ocaml/typing/untypeast.ml

896 lines
33 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Thomas Gazagnaire (OCamlPro), Fabrice Le Fessant (INRIA Saclay) *)
(* *)
(* Copyright 2007 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
open Longident
open Asttypes
open Parsetree
open Ast_helper
module T = Typedtree
type mapper = {
attribute: mapper -> T.attribute -> attribute;
attributes: mapper -> T.attribute list -> attribute list;
binding_op: mapper -> T.binding_op -> T.pattern -> binding_op;
case: 'k . mapper -> 'k T.case -> case;
class_declaration: mapper -> T.class_declaration -> class_declaration;
class_description: mapper -> T.class_description -> class_description;
class_expr: mapper -> T.class_expr -> class_expr;
class_field: mapper -> T.class_field -> class_field;
class_signature: mapper -> T.class_signature -> class_signature;
class_structure: mapper -> T.class_structure -> class_structure;
class_type: mapper -> T.class_type -> class_type;
class_type_declaration: mapper -> T.class_type_declaration
-> class_type_declaration;
class_type_field: mapper -> T.class_type_field -> class_type_field;
constructor_declaration: mapper -> T.constructor_declaration
-> constructor_declaration;
expr: mapper -> T.expression -> expression;
extension_constructor: mapper -> T.extension_constructor
-> extension_constructor;
include_declaration: mapper -> T.include_declaration -> include_declaration;
include_description: mapper -> T.include_description -> include_description;
label_declaration: mapper -> T.label_declaration -> label_declaration;
location: mapper -> Location.t -> Location.t;
module_binding: mapper -> T.module_binding -> module_binding;
module_declaration: mapper -> T.module_declaration -> module_declaration;
module_substitution: mapper -> T.module_substitution -> module_substitution;
module_expr: mapper -> T.module_expr -> module_expr;
module_type: mapper -> T.module_type -> module_type;
module_type_declaration:
mapper -> T.module_type_declaration -> module_type_declaration;
package_type: mapper -> T.package_type -> package_type;
open_declaration: mapper -> T.open_declaration -> open_declaration;
open_description: mapper -> T.open_description -> open_description;
pat: 'k . mapper -> 'k T.general_pattern -> pattern;
row_field: mapper -> T.row_field -> row_field;
object_field: mapper -> T.object_field -> object_field;
signature: mapper -> T.signature -> signature;
signature_item: mapper -> T.signature_item -> signature_item;
structure: mapper -> T.structure -> structure;
structure_item: mapper -> T.structure_item -> structure_item;
typ: mapper -> T.core_type -> core_type;
type_declaration: mapper -> T.type_declaration -> type_declaration;
type_extension: mapper -> T.type_extension -> type_extension;
type_exception: mapper -> T.type_exception -> type_exception;
type_kind: mapper -> T.type_kind -> type_kind;
value_binding: mapper -> T.value_binding -> value_binding;
value_description: mapper -> T.value_description -> value_description;
with_constraint:
mapper -> (Path.t * Longident.t Location.loc * T.with_constraint)
-> with_constraint;
}
open T
(*
Some notes:
* For Pexp_function, we cannot go back to the exact original version
when there is a default argument, because the default argument is
translated in the typer. The code, if printed, will not be parsable because
new generated identifiers are not correct.
* For Pexp_apply, it is unclear whether arguments are reordered, especially
when there are optional arguments.
*)
(** Utility functions. *)
let string_is_prefix sub str =
let sublen = String.length sub in
String.length str >= sublen && String.sub str 0 sublen = sub
let rec lident_of_path = function
| Path.Pident id -> Longident.Lident (Ident.name id)
| Path.Pdot (p, s) -> Longident.Ldot (lident_of_path p, s)
| Path.Papply (p1, p2) ->
Longident.Lapply (lident_of_path p1, lident_of_path p2)
let map_loc sub {loc; txt} = {loc = sub.location sub loc; txt}
(** Try a name [$name$0], check if it's free, if not, increment and repeat. *)
let fresh_name s env =
let rec aux i =
let name = s ^ Int.to_string i in
if Env.bound_value name env then aux (i+1)
else name
in
aux 0
(** Extract the [n] patterns from the case of a letop *)
let rec extract_letop_patterns n pat =
if n = 0 then pat, []
else begin
match pat.pat_desc with
| Tpat_tuple([first; rest]) ->
let next, others = extract_letop_patterns (n-1) rest in
first, next :: others
| _ ->
let rec anys n =
if n = 0 then []
else { pat with pat_desc = Tpat_any } :: anys (n-1)
in
{ pat with pat_desc = Tpat_any }, anys (n-1)
end
(** Mapping functions. *)
let constant = function
| Const_char c -> Pconst_char c
| Const_string (s,loc,d) -> Pconst_string (s,loc,d)
| Const_int i -> Pconst_integer (Int.to_string i, None)
| Const_int32 i -> Pconst_integer (Int32.to_string i, Some 'l')
| Const_int64 i -> Pconst_integer (Int64.to_string i, Some 'L')
| Const_nativeint i -> Pconst_integer (Nativeint.to_string i, Some 'n')
| Const_float f -> Pconst_float (f,None)
let attribute sub a = {
attr_name = map_loc sub a.attr_name;
attr_payload = a.attr_payload;
attr_loc = a.attr_loc
}
let attributes sub l = List.map (sub.attribute sub) l
let structure sub str =
List.map (sub.structure_item sub) str.str_items
let open_description sub od =
let loc = sub.location sub od.open_loc in
let attrs = sub.attributes sub od.open_attributes in
Opn.mk ~loc ~attrs
~override:od.open_override
(snd od.open_expr)
let open_declaration sub od =
let loc = sub.location sub od.open_loc in
let attrs = sub.attributes sub od.open_attributes in
Opn.mk ~loc ~attrs
~override:od.open_override
(sub.module_expr sub od.open_expr)
let structure_item sub item =
let loc = sub.location sub item.str_loc in
let desc =
match item.str_desc with
Tstr_eval (exp, attrs) -> Pstr_eval (sub.expr sub exp, attrs)
| Tstr_value (rec_flag, list) ->
Pstr_value (rec_flag, List.map (sub.value_binding sub) list)
| Tstr_primitive vd ->
Pstr_primitive (sub.value_description sub vd)
| Tstr_type (rec_flag, list) ->
Pstr_type (rec_flag, List.map (sub.type_declaration sub) list)
| Tstr_typext tyext ->
Pstr_typext (sub.type_extension sub tyext)
| Tstr_exception ext ->
Pstr_exception (sub.type_exception sub ext)
| Tstr_module mb ->
Pstr_module (sub.module_binding sub mb)
| Tstr_recmodule list ->
Pstr_recmodule (List.map (sub.module_binding sub) list)
| Tstr_modtype mtd ->
Pstr_modtype (sub.module_type_declaration sub mtd)
| Tstr_open od ->
Pstr_open (sub.open_declaration sub od)
| Tstr_class list ->
Pstr_class
(List.map
(fun (ci, _) -> sub.class_declaration sub ci)
list)
| Tstr_class_type list ->
Pstr_class_type
(List.map
(fun (_id, _name, ct) -> sub.class_type_declaration sub ct)
list)
| Tstr_include incl ->
Pstr_include (sub.include_declaration sub incl)
| Tstr_attribute x ->
Pstr_attribute x
in
Str.mk ~loc desc
let value_description sub v =
let loc = sub.location sub v.val_loc in
let attrs = sub.attributes sub v.val_attributes in
Val.mk ~loc ~attrs
~prim:v.val_prim
(map_loc sub v.val_name)
(sub.typ sub v.val_desc)
let module_binding sub mb =
let loc = sub.location sub mb.mb_loc in
let attrs = sub.attributes sub mb.mb_attributes in
Mb.mk ~loc ~attrs
(map_loc sub mb.mb_name)
(sub.module_expr sub mb.mb_expr)
let type_parameter sub (ct, v) = (sub.typ sub ct, v)
let type_declaration sub decl =
let loc = sub.location sub decl.typ_loc in
let attrs = sub.attributes sub decl.typ_attributes in
Type.mk ~loc ~attrs
~params:(List.map (type_parameter sub) decl.typ_params)
~cstrs:(
List.map
(fun (ct1, ct2, loc) ->
(sub.typ sub ct1, sub.typ sub ct2, sub.location sub loc))
decl.typ_cstrs)
~kind:(sub.type_kind sub decl.typ_kind)
~priv:decl.typ_private
?manifest:(Option.map (sub.typ sub) decl.typ_manifest)
(map_loc sub decl.typ_name)
let type_kind sub tk = match tk with
| Ttype_abstract -> Ptype_abstract
| Ttype_variant list ->
Ptype_variant (List.map (sub.constructor_declaration sub) list)
| Ttype_record list ->
Ptype_record (List.map (sub.label_declaration sub) list)
| Ttype_open -> Ptype_open
let constructor_arguments sub = function
| Cstr_tuple l -> Pcstr_tuple (List.map (sub.typ sub) l)
| Cstr_record l -> Pcstr_record (List.map (sub.label_declaration sub) l)
let constructor_declaration sub cd =
let loc = sub.location sub cd.cd_loc in
let attrs = sub.attributes sub cd.cd_attributes in
Type.constructor ~loc ~attrs
~args:(constructor_arguments sub cd.cd_args)
?res:(Option.map (sub.typ sub) cd.cd_res)
(map_loc sub cd.cd_name)
let label_declaration sub ld =
let loc = sub.location sub ld.ld_loc in
let attrs = sub.attributes sub ld.ld_attributes in
Type.field ~loc ~attrs
~mut:ld.ld_mutable
(map_loc sub ld.ld_name)
(sub.typ sub ld.ld_type)
let type_extension sub tyext =
let attrs = sub.attributes sub tyext.tyext_attributes in
Te.mk ~attrs
~params:(List.map (type_parameter sub) tyext.tyext_params)
~priv:tyext.tyext_private
(map_loc sub tyext.tyext_txt)
(List.map (sub.extension_constructor sub) tyext.tyext_constructors)
let type_exception sub tyexn =
let attrs = sub.attributes sub tyexn.tyexn_attributes in
Te.mk_exception ~attrs
(sub.extension_constructor sub tyexn.tyexn_constructor)
let extension_constructor sub ext =
let loc = sub.location sub ext.ext_loc in
let attrs = sub.attributes sub ext.ext_attributes in
Te.constructor ~loc ~attrs
(map_loc sub ext.ext_name)
(match ext.ext_kind with
| Text_decl (args, ret) ->
Pext_decl (constructor_arguments sub args,
Option.map (sub.typ sub) ret)
| Text_rebind (_p, lid) -> Pext_rebind (map_loc sub lid)
)
let pattern : type k . _ -> k T.general_pattern -> _ = fun sub pat ->
let loc = sub.location sub pat.pat_loc in
(* todo: fix attributes on extras *)
let attrs = sub.attributes sub pat.pat_attributes in
let desc =
match pat with
{ pat_extra=[Tpat_unpack, loc, _attrs]; pat_desc = Tpat_any; _ } ->
Ppat_unpack { txt = None; loc }
| { pat_extra=[Tpat_unpack, _, _attrs]; pat_desc = Tpat_var (_,name); _ } ->
Ppat_unpack { name with txt = Some name.txt }
| { pat_extra=[Tpat_type (_path, lid), _, _attrs]; _ } ->
Ppat_type (map_loc sub lid)
| { pat_extra= (Tpat_constraint ct, _, _attrs) :: rem; _ } ->
Ppat_constraint (sub.pat sub { pat with pat_extra=rem },
sub.typ sub ct)
| _ ->
match pat.pat_desc with
Tpat_any -> Ppat_any
| Tpat_var (id, name) ->
begin
match (Ident.name id).[0] with
'A'..'Z' ->
Ppat_unpack { name with txt = Some name.txt}
| _ ->
Ppat_var name
end
(* We transform (_ as x) in x if _ and x have the same location.
The compiler transforms (x:t) into (_ as x : t).
This avoids transforming a warning 27 into a 26.
*)
| Tpat_alias ({pat_desc = Tpat_any; pat_loc}, _id, name)
when pat_loc = pat.pat_loc ->
Ppat_var name
| Tpat_alias (pat, _id, name) ->
Ppat_alias (sub.pat sub pat, name)
| Tpat_constant cst -> Ppat_constant (constant cst)
| Tpat_tuple list ->
Ppat_tuple (List.map (sub.pat sub) list)
| Tpat_construct (lid, _, args) ->
Ppat_construct (map_loc sub lid,
(match args with
[] -> None
| [arg] -> Some (sub.pat sub arg)
| args ->
Some
(Pat.tuple ~loc
(List.map (sub.pat sub) args)
)
))
| Tpat_variant (label, pato, _) ->
Ppat_variant (label, Option.map (sub.pat sub) pato)
| Tpat_record (list, closed) ->
Ppat_record (List.map (fun (lid, _, pat) ->
map_loc sub lid, sub.pat sub pat) list, closed)
| Tpat_array list -> Ppat_array (List.map (sub.pat sub) list)
| Tpat_lazy p -> Ppat_lazy (sub.pat sub p)
| Tpat_exception p -> Ppat_exception (sub.pat sub p)
| Tpat_value p -> (sub.pat sub (p :> pattern)).ppat_desc
| Tpat_or (p1, p2, _) -> Ppat_or (sub.pat sub p1, sub.pat sub p2)
in
Pat.mk ~loc ~attrs desc
let exp_extra sub (extra, loc, attrs) sexp =
let loc = sub.location sub loc in
let attrs = sub.attributes sub attrs in
let desc =
match extra with
Texp_coerce (cty1, cty2) ->
Pexp_coerce (sexp,
Option.map (sub.typ sub) cty1,
sub.typ sub cty2)
| Texp_constraint cty ->
Pexp_constraint (sexp, sub.typ sub cty)
| Texp_poly cto -> Pexp_poly (sexp, Option.map (sub.typ sub) cto)
| Texp_newtype s -> Pexp_newtype (mkloc s loc, sexp)
in
Exp.mk ~loc ~attrs desc
let case : type k . mapper -> k case -> _ = fun sub {c_lhs; c_guard; c_rhs} ->
{
pc_lhs = sub.pat sub c_lhs;
pc_guard = Option.map (sub.expr sub) c_guard;
pc_rhs = sub.expr sub c_rhs;
}
let value_binding sub vb =
let loc = sub.location sub vb.vb_loc in
let attrs = sub.attributes sub vb.vb_attributes in
Vb.mk ~loc ~attrs
(sub.pat sub vb.vb_pat)
(sub.expr sub vb.vb_expr)
let expression sub exp =
let loc = sub.location sub exp.exp_loc in
let attrs = sub.attributes sub exp.exp_attributes in
let desc =
match exp.exp_desc with
Texp_ident (_path, lid, _) -> Pexp_ident (map_loc sub lid)
| Texp_constant cst -> Pexp_constant (constant cst)
| Texp_let (rec_flag, list, exp) ->
Pexp_let (rec_flag,
List.map (sub.value_binding sub) list,
sub.expr sub exp)
(* Pexp_function can't have a label, so we split in 3 cases. *)
(* One case, no guard: It's a fun. *)
| Texp_function { arg_label; cases = [{c_lhs=p; c_guard=None; c_rhs=e}];
_ } ->
Pexp_fun (arg_label, None, sub.pat sub p, sub.expr sub e)
(* No label: it's a function. *)
| Texp_function { arg_label = Nolabel; cases; _; } ->
Pexp_function (List.map (sub.case sub) cases)
(* Mix of both, we generate `fun ~label:$name$ -> match $name$ with ...` *)
| Texp_function { arg_label = Labelled s | Optional s as label; cases;
_ } ->
let name = fresh_name s exp.exp_env in
Pexp_fun (label, None, Pat.var ~loc {loc;txt = name },
Exp.match_ ~loc (Exp.ident ~loc {loc;txt= Lident name})
(List.map (sub.case sub) cases))
| Texp_apply (exp, list) ->
Pexp_apply (sub.expr sub exp,
List.fold_right (fun (label, expo) list ->
match expo with
None -> list
| Some exp -> (label, sub.expr sub exp) :: list
) list [])
| Texp_match (exp, cases, _) ->
Pexp_match (sub.expr sub exp, List.map (sub.case sub) cases)
| Texp_try (exp, cases) ->
Pexp_try (sub.expr sub exp, List.map (sub.case sub) cases)
| Texp_tuple list ->
Pexp_tuple (List.map (sub.expr sub) list)
| Texp_construct (lid, _, args) ->
Pexp_construct (map_loc sub lid,
(match args with
[] -> None
| [ arg ] -> Some (sub.expr sub arg)
| args ->
Some
(Exp.tuple ~loc (List.map (sub.expr sub) args))
))
| Texp_variant (label, expo) ->
Pexp_variant (label, Option.map (sub.expr sub) expo)
| Texp_record { fields; extended_expression; _ } ->
let list = Array.fold_left (fun l -> function
| _, Kept _ -> l
| _, Overridden (lid, exp) -> (lid, sub.expr sub exp) :: l)
[] fields
in
Pexp_record (list, Option.map (sub.expr sub) extended_expression)
| Texp_field (exp, lid, _label) ->
Pexp_field (sub.expr sub exp, map_loc sub lid)
| Texp_setfield (exp1, lid, _label, exp2) ->
Pexp_setfield (sub.expr sub exp1, map_loc sub lid,
sub.expr sub exp2)
| Texp_array list ->
Pexp_array (List.map (sub.expr sub) list)
| Texp_ifthenelse (exp1, exp2, expo) ->
Pexp_ifthenelse (sub.expr sub exp1,
sub.expr sub exp2,
Option.map (sub.expr sub) expo)
| Texp_sequence (exp1, exp2) ->
Pexp_sequence (sub.expr sub exp1, sub.expr sub exp2)
| Texp_while (exp1, exp2) ->
Pexp_while (sub.expr sub exp1, sub.expr sub exp2)
| Texp_for (_id, name, exp1, exp2, dir, exp3) ->
Pexp_for (name,
sub.expr sub exp1, sub.expr sub exp2,
dir, sub.expr sub exp3)
| Texp_send (exp, meth, _) ->
Pexp_send (sub.expr sub exp, match meth with
Tmeth_name name -> mkloc name loc
| Tmeth_val id -> mkloc (Ident.name id) loc)
| Texp_new (_path, lid, _) -> Pexp_new (map_loc sub lid)
| Texp_instvar (_, path, name) ->
Pexp_ident ({loc = sub.location sub name.loc ; txt = lident_of_path path})
| Texp_setinstvar (_, _path, lid, exp) ->
Pexp_setinstvar (map_loc sub lid, sub.expr sub exp)
| Texp_override (_, list) ->
Pexp_override (List.map (fun (_path, lid, exp) ->
(map_loc sub lid, sub.expr sub exp)
) list)
| Texp_letmodule (_id, name, _pres, mexpr, exp) ->
Pexp_letmodule (name, sub.module_expr sub mexpr,
sub.expr sub exp)
| Texp_letexception (ext, exp) ->
Pexp_letexception (sub.extension_constructor sub ext,
sub.expr sub exp)
| Texp_assert exp -> Pexp_assert (sub.expr sub exp)
| Texp_lazy exp -> Pexp_lazy (sub.expr sub exp)
| Texp_object (cl, _) ->
Pexp_object (sub.class_structure sub cl)
| Texp_pack (mexpr) ->
Pexp_pack (sub.module_expr sub mexpr)
| Texp_letop {let_; ands; body; _} ->
let pat, and_pats =
extract_letop_patterns (List.length ands) body.c_lhs
in
let let_ = sub.binding_op sub let_ pat in
let ands = List.map2 (sub.binding_op sub) ands and_pats in
let body = sub.expr sub body.c_rhs in
Pexp_letop {let_; ands; body }
| Texp_unreachable ->
Pexp_unreachable
| Texp_extension_constructor (lid, _) ->
Pexp_extension ({ txt = "ocaml.extension_constructor"; loc },
PStr [ Str.eval ~loc
(Exp.construct ~loc (map_loc sub lid) None)
])
| Texp_open (od, exp) ->
Pexp_open (sub.open_declaration sub od, sub.expr sub exp)
in
List.fold_right (exp_extra sub) exp.exp_extra
(Exp.mk ~loc ~attrs desc)
let binding_op sub bop pat =
let pbop_op = bop.bop_op_name in
let pbop_pat = sub.pat sub pat in
let pbop_exp = sub.expr sub bop.bop_exp in
let pbop_loc = bop.bop_loc in
{pbop_op; pbop_pat; pbop_exp; pbop_loc}
let package_type sub pack =
(map_loc sub pack.pack_txt,
List.map (fun (s, ct) ->
(s, sub.typ sub ct)) pack.pack_fields)
let module_type_declaration sub mtd =
let loc = sub.location sub mtd.mtd_loc in
let attrs = sub.attributes sub mtd.mtd_attributes in
Mtd.mk ~loc ~attrs
?typ:(Option.map (sub.module_type sub) mtd.mtd_type)
(map_loc sub mtd.mtd_name)
let signature sub sg =
List.map (sub.signature_item sub) sg.sig_items
let signature_item sub item =
let loc = sub.location sub item.sig_loc in
let desc =
match item.sig_desc with
Tsig_value v ->
Psig_value (sub.value_description sub v)
| Tsig_type (rec_flag, list) ->
Psig_type (rec_flag, List.map (sub.type_declaration sub) list)
| Tsig_typesubst list ->
Psig_typesubst (List.map (sub.type_declaration sub) list)
| Tsig_typext tyext ->
Psig_typext (sub.type_extension sub tyext)
| Tsig_exception ext ->
Psig_exception (sub.type_exception sub ext)
| Tsig_module md ->
Psig_module (sub.module_declaration sub md)
| Tsig_modsubst ms ->
Psig_modsubst (sub.module_substitution sub ms)
| Tsig_recmodule list ->
Psig_recmodule (List.map (sub.module_declaration sub) list)
| Tsig_modtype mtd ->
Psig_modtype (sub.module_type_declaration sub mtd)
| Tsig_open od ->
Psig_open (sub.open_description sub od)
| Tsig_include incl ->
Psig_include (sub.include_description sub incl)
| Tsig_class list ->
Psig_class (List.map (sub.class_description sub) list)
| Tsig_class_type list ->
Psig_class_type (List.map (sub.class_type_declaration sub) list)
| Tsig_attribute x ->
Psig_attribute x
in
Sig.mk ~loc desc
let module_declaration sub md =
let loc = sub.location sub md.md_loc in
let attrs = sub.attributes sub md.md_attributes in
Md.mk ~loc ~attrs
(map_loc sub md.md_name)
(sub.module_type sub md.md_type)
let module_substitution sub ms =
let loc = sub.location sub ms.ms_loc in
let attrs = sub.attributes sub ms.ms_attributes in
Ms.mk ~loc ~attrs
(map_loc sub ms.ms_name)
(map_loc sub ms.ms_txt)
let include_infos f sub incl =
let loc = sub.location sub incl.incl_loc in
let attrs = sub.attributes sub incl.incl_attributes in
Incl.mk ~loc ~attrs
(f sub incl.incl_mod)
let include_declaration sub = include_infos sub.module_expr sub
let include_description sub = include_infos sub.module_type sub
let class_infos f sub ci =
let loc = sub.location sub ci.ci_loc in
let attrs = sub.attributes sub ci.ci_attributes in
Ci.mk ~loc ~attrs
~virt:ci.ci_virt
~params:(List.map (type_parameter sub) ci.ci_params)
(map_loc sub ci.ci_id_name)
(f sub ci.ci_expr)
let class_declaration sub = class_infos sub.class_expr sub
let class_description sub = class_infos sub.class_type sub
let class_type_declaration sub = class_infos sub.class_type sub
let functor_parameter sub : functor_parameter -> Parsetree.functor_parameter =
function
| Unit -> Unit
| Named (_, name, mtype) -> Named (name, sub.module_type sub mtype)
let module_type (sub : mapper) mty =
let loc = sub.location sub mty.mty_loc in
let attrs = sub.attributes sub mty.mty_attributes in
let desc = match mty.mty_desc with
Tmty_ident (_path, lid) -> Pmty_ident (map_loc sub lid)
| Tmty_alias (_path, lid) -> Pmty_alias (map_loc sub lid)
| Tmty_signature sg -> Pmty_signature (sub.signature sub sg)
| Tmty_functor (arg, mtype2) ->
Pmty_functor (functor_parameter sub arg, sub.module_type sub mtype2)
| Tmty_with (mtype, list) ->
Pmty_with (sub.module_type sub mtype,
List.map (sub.with_constraint sub) list)
| Tmty_typeof mexpr ->
Pmty_typeof (sub.module_expr sub mexpr)
in
Mty.mk ~loc ~attrs desc
let with_constraint sub (_path, lid, cstr) =
match cstr with
| Twith_type decl ->
Pwith_type (map_loc sub lid, sub.type_declaration sub decl)
| Twith_module (_path, lid2) ->
Pwith_module (map_loc sub lid, map_loc sub lid2)
| Twith_typesubst decl ->
Pwith_typesubst (map_loc sub lid, sub.type_declaration sub decl)
| Twith_modsubst (_path, lid2) ->
Pwith_modsubst (map_loc sub lid, map_loc sub lid2)
let module_expr (sub : mapper) mexpr =
let loc = sub.location sub mexpr.mod_loc in
let attrs = sub.attributes sub mexpr.mod_attributes in
match mexpr.mod_desc with
Tmod_constraint (m, _, Tmodtype_implicit, _ ) ->
sub.module_expr sub m
| _ ->
let desc = match mexpr.mod_desc with
Tmod_ident (_p, lid) -> Pmod_ident (map_loc sub lid)
| Tmod_structure st -> Pmod_structure (sub.structure sub st)
| Tmod_functor (arg, mexpr) ->
Pmod_functor
(functor_parameter sub arg, sub.module_expr sub mexpr)
| Tmod_apply (mexp1, mexp2, _) ->
Pmod_apply (sub.module_expr sub mexp1, sub.module_expr sub mexp2)
| Tmod_constraint (mexpr, _, Tmodtype_explicit mtype, _) ->
Pmod_constraint (sub.module_expr sub mexpr,
sub.module_type sub mtype)
| Tmod_constraint (_mexpr, _, Tmodtype_implicit, _) ->
assert false
| Tmod_unpack (exp, _pack) ->
Pmod_unpack (sub.expr sub exp)
(* TODO , sub.package_type sub pack) *)
in
Mod.mk ~loc ~attrs desc
let class_expr sub cexpr =
let loc = sub.location sub cexpr.cl_loc in
let attrs = sub.attributes sub cexpr.cl_attributes in
let desc = match cexpr.cl_desc with
| Tcl_constraint ( { cl_desc = Tcl_ident (_path, lid, tyl); _ },
None, _, _, _ ) ->
Pcl_constr (map_loc sub lid,
List.map (sub.typ sub) tyl)
| Tcl_structure clstr -> Pcl_structure (sub.class_structure sub clstr)
| Tcl_fun (label, pat, _pv, cl, _partial) ->
Pcl_fun (label, None, sub.pat sub pat, sub.class_expr sub cl)
| Tcl_apply (cl, args) ->
Pcl_apply (sub.class_expr sub cl,
List.fold_right (fun (label, expo) list ->
match expo with
None -> list
| Some exp -> (label, sub.expr sub exp) :: list
) args [])
| Tcl_let (rec_flat, bindings, _ivars, cl) ->
Pcl_let (rec_flat,
List.map (sub.value_binding sub) bindings,
sub.class_expr sub cl)
| Tcl_constraint (cl, Some clty, _vals, _meths, _concrs) ->
Pcl_constraint (sub.class_expr sub cl, sub.class_type sub clty)
| Tcl_open (od, e) ->
Pcl_open (sub.open_description sub od, sub.class_expr sub e)
| Tcl_ident _ -> assert false
| Tcl_constraint (_, None, _, _, _) -> assert false
in
Cl.mk ~loc ~attrs desc
let class_type sub ct =
let loc = sub.location sub ct.cltyp_loc in
let attrs = sub.attributes sub ct.cltyp_attributes in
let desc = match ct.cltyp_desc with
Tcty_signature csg -> Pcty_signature (sub.class_signature sub csg)
| Tcty_constr (_path, lid, list) ->
Pcty_constr (map_loc sub lid, List.map (sub.typ sub) list)
| Tcty_arrow (label, ct, cl) ->
Pcty_arrow (label, sub.typ sub ct, sub.class_type sub cl)
| Tcty_open (od, e) ->
Pcty_open (sub.open_description sub od, sub.class_type sub e)
in
Cty.mk ~loc ~attrs desc
let class_signature sub cs =
{
pcsig_self = sub.typ sub cs.csig_self;
pcsig_fields = List.map (sub.class_type_field sub) cs.csig_fields;
}
let class_type_field sub ctf =
let loc = sub.location sub ctf.ctf_loc in
let attrs = sub.attributes sub ctf.ctf_attributes in
let desc = match ctf.ctf_desc with
Tctf_inherit ct -> Pctf_inherit (sub.class_type sub ct)
| Tctf_val (s, mut, virt, ct) ->
Pctf_val (mkloc s loc, mut, virt, sub.typ sub ct)
| Tctf_method (s, priv, virt, ct) ->
Pctf_method (mkloc s loc, priv, virt, sub.typ sub ct)
| Tctf_constraint (ct1, ct2) ->
Pctf_constraint (sub.typ sub ct1, sub.typ sub ct2)
| Tctf_attribute x -> Pctf_attribute x
in
Ctf.mk ~loc ~attrs desc
let core_type sub ct =
let loc = sub.location sub ct.ctyp_loc in
let attrs = sub.attributes sub ct.ctyp_attributes in
let desc = match ct.ctyp_desc with
Ttyp_any -> Ptyp_any
| Ttyp_var s -> Ptyp_var s
| Ttyp_arrow (label, ct1, ct2) ->
Ptyp_arrow (label, sub.typ sub ct1, sub.typ sub ct2)
| Ttyp_tuple list -> Ptyp_tuple (List.map (sub.typ sub) list)
| Ttyp_constr (_path, lid, list) ->
Ptyp_constr (map_loc sub lid,
List.map (sub.typ sub) list)
| Ttyp_object (list, o) ->
Ptyp_object
(List.map (sub.object_field sub) list, o)
| Ttyp_class (_path, lid, list) ->
Ptyp_class (map_loc sub lid, List.map (sub.typ sub) list)
| Ttyp_alias (ct, s) ->
Ptyp_alias (sub.typ sub ct, s)
| Ttyp_variant (list, bool, labels) ->
Ptyp_variant (List.map (sub.row_field sub) list, bool, labels)
| Ttyp_poly (list, ct) ->
let list = List.map (fun v -> mkloc v loc) list in
Ptyp_poly (list, sub.typ sub ct)
| Ttyp_package pack -> Ptyp_package (sub.package_type sub pack)
in
Typ.mk ~loc ~attrs desc
let class_structure sub cs =
let rec remove_self = function
| { pat_desc = Tpat_alias (p, id, _s) }
when string_is_prefix "selfpat-" (Ident.name id) ->
remove_self p
| p -> p
in
{ pcstr_self = sub.pat sub (remove_self cs.cstr_self);
pcstr_fields = List.map (sub.class_field sub) cs.cstr_fields;
}
let row_field sub {rf_loc; rf_desc; rf_attributes;} =
let loc = sub.location sub rf_loc in
let attrs = sub.attributes sub rf_attributes in
let desc = match rf_desc with
| Ttag (label, bool, list) ->
Rtag (label, bool, List.map (sub.typ sub) list)
| Tinherit ct -> Rinherit (sub.typ sub ct)
in
Rf.mk ~loc ~attrs desc
let object_field sub {of_loc; of_desc; of_attributes;} =
let loc = sub.location sub of_loc in
let attrs = sub.attributes sub of_attributes in
let desc = match of_desc with
| OTtag (label, ct) ->
Otag (label, sub.typ sub ct)
| OTinherit ct -> Oinherit (sub.typ sub ct)
in
Of.mk ~loc ~attrs desc
and is_self_pat = function
| { pat_desc = Tpat_alias(_pat, id, _) } ->
string_is_prefix "self-" (Ident.name id)
| _ -> false
let class_field sub cf =
let loc = sub.location sub cf.cf_loc in
let attrs = sub.attributes sub cf.cf_attributes in
let desc = match cf.cf_desc with
Tcf_inherit (ovf, cl, super, _vals, _meths) ->
Pcf_inherit (ovf, sub.class_expr sub cl,
Option.map (fun v -> mkloc v loc) super)
| Tcf_constraint (cty, cty') ->
Pcf_constraint (sub.typ sub cty, sub.typ sub cty')
| Tcf_val (lab, mut, _, Tcfk_virtual cty, _) ->
Pcf_val (lab, mut, Cfk_virtual (sub.typ sub cty))
| Tcf_val (lab, mut, _, Tcfk_concrete (o, exp), _) ->
Pcf_val (lab, mut, Cfk_concrete (o, sub.expr sub exp))
| Tcf_method (lab, priv, Tcfk_virtual cty) ->
Pcf_method (lab, priv, Cfk_virtual (sub.typ sub cty))
| Tcf_method (lab, priv, Tcfk_concrete (o, exp)) ->
let remove_fun_self = function
| { exp_desc =
Texp_function { arg_label = Nolabel; cases = [case]; _ } }
when is_self_pat case.c_lhs && case.c_guard = None -> case.c_rhs
| e -> e
in
let exp = remove_fun_self exp in
Pcf_method (lab, priv, Cfk_concrete (o, sub.expr sub exp))
| Tcf_initializer exp ->
let remove_fun_self = function
| { exp_desc =
Texp_function { arg_label = Nolabel; cases = [case]; _ } }
when is_self_pat case.c_lhs && case.c_guard = None -> case.c_rhs
| e -> e
in
let exp = remove_fun_self exp in
Pcf_initializer (sub.expr sub exp)
| Tcf_attribute x -> Pcf_attribute x
in
Cf.mk ~loc ~attrs desc
let location _sub l = l
let default_mapper =
{
attribute = attribute;
attributes = attributes;
binding_op = binding_op;
structure = structure;
structure_item = structure_item;
module_expr = module_expr;
signature = signature;
signature_item = signature_item;
module_type = module_type;
with_constraint = with_constraint;
class_declaration = class_declaration;
class_expr = class_expr;
class_field = class_field;
class_structure = class_structure;
class_type = class_type;
class_type_field = class_type_field;
class_signature = class_signature;
class_type_declaration = class_type_declaration;
class_description = class_description;
type_declaration = type_declaration;
type_kind = type_kind;
typ = core_type;
type_extension = type_extension;
type_exception = type_exception;
extension_constructor = extension_constructor;
value_description = value_description;
pat = pattern;
expr = expression;
module_declaration = module_declaration;
module_substitution = module_substitution;
module_type_declaration = module_type_declaration;
module_binding = module_binding;
package_type = package_type ;
open_declaration = open_declaration;
open_description = open_description;
include_description = include_description;
include_declaration = include_declaration;
value_binding = value_binding;
constructor_declaration = constructor_declaration;
label_declaration = label_declaration;
case = case;
location = location;
row_field = row_field ;
object_field = object_field ;
}
let untype_structure ?(mapper : mapper = default_mapper) structure =
mapper.structure mapper structure
let untype_signature ?(mapper : mapper = default_mapper) signature =
mapper.signature mapper signature
let untype_expression ?(mapper=default_mapper) expression =
mapper.expr mapper expression
let untype_pattern ?(mapper=default_mapper) pattern =
mapper.pat mapper pattern