty, covar, convar) ->
if TypeSet.mem ty !pvisited then covar := true;
if TypeSet.mem ty !nvisited then convar := true)
tvl
let compute_variance_decl env decl (required, loc) =
if decl.type_kind = Type_abstract && decl.type_manifest = None then
List.map (fun (c, n) -> if c || n then (c, n) else (true, true)) required
else
let tvl = List.map (fun ty -> (Btype.repr ty, ref false, ref false))
decl.type_params in
begin match decl.type_kind with
Type_abstract ->
begin match decl.type_manifest with
None -> assert false
| Some ty -> compute_variance env tvl true false ty
end
| Type_variant tll ->
List.iter
(fun (_,tl) -> List.iter (compute_variance env tvl true false) tl)
tll
| Type_record (ftl, _) ->
List.iter
(fun (_, mut, ty) -> compute_variance env tvl true (mut = Mutable) ty)
ftl
end;
List.map2
(fun (_, co, cn) (c, n) ->
if c && !cn || n && !co then raise (Error(loc, Bad_variance));
(!co, !cn))
tvl required
let rec compute_variance_fixpoint env decls required variances =
let new_decls =
List.map2
(fun (id, decl) variance -> id, {decl with type_variance = variance})
decls variances
in
let new_env =
List.fold_right (fun (id, decl) env -> Env.add_type id decl env)
new_decls env
in
let new_variances =
List.map2 (fun (_, decl) -> compute_variance_decl new_env decl)
new_decls required
in
let new_variances =
List.map2 (List.map2 (fun (c1,n1) (c2,n2) -> (c1||c2), (n1||n2)))
new_variances variances in
if new_variances = variances then
new_decls, new_env
else
compute_variance_fixpoint env decls required new_variances
(* for typeclass.ml *)
let compute_variance_decls env decls =
let decls, required = List.split decls in
let variances =
List.map (fun (l,_) -> List.map (fun _ -> false, false) l) required in
fst (compute_variance_fixpoint env decls required variances)
(* Translate a set of mutually recursive type declarations *)
let transl_type_decl env name_sdecl_list =
(* Create identifiers. *)
let id_list =
List.map (fun (name, _) -> Ident.create name) name_sdecl_list
in
(*
Since we've introduced fresh idents, make sure the definition
level is at least the binding time of these events. Otherwise,
passing one of the recursively-defined type constrs as argument
to an abbreviation may fail.
*)
Ctype.init_def(Ident.current_time());
Ctype.begin_def();
(* Enter types. *)
let temp_env = List.fold_left2 enter_type env name_sdecl_list id_list in
(* Translate each declaration. *)
let decls =
List.map2 (transl_declaration temp_env) name_sdecl_list id_list in
(* Build the final env. *)
let newenv =
List.fold_right
(fun (id, decl) env -> Env.add_type id decl env)
decls env
in
(* Update stubs *)
List.iter2
(fun id (_, sdecl) -> update_type temp_env newenv id sdecl.ptype_loc)
id_list name_sdecl_list;
(* Generalize type declarations. *)
Ctype.end_def();
List.iter (fun (_, decl) -> generalize_decl decl) decls;
(* Check for recursive abbrevs *)
List.iter2 (check_recursive_abbrev newenv) name_sdecl_list decls;
(* Check that all type variable are closed *)
List.iter2
(fun (_, sdecl) (id, decl) ->
match Ctype.closed_type_decl decl with
Some _ -> raise(Error(sdecl.ptype_loc, Unbound_type_var))
| None -> ())
name_sdecl_list decls;
(* Check re-exportation *)
List.iter2 (check_abbrev newenv) name_sdecl_list decls;
(* Check that constraints are enforced *)
List.iter2 (check_constraints newenv) name_sdecl_list decls;
(* Check that abbreviations have same parameters *)
let id_loc_list =
List.map2
(fun id (_,sdecl) ->
match sdecl.ptype_manifest with None -> []
| Some {ptyp_loc=loc} -> [id, loc])
id_list name_sdecl_list
in
List.iter (check_expansion newenv (List.flatten id_loc_list)) decls;
(* Add variances to the environment *)
let required =
List.map (fun (_, sdecl) -> sdecl.ptype_variance, sdecl.ptype_loc)
name_sdecl_list
in
let final_decls, final_env =
compute_variance_fixpoint env decls required
(List.map
(fun (_,decl) -> List.map (fun _ -> (false, false)) decl.type_params)
decls) in
(* Done *)
(final_decls, final_env)
(* Translate an exception declaration *)
let transl_exception env excdecl =
reset_type_variables();
Ctype.begin_def();
let types = List.map (transl_simple_type env true) excdecl in
Ctype.end_def();
List.iter Ctype.generalize types;
types
(* Translate an exception rebinding *)
let transl_exn_rebind env loc lid =
let cdescr =
try
Env.lookup_constructor lid env
with Not_found ->
raise(Error(loc, Unbound_exception lid)) in
match cdescr.cstr_tag with
Cstr_exception path -> (path, cdescr.cstr_args)
| _ -> raise(Error(loc, Not_an_exception lid))
(* Translate a value declaration *)
let transl_value_decl env valdecl =
let ty = Typetexp.transl_type_scheme env valdecl.pval_type in
match valdecl.pval_prim with
[] ->
{ val_type = ty; val_kind = Val_reg }
| decl ->
let arity = Ctype.arity ty in
if arity = 0 then
raise(Error(valdecl.pval_type.ptyp_loc, Null_arity_external));
let prim = Primitive.parse_declaration arity decl in
if !Clflags.native_code
&& prim.prim_arity > 5
&& prim.prim_native_name = ""
then raise(Error(valdecl.pval_type.ptyp_loc, Missing_native_external));
{ val_type = ty; val_kind = Val_prim prim }
(* Translate a "with" constraint -- much simplified version of
transl_type_decl. *)
let transl_with_constraint env sdecl =
reset_type_variables();
Ctype.begin_def();
let params =
try
List.map (enter_type_variable true) sdecl.ptype_params
with Already_bound ->
raise(Error(sdecl.ptype_loc, Repeated_parameter)) in
List.iter
(function (ty, ty', loc) ->
try
Ctype.unify env (transl_simple_type env false ty)
(transl_simple_type env false ty')
with Ctype.Unify _ ->
raise(Error(loc, Unconsistent_constraint)))
sdecl.ptype_cstrs;
let decl =
{ type_params = params;
type_arity = List.length params;
type_kind = Type_abstract;
type_manifest =
begin match sdecl.ptype_manifest with
None -> None
| Some sty -> Some(transl_simple_type env true sty)
end;
type_variance = [];
}
in
let decl =
{decl with type_variance =
compute_variance_decl env decl (sdecl.ptype_variance, sdecl.ptype_loc)} in
Ctype.end_def();
generalize_decl decl;
decl
(**** Error report ****)
open Format
let report_error ppf = function
| Repeated_parameter ->
fprintf ppf "A type parameter occurs several times"
| Duplicate_constructor s ->
fprintf ppf "Two constructors are named %s" s
| Too_many_constructors ->
fprintf ppf "Too many non-constant constructors -- \
maximum is %i non-constant constructors"
Config.max_tag
| Duplicate_label s ->
fprintf ppf "Two labels are named %s" s
| Recursive_abbrev s ->
fprintf ppf "The type abbreviation %s is cyclic" s
| Definition_mismatch ty ->
Printtyp.reset_and_mark_loops ty;
fprintf ppf
"The variant or record definition does not match that of type@ %a"
Printtyp.type_expr ty
| Constraint_failed (ty, ty') ->
fprintf ppf "Constraints are not satisfied in this type.@.";
Printtyp.reset_and_mark_loops ty;
Printtyp.mark_loops ty';
fprintf ppf "@[<hv>Type@ %a@ should be an instance of@ %a@]"
Printtyp.type_expr ty Printtyp.type_expr ty'
| Parameters_differ (ty, ty') ->
Printtyp.reset_and_mark_loops ty;
Printtyp.mark_loops ty';
fprintf ppf
"@[<hv>In this definition, type@ %a@ should be@ %a@]"
Printtyp.type_expr ty Printtyp.type_expr ty'
| Unconsistent_constraint ->
fprintf ppf "The type constraints are not consistent"
| Type_clash trace ->
Printtyp.report_unification_error ppf trace
(function ppf ->
fprintf ppf "This type constructor expands to type")
(function ppf ->
fprintf ppf "but is here used with type")
| Null_arity_external ->
fprintf ppf "External identifiers must be functions"
| Missing_native_external ->
fprintf ppf "@[<hv>An external function with more than 5 arguments \
requires second stub function@ \
for native-code compilation@]"
| Unbound_type_var ->
fprintf ppf "A type variable is unbound in this type declaration"
| Unbound_exception lid ->
fprintf ppf "Unbound exception constructor@ %a" Printtyp.longident lid
| Not_an_exception lid ->
fprintf ppf "The constructor@ %a@ is not an exception"
Printtyp.longident lid
| Bad_variance ->
fprintf ppf
"In this definition, expected parameter variances are not satisfied"
| Unavailable_type_constructor p ->
fprintf ppf "The definition of type %a@ is unavailable" Printtyp.path p