ocaml/typing/typemod.ml

2945 lines
106 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
open Misc
open Longident
open Path
open Asttypes
open Parsetree
open Types
open Format
module String = Misc.Stdlib.String
module Sig_component_kind = struct
type t =
| Value
| Type
| Module
| Module_type
| Extension_constructor
| Class
| Class_type
let to_string = function
| Value -> "value"
| Type -> "type"
| Module -> "module"
| Module_type -> "module type"
| Extension_constructor -> "extension constructor"
| Class -> "class"
| Class_type -> "class type"
(** Whether the name of a component of that kind can appear in a type. *)
let can_appear_in_types = function
| Value
| Extension_constructor ->
false
| Type
| Module
| Module_type
| Class
| Class_type ->
true
end
type hiding_error =
| Illegal_shadowing of {
shadowed_item_id: Ident.t;
shadowed_item_kind: Sig_component_kind.t;
shadowed_item_loc: Location.t;
shadower_id: Ident.t;
user_id: Ident.t;
user_kind: Sig_component_kind.t;
user_loc: Location.t;
}
| Appears_in_signature of {
opened_item_id: Ident.t;
opened_item_kind: Sig_component_kind.t;
user_id: Ident.t;
user_kind: Sig_component_kind.t;
user_loc: Location.t;
}
type error =
Cannot_apply of module_type
| Not_included of Includemod.error list
| Cannot_eliminate_dependency of module_type
| Signature_expected
| Structure_expected of module_type
| With_no_component of Longident.t
| With_mismatch of Longident.t * Includemod.error list
| With_makes_applicative_functor_ill_typed of
Longident.t * Path.t * Includemod.error list
| With_changes_module_alias of Longident.t * Ident.t * Path.t
| With_cannot_remove_constrained_type
| Repeated_name of Sig_component_kind.t * string
| Non_generalizable of type_expr
| Non_generalizable_class of Ident.t * class_declaration
| Non_generalizable_module of module_type
| Implementation_is_required of string
| Interface_not_compiled of string
| Not_allowed_in_functor_body
| Not_a_packed_module of type_expr
| Incomplete_packed_module of type_expr
| Scoping_pack of Longident.t * type_expr
| Recursive_module_require_explicit_type
| Apply_generative
| Cannot_scrape_alias of Path.t
| Cannot_scrape_package_type of Path.t
| Badly_formed_signature of string * Typedecl.error
| Cannot_hide_id of hiding_error
| Invalid_type_subst_rhs
exception Error of Location.t * Env.t * error
exception Error_forward of Location.error
open Typedtree
let rec path_concat head p =
match p with
Pident tail -> Pdot (Pident head, Ident.name tail)
| Pdot (pre, s) -> Pdot (path_concat head pre, s)
| Papply _ -> assert false
(* Extract a signature from a module type *)
let extract_sig env loc mty =
match Env.scrape_alias env mty with
Mty_signature sg -> sg
| Mty_alias path ->
raise(Error(loc, env, Cannot_scrape_alias path))
| _ -> raise(Error(loc, env, Signature_expected))
let extract_sig_open env loc mty =
match Env.scrape_alias env mty with
Mty_signature sg -> sg
| Mty_alias path ->
raise(Error(loc, env, Cannot_scrape_alias path))
| mty -> raise(Error(loc, env, Structure_expected mty))
(* Compute the environment after opening a module *)
let type_open_ ?used_slot ?toplevel ovf env loc lid =
let path = Env.lookup_module_path ~load:true ~loc:lid.loc lid.txt env in
match Env.open_signature ~loc ?used_slot ?toplevel ovf path env with
| Ok env -> path, env
| Error _ ->
let md = Env.find_module path env in
ignore (extract_sig_open env lid.loc md.md_type);
assert false
let initial_env ~loc ~safe_string ~initially_opened_module
~open_implicit_modules =
let env =
if safe_string then
Env.initial_safe_string
else
Env.initial_unsafe_string
in
let open_module env m =
let open Asttypes in
let lexbuf = Lexing.from_string m in
let txt =
Location.init lexbuf (Printf.sprintf "command line argument: -open %S" m);
Parse.simple_module_path lexbuf in
snd (type_open_ Override env loc {txt;loc})
in
let add_units env units =
String.Set.fold
(fun name env ->
Env.add_persistent_structure (Ident.create_persistent name) env)
units
env
in
let units =
List.map Env.persistent_structures_of_dir (Load_path.get ())
in
let env, units =
match initially_opened_module with
| None -> (env, units)
| Some m ->
(* Locate the directory that contains [m], adds the units it
contains to the environment and open [m] in the resulting
environment. *)
let rec loop before after =
match after with
| [] -> None
| units :: after ->
if String.Set.mem m units then
Some (units, List.rev_append before after)
else
loop (units :: before) after
in
let env, units =
match loop [] units with
| None ->
(env, units)
| Some (units_containing_m, other_units) ->
(add_units env units_containing_m, other_units)
in
(open_module env m, units)
in
let env = List.fold_left add_units env units in
List.fold_left open_module env open_implicit_modules
let type_open_descr ?used_slot ?toplevel env sod =
let (path, newenv) =
Builtin_attributes.warning_scope sod.popen_attributes
(fun () ->
type_open_ ?used_slot ?toplevel sod.popen_override env sod.popen_loc
sod.popen_expr
)
in
let od =
{
open_expr = (path, sod.popen_expr);
open_bound_items = [];
open_override = sod.popen_override;
open_env = newenv;
open_attributes = sod.popen_attributes;
open_loc = sod.popen_loc;
}
in
(od, newenv)
(* Forward declaration, to be filled in by type_module_type_of *)
let type_module_type_of_fwd :
(Env.t -> Parsetree.module_expr ->
Typedtree.module_expr * Types.module_type) ref
= ref (fun _env _m -> assert false)
(* Additional validity checks on type definitions arising from
recursive modules *)
let check_recmod_typedecls env decls =
let recmod_ids = List.map fst decls in
List.iter
(fun (id, md) ->
List.iter
(fun path ->
Typedecl.check_recmod_typedecl env md.Types.md_loc recmod_ids
path (Env.find_type path env))
(Mtype.type_paths env (Pident id) md.Types.md_type))
decls
(* Merge one "with" constraint in a signature *)
let rec add_rec_types env = function
Sig_type(id, decl, Trec_next, _) :: rem ->
add_rec_types (Env.add_type ~check:true id decl env) rem
| _ -> env
let check_type_decl env loc id row_id newdecl decl rs rem =
let env = Env.add_type ~check:true id newdecl env in
let env =
match row_id with
| None -> env
| Some id -> Env.add_type ~check:false id newdecl env
in
let env = if rs = Trec_not then env else add_rec_types env rem in
Includemod.type_declarations ~mark:Mark_both ~loc env id newdecl decl;
Typedecl.check_coherence env loc (Path.Pident id) newdecl
let update_rec_next rs rem =
match rs with
Trec_next -> rem
| Trec_first | Trec_not ->
match rem with
Sig_type (id, decl, Trec_next, priv) :: rem ->
Sig_type (id, decl, rs, priv) :: rem
| Sig_module (id, pres, mty, Trec_next, priv) :: rem ->
Sig_module (id, pres, mty, rs, priv) :: rem
| _ -> rem
let make_variance p n i =
let open Variance in
set May_pos p (set May_neg n (set May_weak n (set Inj i null)))
let rec iter_path_apply p ~f =
match p with
| Pident _ -> ()
| Pdot (p, _) -> iter_path_apply p ~f
| Papply (p1, p2) ->
iter_path_apply p1 ~f;
iter_path_apply p2 ~f;
f p1 p2 (* after recursing, so we know both paths are well typed *)
let path_is_strict_prefix =
let rec list_is_strict_prefix l ~prefix =
match l, prefix with
| [], [] -> false
| _ :: _, [] -> true
| [], _ :: _ -> false
| s1 :: t1, s2 :: t2 ->
String.equal s1 s2 && list_is_strict_prefix t1 ~prefix:t2
in
fun path ~prefix ->
match Path.flatten path, Path.flatten prefix with
| `Contains_apply, _ | _, `Contains_apply -> false
| `Ok (ident1, l1), `Ok (ident2, l2) ->
Ident.same ident1 ident2
&& list_is_strict_prefix l1 ~prefix:l2
let iterator_with_env env =
let env = ref (lazy env) in
let super = Btype.type_iterators in
env, { super with
Btype.it_signature = (fun self sg ->
(* add all items to the env before recursing down, to handle recursive
definitions *)
let env_before = !env in
env := lazy (Env.add_signature sg (Lazy.force env_before));
super.Btype.it_signature self sg;
env := env_before
);
Btype.it_module_type = (fun self -> function
| Mty_functor (param, mty_body) ->
let env_before = !env in
begin match param with
| Unit -> ()
| Named (param, mty_arg) ->
self.Btype.it_module_type self mty_arg;
match param with
| None -> ()
| Some id ->
env := lazy (Env.add_module ~arg:true id Mp_present
mty_arg (Lazy.force env_before))
end;
self.Btype.it_module_type self mty_body;
env := env_before;
| mty ->
super.Btype.it_module_type self mty
)
}
let retype_applicative_functor_type ~loc env funct arg =
let mty_functor = (Env.find_module funct env).md_type in
let mty_arg = (Env.find_module arg env).md_type in
let mty_param =
match Env.scrape_alias env mty_functor with
| Mty_functor (Named (_, mty_param), _) -> mty_param
| _ -> assert false (* could trigger due to MPR#7611 *)
in
Includemod.check_modtype_inclusion ~loc env mty_arg arg mty_param
(* When doing a deep destructive substitution with type M.N.t := .., we change M
and M.N and so we have to check that uses of the modules other than just
extracting components from them still make sense. There are only two such
kinds of uses:
- applicative functor types: F(M).t might not be well typed anymore
- aliases: module A = M still makes sense but it doesn't mean the same thing
anymore, so it's forbidden until it's clear what we should do with it.
This function would be called with M.N.t and N.t to check for these uses. *)
let check_usage_of_path_of_substituted_item paths env signature ~loc ~lid =
let iterator =
let env, super = iterator_with_env env in
{ super with
Btype.it_signature_item = (fun self -> function
| Sig_module (id, _, { md_type = Mty_alias aliased_path; _ }, _, _)
when List.exists
(fun path -> path_is_strict_prefix path ~prefix:aliased_path)
paths
->
let e = With_changes_module_alias (lid.txt, id, aliased_path) in
raise(Error(loc, Lazy.force !env, e))
| sig_item ->
super.Btype.it_signature_item self sig_item
);
Btype.it_path = (fun referenced_path ->
iter_path_apply referenced_path ~f:(fun funct arg ->
if List.exists
(fun path -> path_is_strict_prefix path ~prefix:arg)
paths
then
let env = Lazy.force !env in
try retype_applicative_functor_type ~loc env funct arg
with Includemod.Error explanation ->
raise(Error(loc, env,
With_makes_applicative_functor_ill_typed
(lid.txt, referenced_path, explanation)))
)
);
}
in
iterator.Btype.it_signature iterator signature;
Btype.unmark_iterators.Btype.it_signature Btype.unmark_iterators signature
(* After substitution one also needs to re-check the well-foundedness
of type declarations in recursive modules *)
let rec extract_next_modules = function
| Sig_module (id, _, mty, Trec_next, _) :: rem ->
let (id_mty_l, rem) = extract_next_modules rem in
((id, mty) :: id_mty_l, rem)
| sg -> ([], sg)
let check_well_formed_module env loc context mty =
(* Format.eprintf "@[check_well_formed_module@ %a@]@."
Printtyp.modtype mty; *)
let open Btype in
let iterator =
let rec check_signature env = function
| [] -> ()
| Sig_module (id, _, mty, Trec_first, _) :: rem ->
let (id_mty_l, rem) = extract_next_modules rem in
begin try
check_recmod_typedecls (Lazy.force env) ((id, mty) :: id_mty_l)
with Typedecl.Error (_, err) ->
raise (Error (loc, Lazy.force env,
Badly_formed_signature(context, err)))
end;
check_signature env rem
| _ :: rem ->
check_signature env rem
in
let env, super = iterator_with_env env in
{ super with
it_type_expr = (fun _self _ty -> ());
it_signature = (fun self sg ->
let env_before = !env in
let env = lazy (Env.add_signature sg (Lazy.force env_before)) in
check_signature env sg;
super.it_signature self sg);
}
in
iterator.it_module_type iterator mty
let () = Env.check_well_formed_module := check_well_formed_module
let type_decl_is_alias sdecl = (* assuming no explicit constraint *)
match sdecl.ptype_manifest with
| Some {ptyp_desc = Ptyp_constr (lid, stl)}
when List.length stl = List.length sdecl.ptype_params ->
begin
match
List.iter2 (fun x (y, _) ->
match x, y with
{ptyp_desc=Ptyp_var sx}, {ptyp_desc=Ptyp_var sy}
when sx = sy -> ()
| _, _ -> raise Exit)
stl sdecl.ptype_params;
with
| exception Exit -> None
| () -> Some lid
end
| _ -> None
;;
let params_are_constrained =
let rec loop = function
| [] -> false
| hd :: tl ->
match (Btype.repr hd).desc with
| Tvar _ -> List.memq hd tl || loop tl
| _ -> true
in
loop
;;
let merge_constraint initial_env remove_aliases loc sg constr =
let lid =
match constr with
| Pwith_type (lid, _) | Pwith_module (lid, _)
| Pwith_typesubst (lid, _) | Pwith_modsubst (lid, _) -> lid
in
let destructive_substitution =
match constr with
| Pwith_type _ | Pwith_module _ -> false
| Pwith_typesubst _ | Pwith_modsubst _ -> true
in
let real_ids = ref [] in
let rec merge sig_env sg namelist row_id =
match (sg, namelist, constr) with
([], _, _) ->
raise(Error(loc, sig_env, With_no_component lid.txt))
| (Sig_type(id, decl, rs, priv) :: rem, [s],
Pwith_type (_, ({ptype_kind = Ptype_abstract} as sdecl)))
when Ident.name id = s && Typedecl.is_fixed_type sdecl ->
let decl_row =
let arity = List.length sdecl.ptype_params in
{
type_params =
List.map (fun _ -> Btype.newgenvar()) sdecl.ptype_params;
type_arity = arity;
type_kind = Type_abstract;
type_private = Private;
type_manifest = None;
type_variance =
List.map
(fun (_, (v, i)) ->
let (c, n) =
match v with
| Covariant -> true, false
| Contravariant -> false, true
| NoVariance -> false, false
in
make_variance (not n) (not c) (i = Injective)
)
sdecl.ptype_params;
type_separability =
Types.Separability.default_signature ~arity;
type_loc = sdecl.ptype_loc;
type_is_newtype = false;
type_expansion_scope = Btype.lowest_level;
type_attributes = [];
type_immediate = Unknown;
type_unboxed = unboxed_false_default_false;
type_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
}
and id_row = Ident.create_local (s^"#row") in
let initial_env =
Env.add_type ~check:false id_row decl_row initial_env
in
let tdecl =
Typedecl.transl_with_constraint id (Some(Pident id_row))
~sig_env ~sig_decl:decl ~outer_env:initial_env sdecl in
let newdecl = tdecl.typ_type in
check_type_decl sig_env sdecl.ptype_loc id row_id newdecl decl rs rem;
let decl_row = {decl_row with type_params = newdecl.type_params} in
let rs' = if rs = Trec_first then Trec_not else rs in
(Pident id, lid, Twith_type tdecl),
Sig_type(id_row, decl_row, rs', priv)
:: Sig_type(id, newdecl, rs, priv)
:: rem
| (Sig_type(id, sig_decl, rs, priv) :: rem , [s],
(Pwith_type (_, sdecl) | Pwith_typesubst (_, sdecl) as constr))
when Ident.name id = s ->
let tdecl =
Typedecl.transl_with_constraint id None
~sig_env ~sig_decl ~outer_env:initial_env sdecl in
let newdecl = tdecl.typ_type and loc = sdecl.ptype_loc in
check_type_decl sig_env loc id row_id newdecl sig_decl rs rem;
begin match constr with
Pwith_type _ ->
(Pident id, lid, Twith_type tdecl),
Sig_type(id, newdecl, rs, priv) :: rem
| (* Pwith_typesubst *) _ ->
real_ids := [Pident id];
(Pident id, lid, Twith_typesubst tdecl),
update_rec_next rs rem
end
| (Sig_type(id, _, _, _) :: rem, [s], (Pwith_type _ | Pwith_typesubst _))
when Ident.name id = s ^ "#row" ->
merge sig_env rem namelist (Some id)
| (Sig_module(id, pres, md, rs, priv) :: rem, [s], Pwith_module (_, lid'))
when Ident.name id = s ->
let path, md' = Env.lookup_module ~loc lid'.txt initial_env in
let mty = md'.md_type in
let mty = Mtype.scrape_for_type_of ~remove_aliases sig_env mty in
let md'' = { md' with md_type = mty } in
let newmd = Mtype.strengthen_decl ~aliasable:false sig_env md'' path in
ignore(Includemod.modtypes ~mark:Mark_both ~loc sig_env
newmd.md_type md.md_type);
(Pident id, lid, Twith_module (path, lid')),
Sig_module(id, pres, newmd, rs, priv) :: rem
| (Sig_module(id, _, md, rs, _) :: rem, [s], Pwith_modsubst (_, lid'))
when Ident.name id = s ->
let path, md' = Env.lookup_module ~loc lid'.txt initial_env in
let aliasable = not (Env.is_functor_arg path sig_env) in
ignore
(Includemod.strengthened_module_decl ~loc ~mark:Mark_both
~aliasable sig_env md' path md);
real_ids := [Pident id];
(Pident id, lid, Twith_modsubst (path, lid')),
update_rec_next rs rem
| (Sig_module(id, _, md, rs, priv) as item :: rem, s :: namelist, constr)
when Ident.name id = s ->
let sg = extract_sig sig_env loc md.md_type in
let ((path, _, tcstr), newsg) = merge_signature sig_env sg namelist in
let path = path_concat id path in
real_ids := path :: !real_ids;
let item =
match md.md_type, constr with
Mty_alias _, (Pwith_module _ | Pwith_type _) ->
(* A module alias cannot be refined, so keep it
and just check that the constraint is correct *)
item
| _ ->
let newmd = {md with md_type = Mty_signature newsg} in
Sig_module(id, Mp_present, newmd, rs, priv)
in
(path, lid, tcstr),
item :: rem
| (item :: rem, _, _) ->
let (cstr, items) = merge sig_env rem namelist row_id
in
cstr, item :: items
and merge_signature env sg namelist =
let sig_env = Env.add_signature sg env in
merge sig_env sg namelist None
in
try
let names = Longident.flatten lid.txt in
let (tcstr, sg) = merge_signature initial_env sg names in
if destructive_substitution then (
match List.rev !real_ids with
| [] -> assert false
| last :: rest ->
(* The last item is the one that's removed. We don't need to check how
it's used since it's replaced by a more specific type/module. *)
assert (match last with Pident _ -> true | _ -> false);
match rest with
| [] -> ()
| _ :: _ ->
check_usage_of_path_of_substituted_item
rest initial_env sg ~loc ~lid;
);
let sg =
match tcstr with
| (_, _, Twith_typesubst tdecl) ->
let how_to_extend_subst =
let sdecl =
match constr with
| Pwith_typesubst (_, sdecl) -> sdecl
| _ -> assert false
in
match type_decl_is_alias sdecl with
| Some lid ->
let replacement, _ =
try Env.find_type_by_name lid.txt initial_env
with Not_found -> assert false
in
fun s path -> Subst.add_type_path path replacement s
| None ->
let body = Option.get tdecl.typ_type.type_manifest in
let params = tdecl.typ_type.type_params in
if params_are_constrained params
then raise(Error(loc, initial_env,
With_cannot_remove_constrained_type));
fun s path -> Subst.add_type_function path ~params ~body s
in
let sub = List.fold_left how_to_extend_subst Subst.identity !real_ids in
(* This signature will not be used directly, it will always be freshened
by the caller. So what we do with the scope doesn't really matter. But
making it local makes it unlikely that we will ever use the result of
this function unfreshened without issue. *)
Subst.signature Make_local sub sg
| (_, _, Twith_modsubst (real_path, _)) ->
let sub =
List.fold_left
(fun s path -> Subst.add_module_path path real_path s)
Subst.identity
!real_ids
in
(* See explanation in the [Twith_typesubst] case above. *)
Subst.signature Make_local sub sg
| _ ->
sg
in
check_well_formed_module initial_env loc "this instantiated signature"
(Mty_signature sg);
(tcstr, sg)
with Includemod.Error explanation ->
raise(Error(loc, initial_env, With_mismatch(lid.txt, explanation)))
(* Add recursion flags on declarations arising from a mutually recursive
block. *)
let map_rec fn decls rem =
match decls with
| [] -> rem
| d1 :: dl -> fn Trec_first d1 :: map_end (fn Trec_next) dl rem
let map_rec_type ~rec_flag fn decls rem =
match decls with
| [] -> rem
| d1 :: dl ->
let first =
match rec_flag with
| Recursive -> Trec_first
| Nonrecursive -> Trec_not
in
fn first d1 :: map_end (fn Trec_next) dl rem
let rec map_rec_type_with_row_types ~rec_flag fn decls rem =
match decls with
| [] -> rem
| d1 :: dl ->
if Btype.is_row_name (Ident.name d1.typ_id) then
fn Trec_not d1 :: map_rec_type_with_row_types ~rec_flag fn dl rem
else
map_rec_type ~rec_flag fn decls rem
(* Add type extension flags to extension constructors *)
let map_ext fn exts rem =
match exts with
| [] -> rem
| d1 :: dl -> fn Text_first d1 :: map_end (fn Text_next) dl rem
(* Auxiliary for translating recursively-defined module types.
Return a module type that approximates the shape of the given module
type AST. Retain only module, type, and module type
components of signatures. For types, retain only their arity,
making them abstract otherwise. *)
let rec approx_modtype env smty =
match smty.pmty_desc with
Pmty_ident lid ->
let (path, _info) =
Env.lookup_modtype ~use:false ~loc:smty.pmty_loc lid.txt env
in
Mty_ident path
| Pmty_alias lid ->
let path =
Env.lookup_module_path ~use:false ~load:false
~loc:smty.pmty_loc lid.txt env
in
Mty_alias(path)
| Pmty_signature ssg ->
Mty_signature(approx_sig env ssg)
| Pmty_functor(param, sres) ->
let (param, newenv) =
match param with
| Unit -> Types.Unit, env
| Named (param, sarg) ->
let arg = approx_modtype env sarg in
match param.txt with
| None -> Types.Named (None, arg), env
| Some name ->
let rarg = Mtype.scrape_for_functor_arg env arg in
let scope = Ctype.create_scope () in
let (id, newenv) =
Env.enter_module ~scope ~arg:true name Mp_present rarg env
in
Types.Named (Some id, arg), newenv
in
let res = approx_modtype newenv sres in
Mty_functor(param, res)
| Pmty_with(sbody, constraints) ->
let body = approx_modtype env sbody in
List.iter
(fun sdecl ->
match sdecl with
| Pwith_type _ -> ()
| Pwith_typesubst _ -> ()
| Pwith_module (_, lid') ->
(* Lookup the module to make sure that it is not recursive.
(GPR#1626) *)
ignore (Env.lookup_module ~use:false ~loc:lid'.loc lid'.txt env)
| Pwith_modsubst (_, lid') ->
ignore (Env.lookup_module ~use:false ~loc:lid'.loc lid'.txt env))
constraints;
body
| Pmty_typeof smod ->
let (_, mty) = !type_module_type_of_fwd env smod in
mty
| Pmty_extension ext ->
raise (Error_forward (Builtin_attributes.error_of_extension ext))
and approx_module_declaration env pmd =
{
Types.md_type = approx_modtype env pmd.pmd_type;
md_attributes = pmd.pmd_attributes;
md_loc = pmd.pmd_loc;
md_uid = Uid.internal_not_actually_unique;
}
and approx_sig env ssg =
match ssg with
[] -> []
| item :: srem ->
match item.psig_desc with
| Psig_type (rec_flag, sdecls) ->
let decls = Typedecl.approx_type_decl sdecls in
let rem = approx_sig env srem in
map_rec_type ~rec_flag
(fun rs (id, info) -> Sig_type(id, info, rs, Exported)) decls rem
| Psig_typesubst _ -> approx_sig env srem
| Psig_module { pmd_name = { txt = None; _ }; _ } ->
approx_sig env srem
| Psig_module pmd ->
let scope = Ctype.create_scope () in
let md = approx_module_declaration env pmd in
let pres =
match md.Types.md_type with
| Mty_alias _ -> Mp_absent
| _ -> Mp_present
in
let id, newenv =
Env.enter_module_declaration ~scope (Option.get pmd.pmd_name.txt)
pres md env
in
Sig_module(id, pres, md, Trec_not, Exported) :: approx_sig newenv srem
| Psig_modsubst pms ->
let scope = Ctype.create_scope () in
let _, md =
Env.lookup_module ~use:false ~loc:pms.pms_manifest.loc
pms.pms_manifest.txt env
in
let pres =
match md.Types.md_type with
| Mty_alias _ -> Mp_absent
| _ -> Mp_present
in
let _, newenv =
Env.enter_module_declaration ~scope pms.pms_name.txt pres md env
in
approx_sig newenv srem
| Psig_recmodule sdecls ->
let scope = Ctype.create_scope () in
let decls =
List.filter_map
(fun pmd ->
Option.map (fun name ->
Ident.create_scoped ~scope name,
approx_module_declaration env pmd
) pmd.pmd_name.txt
)
sdecls
in
let newenv =
List.fold_left
(fun env (id, md) -> Env.add_module_declaration ~check:false
id Mp_present md env)
env decls
in
map_rec
(fun rs (id, md) -> Sig_module(id, Mp_present, md, rs, Exported))
decls
(approx_sig newenv srem)
| Psig_modtype d ->
let info = approx_modtype_info env d in
let scope = Ctype.create_scope () in
let (id, newenv) =
Env.enter_modtype ~scope d.pmtd_name.txt info env
in
Sig_modtype(id, info, Exported) :: approx_sig newenv srem
| Psig_open sod ->
let _, env = type_open_descr env sod in
approx_sig env srem
| Psig_include sincl ->
let smty = sincl.pincl_mod in
let mty = approx_modtype env smty in
let scope = Ctype.create_scope () in
let sg, newenv = Env.enter_signature ~scope
(extract_sig env smty.pmty_loc mty) env in
sg @ approx_sig newenv srem
| Psig_class sdecls | Psig_class_type sdecls ->
let decls = Typeclass.approx_class_declarations env sdecls in
let rem = approx_sig env srem in
map_rec (fun rs decl ->
let open Typeclass in [
Sig_class_type(decl.clsty_ty_id, decl.clsty_ty_decl, rs,
Exported);
Sig_type(decl.clsty_obj_id, decl.clsty_obj_abbr, rs, Exported);
Sig_type(decl.clsty_typesharp_id, decl.clsty_abbr, rs, Exported);
]
) decls [rem]
|> List.flatten
| _ ->
approx_sig env srem
and approx_modtype_info env sinfo =
{
mtd_type = Option.map (approx_modtype env) sinfo.pmtd_type;
mtd_attributes = sinfo.pmtd_attributes;
mtd_loc = sinfo.pmtd_loc;
mtd_uid = Uid.internal_not_actually_unique;
}
let approx_modtype env smty =
Warnings.without_warnings
(fun () -> approx_modtype env smty)
(* Auxiliaries for checking the validity of name shadowing in signatures and
structures.
If a shadowing is valid, we also record some information (its ident,
location where it first appears, etc) about the item that gets shadowed. *)
module Signature_names : sig
type t
type info = [
| `Exported
| `From_open
| `Shadowable of Ident.t * Location.t
| `Substituted_away of Subst.t
]
val create : unit -> t
val check_value : ?info:info -> t -> Location.t -> Ident.t -> unit
val check_type : ?info:info -> t -> Location.t -> Ident.t -> unit
val check_typext : ?info:info -> t -> Location.t -> Ident.t -> unit
val check_module : ?info:info -> t -> Location.t -> Ident.t -> unit
val check_modtype : ?info:info -> t -> Location.t -> Ident.t -> unit
val check_class : ?info:info -> t -> Location.t -> Ident.t -> unit
val check_class_type: ?info:info -> t -> Location.t -> Ident.t -> unit
val check_sig_item:
?info:info -> t -> Location.t -> Types.signature_item -> unit
val simplify: Env.t -> t -> Types.signature -> Types.signature
end = struct
type bound_info = [
| `Exported
| `Shadowable of Ident.t * Location.t
]
type info = [
| `From_open
| `Substituted_away of Subst.t
| bound_info
]
type hide_reason =
| From_open
| Shadowed_by of Ident.t * Location.t
type to_be_removed = {
mutable subst: Subst.t;
mutable hide: (Sig_component_kind.t * Location.t * hide_reason) Ident.Map.t;
}
type names_infos = (string, bound_info) Hashtbl.t
type names = {
values: names_infos;
types: names_infos;
modules: names_infos;
modtypes: names_infos;
typexts: names_infos;
classes: names_infos;
class_types: names_infos;
}
let new_names () = {
values = Hashtbl.create 16;
types = Hashtbl.create 16;
modules = Hashtbl.create 16;
modtypes = Hashtbl.create 16;
typexts = Hashtbl.create 16;
classes = Hashtbl.create 16;
class_types = Hashtbl.create 16;
}
type t = {
bound: names;
to_be_removed: to_be_removed;
}
let create () = {
bound = new_names ();
to_be_removed = {
subst = Subst.identity;
hide = Ident.Map.empty;
};
}
let table_for component names =
let open Sig_component_kind in
match component with
| Value -> names.values
| Type -> names.types
| Module -> names.modules
| Module_type -> names.modtypes
| Extension_constructor -> names.typexts
| Class -> names.classes
| Class_type -> names.class_types
let check cl t loc id (info : info) =
let to_be_removed = t.to_be_removed in
match info with
| `Substituted_away s ->
to_be_removed.subst <- Subst.compose s to_be_removed.subst
| `From_open ->
to_be_removed.hide <-
Ident.Map.add id (cl, loc, From_open) to_be_removed.hide
| #bound_info as bound_info ->
let tbl = table_for cl t.bound in
let name = Ident.name id in
match Hashtbl.find_opt tbl name with
| None -> Hashtbl.add tbl name bound_info
| Some (`Shadowable (shadowed_id, shadowed_loc)) ->
Hashtbl.replace tbl name bound_info;
let reason = Shadowed_by (id, loc) in
to_be_removed.hide <-
Ident.Map.add shadowed_id (cl, shadowed_loc, reason)
to_be_removed.hide
| Some `Exported ->
raise(Error(loc, Env.empty, Repeated_name(cl, name)))
let check_value ?info t loc id =
let info =
match info with
| Some i -> i
| None -> `Shadowable (id, loc)
in
check Sig_component_kind.Value t loc id info
let check_type ?(info=`Exported) t loc id =
check Sig_component_kind.Type t loc id info
let check_module ?(info=`Exported) t loc id =
check Sig_component_kind.Module t loc id info
let check_modtype ?(info=`Exported) t loc id =
check Sig_component_kind.Module_type t loc id info
let check_typext ?(info=`Exported) t loc id =
check Sig_component_kind.Extension_constructor t loc id info
let check_class ?(info=`Exported) t loc id =
check Sig_component_kind.Class t loc id info
let check_class_type ?(info=`Exported) t loc id =
check Sig_component_kind.Class_type t loc id info
let check_sig_item ?info names loc component =
let component_kind, id =
let open Sig_component_kind in
match component with
| Sig_type(id, _, _, _) -> Type, id
| Sig_module(id, _, _, _, _) -> Module, id
| Sig_modtype(id, _, _) -> Module_type, id
| Sig_typext(id, _, _, _) -> Extension_constructor, id
| Sig_value (id, _, _) -> Value, id
| Sig_class (id, _, _, _) -> Class, id
| Sig_class_type (id, _, _, _) -> Class_type, id
in
let info =
match info with
| None -> `Shadowable (id, loc)
| Some i -> i
in
check component_kind names loc id info
(* We usually require name uniqueness of signature components (e.g. types,
modules, etc), however in some situation reusing the name is allowed: if
the component is a value or an extension, or if the name is introduced by
an include.
When there are multiple specifications of a component with the same name,
we try to keep only the last (rightmost) one, removing all references to
the previous ones from the signature.
If some reference cannot be removed, then we error out with
[Cannot_hide_id].
*)
let simplify env t sg =
let to_remove = t.to_be_removed in
let ids_to_remove =
Ident.Map.fold (fun id (kind, _, _) lst ->
if Sig_component_kind.can_appear_in_types kind then
id :: lst
else
lst
) to_remove.hide []
in
let aux component sg =
let user_kind, user_id, user_loc =
let open Sig_component_kind in
match component with
| Sig_value(id, v, _) -> Value, id, v.val_loc
| Sig_type (id, td, _, _) -> Type, id, td.type_loc
| Sig_typext (id, te, _, _) -> Extension_constructor, id, te.ext_loc
| Sig_module (id, _, md, _, _) -> Module, id, md.md_loc
| Sig_modtype (id, mtd, _) -> Module_type, id, mtd.mtd_loc
| Sig_class (id, c, _, _) -> Class, id, c.cty_loc
| Sig_class_type (id, ct, _, _) -> Class_type, id, ct.clty_loc
in
if Ident.Map.mem user_id to_remove.hide then
sg
else begin
let component =
if to_remove.subst == Subst.identity then
component
else
Subst.signature_item Keep to_remove.subst component
in
let component =
match ids_to_remove with
| [] -> component
| ids ->
try Mtype.nondep_sig_item env ids component with
| Ctype.Nondep_cannot_erase removed_item_id ->
let (removed_item_kind, removed_item_loc, reason) =
Ident.Map.find removed_item_id to_remove.hide
in
let err_loc, hiding_error =
match reason with
| From_open ->
removed_item_loc,
Appears_in_signature {
opened_item_kind = removed_item_kind;
opened_item_id = removed_item_id;
user_id;
user_kind;
user_loc;
}
| Shadowed_by (shadower_id, shadower_loc) ->
shadower_loc,
Illegal_shadowing {
shadowed_item_kind = removed_item_kind;
shadowed_item_id = removed_item_id;
shadowed_item_loc = removed_item_loc;
shadower_id;
user_id;
user_kind;
user_loc;
}
in
raise (Error(err_loc, env, Cannot_hide_id hiding_error))
in
component :: sg
end
in
List.fold_right aux sg []
end
let has_remove_aliases_attribute attr =
let remove_aliases =
Attr_helper.get_no_payload_attribute
["remove_aliases"; "ocaml.remove_aliases"] attr
in
match remove_aliases with
| None -> false
| Some _ -> true
(* Check and translate a module type expression *)
let transl_modtype_longident loc env lid =
let (path, _info) = Env.lookup_modtype ~loc lid env in
path
let transl_module_alias loc env lid =
Env.lookup_module_path ~load:false ~loc lid env
let mkmty desc typ env loc attrs =
let mty = {
mty_desc = desc;
mty_type = typ;
mty_loc = loc;
mty_env = env;
mty_attributes = attrs;
} in
Cmt_format.add_saved_type (Cmt_format.Partial_module_type mty);
mty
let mksig desc env loc =
let sg = { sig_desc = desc; sig_loc = loc; sig_env = env } in
Cmt_format.add_saved_type (Cmt_format.Partial_signature_item sg);
sg
(* let signature sg = List.map (fun item -> item.sig_type) sg *)
let rec transl_modtype env smty =
Builtin_attributes.warning_scope smty.pmty_attributes
(fun () -> transl_modtype_aux env smty)
and transl_modtype_functor_arg env sarg =
let mty = transl_modtype env sarg in
{mty with mty_type = Mtype.scrape_for_functor_arg env mty.mty_type}
and transl_modtype_aux env smty =
let loc = smty.pmty_loc in
match smty.pmty_desc with
Pmty_ident lid ->
let path = transl_modtype_longident loc env lid.txt in
mkmty (Tmty_ident (path, lid)) (Mty_ident path) env loc
smty.pmty_attributes
| Pmty_alias lid ->
let path = transl_module_alias loc env lid.txt in
mkmty (Tmty_alias (path, lid)) (Mty_alias path) env loc
smty.pmty_attributes
| Pmty_signature ssg ->
let sg = transl_signature env ssg in
mkmty (Tmty_signature sg) (Mty_signature sg.sig_type) env loc
smty.pmty_attributes
| Pmty_functor(sarg_opt, sres) ->
let t_arg, ty_arg, newenv =
match sarg_opt with
| Unit -> Unit, Types.Unit, env
| Named (param, sarg) ->
let arg = transl_modtype_functor_arg env sarg in
let (id, newenv) =
match param.txt with
| None -> None, env
| Some name ->
let scope = Ctype.create_scope () in
let id, newenv =
let arg_md =
{ md_type = arg.mty_type;
md_attributes = [];
md_loc = param.loc;
md_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
}
in
Env.enter_module_declaration ~scope ~arg:true name Mp_present
arg_md env
in
Some id, newenv
in
Named (id, param, arg), Types.Named (id, arg.mty_type), newenv
in
let res = transl_modtype newenv sres in
mkmty (Tmty_functor (t_arg, res))
(Mty_functor(ty_arg, res.mty_type)) env loc
smty.pmty_attributes
| Pmty_with(sbody, constraints) ->
let body = transl_modtype env sbody in
let init_sg = extract_sig env sbody.pmty_loc body.mty_type in
let remove_aliases = has_remove_aliases_attribute smty.pmty_attributes in
let (rev_tcstrs, final_sg) =
List.fold_left
(fun (rev_tcstrs,sg) sdecl ->
let (tcstr, sg) =
merge_constraint env remove_aliases smty.pmty_loc sg sdecl
in
(tcstr :: rev_tcstrs, sg)
)
([],init_sg) constraints in
let scope = Ctype.create_scope () in
mkmty (Tmty_with ( body, List.rev rev_tcstrs))
(Mtype.freshen ~scope (Mty_signature final_sg)) env loc
smty.pmty_attributes
| Pmty_typeof smod ->
let env = Env.in_signature false env in
let tmty, mty = !type_module_type_of_fwd env smod in
mkmty (Tmty_typeof tmty) mty env loc smty.pmty_attributes
| Pmty_extension ext ->
raise (Error_forward (Builtin_attributes.error_of_extension ext))
and transl_signature env sg =
let names = Signature_names.create () in
let rec transl_sig env sg =
match sg with
[] -> [], [], env
| item :: srem ->
let loc = item.psig_loc in
match item.psig_desc with
| Psig_value sdesc ->
let (tdesc, newenv) =
Typedecl.transl_value_decl env item.psig_loc sdesc
in
Signature_names.check_value names tdesc.val_loc tdesc.val_id;
let (trem,rem, final_env) = transl_sig newenv srem in
mksig (Tsig_value tdesc) env loc :: trem,
Sig_value(tdesc.val_id, tdesc.val_val, Exported) :: rem,
final_env
| Psig_type (rec_flag, sdecls) ->
let (decls, newenv) =
Typedecl.transl_type_decl env rec_flag sdecls
in
List.iter (fun td ->
Signature_names.check_type names td.typ_loc td.typ_id
) decls;
let (trem, rem, final_env) = transl_sig newenv srem in
let sg =
map_rec_type_with_row_types ~rec_flag
(fun rs td -> Sig_type(td.typ_id, td.typ_type, rs, Exported))
decls rem
in
mksig (Tsig_type (rec_flag, decls)) env loc :: trem,
sg,
final_env
| Psig_typesubst sdecls ->
let (decls, newenv) =
Typedecl.transl_type_decl env Nonrecursive sdecls
in
List.iter (fun td ->
if td.typ_kind <> Ttype_abstract || td.typ_manifest = None ||
td.typ_private = Private
then
raise (Error (td.typ_loc, env, Invalid_type_subst_rhs));
let params = td.typ_type.type_params in
if params_are_constrained params
then raise(Error(loc, env, With_cannot_remove_constrained_type));
let info =
let subst =
Subst.add_type_function (Pident td.typ_id)
~params
~body:(Option.get td.typ_type.type_manifest)
Subst.identity
in
Some (`Substituted_away subst)
in
Signature_names.check_type ?info names td.typ_loc td.typ_id
) decls;
let (trem, rem, final_env) = transl_sig newenv srem in
let sg = rem
in
mksig (Tsig_typesubst decls) env loc :: trem,
sg,
final_env
| Psig_typext styext ->
let (tyext, newenv) =
Typedecl.transl_type_extension false env item.psig_loc styext
in
let constructors = tyext.tyext_constructors in
List.iter (fun ext ->
Signature_names.check_typext names ext.ext_loc ext.ext_id
) constructors;
let (trem, rem, final_env) = transl_sig newenv srem in
mksig (Tsig_typext tyext) env loc :: trem,
map_ext (fun es ext ->
Sig_typext(ext.ext_id, ext.ext_type, es, Exported)
) constructors rem,
final_env
| Psig_exception sext ->
let (ext, newenv) = Typedecl.transl_type_exception env sext in
let constructor = ext.tyexn_constructor in
Signature_names.check_typext names constructor.ext_loc
constructor.ext_id;
let (trem, rem, final_env) = transl_sig newenv srem in
mksig (Tsig_exception ext) env loc :: trem,
Sig_typext(constructor.ext_id,
constructor.ext_type,
Text_exception,
Exported) :: rem,
final_env
| Psig_module pmd ->
let scope = Ctype.create_scope () in
let tmty =
Builtin_attributes.warning_scope pmd.pmd_attributes
(fun () -> transl_modtype env pmd.pmd_type)
in
let pres =
match tmty.mty_type with
| Mty_alias _ -> Mp_absent
| _ -> Mp_present
in
let md = {
md_type=tmty.mty_type;
md_attributes=pmd.pmd_attributes;
md_loc=pmd.pmd_loc;
md_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
}
in
let id, newenv =
match pmd.pmd_name.txt with
| None -> None, env
| Some name ->
let id, newenv =
Env.enter_module_declaration ~scope name pres md env
in
Signature_names.check_module names pmd.pmd_name.loc id;
Some id, newenv
in
let (trem, rem, final_env) = transl_sig newenv srem in
mksig (Tsig_module {md_id=id; md_name=pmd.pmd_name;
md_presence=pres; md_type=tmty;
md_loc=pmd.pmd_loc;
md_attributes=pmd.pmd_attributes})
env loc :: trem,
(match id with
| None -> rem
| Some id -> Sig_module(id, pres, md, Trec_not, Exported) :: rem),
final_env
| Psig_modsubst pms ->
let scope = Ctype.create_scope () in
let path, md =
Env.lookup_module ~loc:pms.pms_manifest.loc
pms.pms_manifest.txt env
in
let aliasable = not (Env.is_functor_arg path env) in
let md =
if not aliasable then
md
else
{ md_type = Mty_alias path;
md_attributes = pms.pms_attributes;
md_loc = pms.pms_loc;
md_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
}
in
let pres =
match md.md_type with
| Mty_alias _ -> Mp_absent
| _ -> Mp_present
in
let id, newenv =
Env.enter_module_declaration ~scope pms.pms_name.txt pres md env
in
let info =
`Substituted_away (Subst.add_module id path Subst.identity)
in
Signature_names.check_module ~info names pms.pms_name.loc id;
let (trem, rem, final_env) = transl_sig newenv srem in
mksig (Tsig_modsubst {ms_id=id; ms_name=pms.pms_name;
ms_manifest=path; ms_txt=pms.pms_manifest;
ms_loc=pms.pms_loc;
ms_attributes=pms.pms_attributes})
env loc :: trem,
rem,
final_env
| Psig_recmodule sdecls ->
let (tdecls, newenv) =
transl_recmodule_modtypes env sdecls in
let decls =
List.filter_map (fun (md, uid) ->
match md.md_id with
| None -> None
| Some id -> Some (id, md, uid)
) tdecls
in
List.iter (fun (id, md, _) ->
Signature_names.check_module names md.md_loc id
) decls;
let (trem, rem, final_env) = transl_sig newenv srem in
mksig (Tsig_recmodule (List.map fst tdecls)) env loc :: trem,
map_rec (fun rs (id, md, uid) ->
let d = {Types.md_type = md.md_type.mty_type;
md_attributes = md.md_attributes;
md_loc = md.md_loc;
md_uid = uid;
} in
Sig_module(id, Mp_present, d, rs, Exported))
decls rem,
final_env
| Psig_modtype pmtd ->
let newenv, mtd, sg = transl_modtype_decl names env pmtd in
let (trem, rem, final_env) = transl_sig newenv srem in
mksig (Tsig_modtype mtd) env loc :: trem,
sg :: rem,
final_env
| Psig_open sod ->
let (od, newenv) = type_open_descr env sod in
let (trem, rem, final_env) = transl_sig newenv srem in
mksig (Tsig_open od) env loc :: trem,
rem, final_env
| Psig_include sincl ->
let smty = sincl.pincl_mod in
let tmty =
Builtin_attributes.warning_scope sincl.pincl_attributes
(fun () -> transl_modtype env smty)
in
let mty = tmty.mty_type in
let scope = Ctype.create_scope () in
let sg, newenv = Env.enter_signature ~scope
(extract_sig env smty.pmty_loc mty) env in
List.iter (Signature_names.check_sig_item names item.psig_loc) sg;
let incl =
{ incl_mod = tmty;
incl_type = sg;
incl_attributes = sincl.pincl_attributes;
incl_loc = sincl.pincl_loc;
}
in
let (trem, rem, final_env) = transl_sig newenv srem in
mksig (Tsig_include incl) env loc :: trem,
sg @ rem,
final_env
| Psig_class cl ->
let (classes, newenv) = Typeclass.class_descriptions env cl in
List.iter (fun cls ->
let open Typeclass in
let loc = cls.cls_id_loc.Location.loc in
Signature_names.check_type names loc cls.cls_obj_id;
Signature_names.check_class names loc cls.cls_id;
Signature_names.check_class_type names loc cls.cls_ty_id;
Signature_names.check_type names loc cls.cls_typesharp_id;
) classes;
let (trem, rem, final_env) = transl_sig newenv srem in
let sg =
map_rec (fun rs cls ->
let open Typeclass in
[Sig_class(cls.cls_id, cls.cls_decl, rs, Exported);
Sig_class_type(cls.cls_ty_id, cls.cls_ty_decl, rs, Exported);
Sig_type(cls.cls_obj_id, cls.cls_obj_abbr, rs, Exported);
Sig_type(cls.cls_typesharp_id, cls.cls_abbr, rs, Exported)]
) classes [rem]
|> List.flatten
in
let typedtree =
mksig (Tsig_class
(List.map (fun decr ->
decr.Typeclass.cls_info) classes)) env loc
:: trem
in
typedtree, sg, final_env
| Psig_class_type cl ->
let (classes, newenv) = Typeclass.class_type_declarations env cl in
List.iter (fun decl ->
let open Typeclass in
let loc = decl.clsty_id_loc.Location.loc in
Signature_names.check_class_type names loc decl.clsty_ty_id;
Signature_names.check_type names loc decl.clsty_obj_id;
Signature_names.check_type names loc decl.clsty_typesharp_id;
) classes;
let (trem,rem, final_env) = transl_sig newenv srem in
let sg =
map_rec (fun rs decl ->
let open Typeclass in
[Sig_class_type(decl.clsty_ty_id, decl.clsty_ty_decl, rs,
Exported);
Sig_type(decl.clsty_obj_id, decl.clsty_obj_abbr, rs, Exported);
Sig_type(decl.clsty_typesharp_id, decl.clsty_abbr, rs,
Exported)
]
) classes [rem]
|> List.flatten
in
let typedtree =
mksig
(Tsig_class_type
(List.map (fun decl -> decl.Typeclass.clsty_info) classes))
env loc
:: trem
in
typedtree, sg, final_env
| Psig_attribute x ->
Builtin_attributes.warning_attribute x;
let (trem,rem, final_env) = transl_sig env srem in
mksig (Tsig_attribute x) env loc :: trem, rem, final_env
| Psig_extension (ext, _attrs) ->
raise (Error_forward (Builtin_attributes.error_of_extension ext))
in
let previous_saved_types = Cmt_format.get_saved_types () in
Builtin_attributes.warning_scope []
(fun () ->
let (trem, rem, final_env) = transl_sig (Env.in_signature true env) sg in
let rem = Signature_names.simplify final_env names rem in
let sg =
{ sig_items = trem; sig_type = rem; sig_final_env = final_env }
in
Cmt_format.set_saved_types
((Cmt_format.Partial_signature sg) :: previous_saved_types);
sg
)
and transl_modtype_decl names env pmtd =
Builtin_attributes.warning_scope pmtd.pmtd_attributes
(fun () -> transl_modtype_decl_aux names env pmtd)
and transl_modtype_decl_aux names env
{pmtd_name; pmtd_type; pmtd_attributes; pmtd_loc} =
let tmty =
Option.map (transl_modtype (Env.in_signature true env)) pmtd_type
in
let decl =
{
Types.mtd_type=Option.map (fun t -> t.mty_type) tmty;
mtd_attributes=pmtd_attributes;
mtd_loc=pmtd_loc;
mtd_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
}
in
let scope = Ctype.create_scope () in
let (id, newenv) = Env.enter_modtype ~scope pmtd_name.txt decl env in
Signature_names.check_modtype names pmtd_loc id;
let mtd =
{
mtd_id=id;
mtd_name=pmtd_name;
mtd_type=tmty;
mtd_attributes=pmtd_attributes;
mtd_loc=pmtd_loc;
}
in
newenv, mtd, Sig_modtype(id, decl, Exported)
and transl_recmodule_modtypes env sdecls =
let make_env curr =
List.fold_left
(fun env (id, _, md, _) ->
Option.fold ~none:env
~some:(fun id -> Env.add_module_declaration ~check:true ~arg:true
id Mp_present md env) id)
env curr in
let transition env_c curr =
List.map2
(fun pmd (id, id_loc, md, _) ->
let tmty =
Builtin_attributes.warning_scope pmd.pmd_attributes
(fun () -> transl_modtype env_c pmd.pmd_type)
in
let md = { md with Types.md_type = tmty.mty_type } in
(id, id_loc, md, tmty))
sdecls curr in
let map_mtys curr =
List.filter_map
(fun (id, _, md, _) -> Option.map (fun id -> (id, md)) id)
curr
in
let scope = Ctype.create_scope () in
let ids =
List.map (fun x -> Option.map (Ident.create_scoped ~scope) x.pmd_name.txt)
sdecls
in
let approx_env =
List.fold_left
(fun env ->
Option.fold ~none:env ~some:(fun id -> (* cf #5965 *)
Env.enter_unbound_module (Ident.name id)
Mod_unbound_illegal_recursion env
))
env ids
in
let init =
List.map2
(fun id pmd ->
let md =
{ md_type = approx_modtype approx_env pmd.pmd_type;
md_loc = pmd.pmd_loc;
md_attributes = pmd.pmd_attributes;
md_uid = Uid.mk ~current_unit:(Env.get_unit_name ()) }
in
(id, pmd.pmd_name, md, ()))
ids sdecls
in
let env0 = make_env init in
let dcl1 =
Warnings.without_warnings
(fun () -> transition env0 init)
in
let env1 = make_env dcl1 in
check_recmod_typedecls env1 (map_mtys dcl1);
let dcl2 = transition env1 dcl1 in
(*
List.iter
(fun (id, mty) ->
Format.printf "%a: %a@." Printtyp.ident id Printtyp.modtype mty)
dcl2;
*)
let env2 = make_env dcl2 in
check_recmod_typedecls env2 (map_mtys dcl2);
let dcl2 =
List.map2 (fun pmd (id, id_loc, md, mty) ->
let tmd =
{md_id=id; md_name=id_loc; md_type=mty;
md_presence=Mp_present;
md_loc=pmd.pmd_loc;
md_attributes=pmd.pmd_attributes}
in
tmd, md.md_uid
) sdecls dcl2
in
(dcl2, env2)
(* Try to convert a module expression to a module path. *)
exception Not_a_path
let rec path_of_module mexp =
match mexp.mod_desc with
| Tmod_ident (p,_) -> p
| Tmod_apply(funct, arg, _coercion) when !Clflags.applicative_functors ->
Papply(path_of_module funct, path_of_module arg)
| Tmod_constraint (mexp, _, _, _) ->
path_of_module mexp
| _ -> raise Not_a_path
let path_of_module mexp =
try Some (path_of_module mexp) with Not_a_path -> None
(* Check that all core type schemes in a structure are closed *)
let rec closed_modtype env = function
Mty_ident _ -> true
| Mty_alias _ -> true
| Mty_signature sg ->
let env = Env.add_signature sg env in
List.for_all (closed_signature_item env) sg
| Mty_functor(arg_opt, body) ->
let env =
match arg_opt with
| Unit
| Named (None, _) -> env
| Named (Some id, param) ->
Env.add_module ~arg:true id Mp_present param env
in
closed_modtype env body
and closed_signature_item env = function
Sig_value(_id, desc, _) -> Ctype.closed_schema env desc.val_type
| Sig_module(_id, _, md, _, _) -> closed_modtype env md.md_type
| _ -> true
let check_nongen_scheme env sig_item =
match sig_item with
Sig_value(_id, vd, _) ->
if not (Ctype.closed_schema env vd.val_type) then
raise (Error (vd.val_loc, env, Non_generalizable vd.val_type))
| Sig_module (_id, _, md, _, _) ->
if not (closed_modtype env md.md_type) then
raise(Error(md.md_loc, env, Non_generalizable_module md.md_type))
| _ -> ()
let check_nongen_schemes env sg =
List.iter (check_nongen_scheme env) sg
(* Helpers for typing recursive modules *)
let anchor_submodule name anchor =
match anchor, name with
| None, _
| _, None ->
None
| Some p, Some name ->
Some(Pdot(p, name))
let anchor_recmodule = Option.map (fun id -> Pident id)
let enrich_type_decls anchor decls oldenv newenv =
match anchor with
None -> newenv
| Some p ->
List.fold_left
(fun e info ->
let id = info.typ_id in
let info' =
Mtype.enrich_typedecl oldenv (Pdot(p, Ident.name id))
id info.typ_type
in
Env.add_type ~check:true id info' e)
oldenv decls
let enrich_module_type anchor name mty env =
match anchor, name with
| None, _
| _, None ->
mty
| Some p, Some name ->
Mtype.enrich_modtype env (Pdot(p, name)) mty
let check_recmodule_inclusion env bindings =
(* PR#4450, PR#4470: consider
module rec X : DECL = MOD where MOD has inferred type ACTUAL
The "natural" typing condition
E, X: ACTUAL |- ACTUAL <: DECL
leads to circularities through manifest types.
Instead, we "unroll away" the potential circularities a finite number
of times. The (weaker) condition we implement is:
E, X: DECL,
X1: ACTUAL,
X2: ACTUAL{X <- X1}/X1
...
Xn: ACTUAL{X <- X(n-1)}/X(n-1)
|- ACTUAL{X <- Xn}/Xn <: DECL{X <- Xn}
so that manifest types rooted at X(n+1) are expanded in terms of X(n),
avoiding circularities. The strengthenings ensure that
Xn.t = X(n-1).t = ... = X2.t = X1.t.
N can be chosen arbitrarily; larger values of N result in more
recursive definitions being accepted. A good choice appears to be
the number of mutually recursive declarations. *)
let subst_and_strengthen env scope s id mty =
let mty = Subst.modtype (Rescope scope) s mty in
match id with
| None -> mty
| Some id ->
Mtype.strengthen ~aliasable:false env mty
(Subst.module_path s (Pident id))
in
let rec check_incl first_time n env s =
let scope = Ctype.create_scope () in
if n > 0 then begin
(* Generate fresh names Y_i for the rec. bound module idents X_i *)
let bindings1 =
List.map
(fun (id, _name, _mty_decl, _modl, mty_actual, _attrs, _loc, _uid) ->
let ids =
Option.map
(fun id -> (id, Ident.create_scoped ~scope (Ident.name id))) id
in
(ids, mty_actual))
bindings in
(* Enter the Y_i in the environment with their actual types substituted
by the input substitution s *)
let env' =
List.fold_left
(fun env (ids, mty_actual) ->
match ids with
| None -> env
| Some (id, id') ->
let mty_actual' =
if first_time
then mty_actual
else subst_and_strengthen env scope s (Some id) mty_actual
in
Env.add_module ~arg:false id' Mp_present mty_actual' env)
env bindings1 in
(* Build the output substitution Y_i <- X_i *)
let s' =
List.fold_left
(fun s (ids, _mty_actual) ->
match ids with
| None -> s
| Some (id, id') -> Subst.add_module id (Pident id') s)
Subst.identity bindings1 in
(* Recurse with env' and s' *)
check_incl false (n-1) env' s'
end else begin
(* Base case: check inclusion of s(mty_actual) in s(mty_decl)
and insert coercion if needed *)
let check_inclusion
(id, name, mty_decl, modl, mty_actual, attrs, loc, uid) =
let mty_decl' = Subst.modtype (Rescope scope) s mty_decl.mty_type
and mty_actual' = subst_and_strengthen env scope s id mty_actual in
let coercion =
try
Includemod.modtypes ~loc:modl.mod_loc ~mark:Mark_both env
mty_actual' mty_decl'
with Includemod.Error msg ->
raise(Error(modl.mod_loc, env, Not_included msg)) in
let modl' =
{ mod_desc = Tmod_constraint(modl, mty_decl.mty_type,
Tmodtype_explicit mty_decl, coercion);
mod_type = mty_decl.mty_type;
mod_env = env;
mod_loc = modl.mod_loc;
mod_attributes = [];
} in
let mb =
{
mb_id = id;
mb_name = name;
mb_presence = Mp_present;
mb_expr = modl';
mb_attributes = attrs;
mb_loc = loc;
}
in
mb, uid
in
List.map check_inclusion bindings
end
in check_incl true (List.length bindings) env Subst.identity
(* Helper for unpack *)
let rec package_constraints_sig env loc sg constrs =
List.map
(function
| Sig_type (id, ({type_params=[]} as td), rs, priv)
when List.mem_assoc [Ident.name id] constrs ->
let ty = List.assoc [Ident.name id] constrs in
Sig_type (id, {td with type_manifest = Some ty}, rs, priv)
| Sig_module (id, pres, md, rs, priv) ->
let rec aux = function
| (m :: ((_ :: _) as l), t) :: rest when m = Ident.name id ->
(l, t) :: aux rest
| _ :: rest -> aux rest
| [] -> []
in
let md =
{md with
md_type = package_constraints env loc md.md_type (aux constrs)
}
in
Sig_module (id, pres, md, rs, priv)
| item -> item
)
sg
and package_constraints env loc mty constrs =
if constrs = [] then mty
else begin
match Mtype.scrape env mty with
| Mty_signature sg ->
Mty_signature (package_constraints_sig env loc sg constrs)
| Mty_functor _ | Mty_alias _ -> assert false
| Mty_ident p -> raise(Error(loc, env, Cannot_scrape_package_type p))
end
let modtype_of_package env loc p nl tl =
package_constraints env loc (Mty_ident p)
(List.combine (List.map Longident.flatten nl) tl)
let package_subtype env p1 nl1 tl1 p2 nl2 tl2 =
let mkmty p nl tl =
let ntl =
List.filter (fun (_n,t) -> Ctype.free_variables t = [])
(List.combine nl tl) in
let (nl, tl) = List.split ntl in
modtype_of_package env Location.none p nl tl
in
match mkmty p1 nl1 tl1, mkmty p2 nl2 tl2 with
| exception Error(_, _, Cannot_scrape_package_type _) -> false
| mty1, mty2 ->
let loc = Location.none in
match Includemod.modtypes ~loc ~mark:Mark_both env mty1 mty2 with
| Tcoerce_none -> true
| _ | exception Includemod.Error _ -> false
let () = Ctype.package_subtype := package_subtype
let wrap_constraint env mark arg mty explicit =
let mark = if mark then Includemod.Mark_both else Includemod.Mark_neither in
let coercion =
try
Includemod.modtypes ~loc:arg.mod_loc env ~mark arg.mod_type mty
with Includemod.Error msg ->
raise(Error(arg.mod_loc, env, Not_included msg)) in
{ mod_desc = Tmod_constraint(arg, mty, explicit, coercion);
mod_type = mty;
mod_env = env;
mod_attributes = [];
mod_loc = arg.mod_loc }
(* Type a module value expression *)
let rec type_module ?(alias=false) sttn funct_body anchor env smod =
Builtin_attributes.warning_scope smod.pmod_attributes
(fun () -> type_module_aux ~alias sttn funct_body anchor env smod)
and type_module_aux ~alias sttn funct_body anchor env smod =
match smod.pmod_desc with
Pmod_ident lid ->
let path =
Env.lookup_module_path ~load:(not alias) ~loc:smod.pmod_loc lid.txt env
in
let md = { mod_desc = Tmod_ident (path, lid);
mod_type = Mty_alias path;
mod_env = env;
mod_attributes = smod.pmod_attributes;
mod_loc = smod.pmod_loc } in
let aliasable = not (Env.is_functor_arg path env) in
let md =
if alias && aliasable then
(Env.add_required_global (Path.head path); md)
else match (Env.find_module path env).md_type with
| Mty_alias p1 when not alias ->
let p1 = Env.normalize_module_path (Some smod.pmod_loc) env p1 in
let mty = Includemod.expand_module_alias env [] p1 in
{ md with
mod_desc =
Tmod_constraint (md, mty, Tmodtype_implicit,
Tcoerce_alias (env, path, Tcoerce_none));
mod_type =
if sttn then Mtype.strengthen ~aliasable:true env mty p1
else mty }
| mty ->
let mty =
if sttn then Mtype.strengthen ~aliasable env mty path
else mty
in
{ md with mod_type = mty }
in md
| Pmod_structure sstr ->
let (str, sg, names, _finalenv) =
type_structure funct_body anchor env sstr in
let md =
{ mod_desc = Tmod_structure str;
mod_type = Mty_signature sg;
mod_env = env;
mod_attributes = smod.pmod_attributes;
mod_loc = smod.pmod_loc }
in
let sg' = Signature_names.simplify _finalenv names sg in
if List.length sg' = List.length sg then md else
wrap_constraint env false md (Mty_signature sg')
Tmodtype_implicit
| Pmod_functor(arg_opt, sbody) ->
let t_arg, ty_arg, newenv, funct_body =
match arg_opt with
| Unit -> Unit, Types.Unit, env, false
| Named (param, smty) ->
let mty = transl_modtype_functor_arg env smty in
let scope = Ctype.create_scope () in
let (id, newenv) =
match param.txt with
| None -> None, env
| Some name ->
let arg_md =
{ md_type = mty.mty_type;
md_attributes = [];
md_loc = param.loc;
md_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
}
in
let id, newenv =
Env.enter_module_declaration ~scope ~arg:true name Mp_present
arg_md env
in
Some id, newenv
in
Named (id, param, mty), Types.Named (id, mty.mty_type), newenv, true
in
let body = type_module sttn funct_body None newenv sbody in
{ mod_desc = Tmod_functor(t_arg, body);
mod_type = Mty_functor(ty_arg, body.mod_type);
mod_env = env;
mod_attributes = smod.pmod_attributes;
mod_loc = smod.pmod_loc }
| Pmod_apply(sfunct, sarg) ->
let arg = type_module true funct_body None env sarg in
let path = path_of_module arg in
let funct =
type_module (sttn && path <> None) funct_body None env sfunct in
begin match Env.scrape_alias env funct.mod_type with
| Mty_functor (Unit, mty_res) ->
if sarg.pmod_desc <> Pmod_structure [] then
raise (Error (sfunct.pmod_loc, env, Apply_generative));
if funct_body && Mtype.contains_type env funct.mod_type then
raise (Error (smod.pmod_loc, env, Not_allowed_in_functor_body));
{ mod_desc = Tmod_apply(funct, arg, Tcoerce_none);
mod_type = mty_res;
mod_env = env;
mod_attributes = smod.pmod_attributes;
mod_loc = smod.pmod_loc }
| Mty_functor (Named (param, mty_param), mty_res) as mty_functor ->
let coercion =
try
Includemod.modtypes ~loc:sarg.pmod_loc ~mark:Mark_both env
arg.mod_type mty_param
with Includemod.Error msg ->
raise(Error(sarg.pmod_loc, env, Not_included msg)) in
let mty_appl =
match path with
| Some path ->
let scope = Ctype.create_scope () in
let subst =
match param with
| None -> Subst.identity
| Some p -> Subst.add_module p path Subst.identity
in
Subst.modtype (Rescope scope) subst mty_res
| None ->
let env, nondep_mty =
match param with
| None -> env, mty_res
| Some param ->
let env =
Env.add_module ~arg:true param Mp_present arg.mod_type
env
in
check_well_formed_module env smod.pmod_loc
"the signature of this functor application" mty_res;
try env, Mtype.nondep_supertype env [param] mty_res
with Ctype.Nondep_cannot_erase _ ->
raise(Error(smod.pmod_loc, env,
Cannot_eliminate_dependency mty_functor))
in
begin match
Includemod.modtypes ~mark:Mark_neither
~loc:smod.pmod_loc env mty_res nondep_mty
with
| Tcoerce_none -> ()
| _ ->
fatal_error
"unexpected coercion from original module type to \
nondep_supertype one"
| exception Includemod.Error _ ->
fatal_error
"nondep_supertype not included in original module type"
end;
nondep_mty
in
check_well_formed_module env smod.pmod_loc
"the signature of this functor application" mty_appl;
{ mod_desc = Tmod_apply(funct, arg, coercion);
mod_type = mty_appl;
mod_env = env;
mod_attributes = smod.pmod_attributes;
mod_loc = smod.pmod_loc }
| Mty_alias path ->
raise(Error(sfunct.pmod_loc, env, Cannot_scrape_alias path))
| _ ->
raise(Error(sfunct.pmod_loc, env, Cannot_apply funct.mod_type))
end
| Pmod_constraint(sarg, smty) ->
let arg = type_module ~alias true funct_body anchor env sarg in
let mty = transl_modtype env smty in
let md =
wrap_constraint env true arg mty.mty_type (Tmodtype_explicit mty)
in
{ md with
mod_loc = smod.pmod_loc;
mod_attributes = smod.pmod_attributes;
}
| Pmod_unpack sexp ->
if !Clflags.principal then Ctype.begin_def ();
let exp = Typecore.type_exp env sexp in
if !Clflags.principal then begin
Ctype.end_def ();
Ctype.generalize_structure exp.exp_type
end;
let mty =
match Ctype.expand_head env exp.exp_type with
{desc = Tpackage (p, nl, tl)} ->
if List.exists (fun t -> Ctype.free_variables t <> []) tl then
raise (Error (smod.pmod_loc, env,
Incomplete_packed_module exp.exp_type));
if !Clflags.principal &&
not (Typecore.generalizable (Btype.generic_level-1) exp.exp_type)
then
Location.prerr_warning smod.pmod_loc
(Warnings.Not_principal "this module unpacking");
modtype_of_package env smod.pmod_loc p nl tl
| {desc = Tvar _} ->
raise (Typecore.Error
(smod.pmod_loc, env, Typecore.Cannot_infer_signature))
| _ ->
raise (Error(smod.pmod_loc, env, Not_a_packed_module exp.exp_type))
in
if funct_body && Mtype.contains_type env mty then
raise (Error (smod.pmod_loc, env, Not_allowed_in_functor_body));
{ mod_desc = Tmod_unpack(exp, mty);
mod_type = mty;
mod_env = env;
mod_attributes = smod.pmod_attributes;
mod_loc = smod.pmod_loc }
| Pmod_extension ext ->
raise (Error_forward (Builtin_attributes.error_of_extension ext))
and type_open_decl ?used_slot ?toplevel funct_body names env sod =
Builtin_attributes.warning_scope sod.popen_attributes
(fun () ->
type_open_decl_aux ?used_slot ?toplevel funct_body names env sod
)
and type_open_decl_aux ?used_slot ?toplevel funct_body names env od =
let loc = od.popen_loc in
match od.popen_expr.pmod_desc with
| Pmod_ident lid ->
let path, newenv =
type_open_ ?used_slot ?toplevel od.popen_override env loc lid
in
let md = { mod_desc = Tmod_ident (path, lid);
mod_type = Mty_alias path;
mod_env = env;
mod_attributes = od.popen_expr.pmod_attributes;
mod_loc = od.popen_expr.pmod_loc }
in
let open_descr = {
open_expr = md;
open_bound_items = [];
open_override = od.popen_override;
open_env = newenv;
open_loc = loc;
open_attributes = od.popen_attributes
} in
open_descr, [], newenv
| _ ->
let md = type_module true funct_body None env od.popen_expr in
let scope = Ctype.create_scope () in
let sg, newenv =
Env.enter_signature ~scope (extract_sig_open env md.mod_loc md.mod_type)
env
in
let info, visibility =
match toplevel with
| Some false | None -> Some `From_open, Hidden
| Some true -> None, Exported
in
List.iter (Signature_names.check_sig_item ?info names loc) sg;
let sg =
List.map (function
| Sig_value(id, vd, _) -> Sig_value(id, vd, visibility)
| Sig_type(id, td, rs, _) -> Sig_type(id, td, rs, visibility)
| Sig_typext(id, ec, et, _) -> Sig_typext(id, ec, et, visibility)
| Sig_module(id, mp, md, rs, _) ->
Sig_module(id, mp, md, rs, visibility)
| Sig_modtype(id, mtd, _) -> Sig_modtype(id, mtd, visibility)
| Sig_class(id, cd, rs, _) -> Sig_class(id, cd, rs, visibility)
| Sig_class_type(id, ctd, rs, _) ->
Sig_class_type(id, ctd, rs, visibility)
) sg
in
let open_descr = {
open_expr = md;
open_bound_items = sg;
open_override = od.popen_override;
open_env = newenv;
open_loc = loc;
open_attributes = od.popen_attributes
} in
open_descr, sg, newenv
and type_structure ?(toplevel = false) funct_body anchor env sstr =
let names = Signature_names.create () in
let type_str_item env {pstr_loc = loc; pstr_desc = desc} =
match desc with
| Pstr_eval (sexpr, attrs) ->
let expr =
Builtin_attributes.warning_scope attrs
(fun () -> Typecore.type_expression env sexpr)
in
Tstr_eval (expr, attrs), [], env
| Pstr_value(rec_flag, sdefs) ->
let (defs, newenv) =
Typecore.type_binding env rec_flag sdefs in
let () = if rec_flag = Recursive then
Typecore.check_recursive_bindings env defs
in
(* Note: Env.find_value does not trigger the value_used event. Values
will be marked as being used during the signature inclusion test. *)
Tstr_value(rec_flag, defs),
List.map (fun (id, { Asttypes.loc; _ }, _typ)->
Signature_names.check_value names loc id;
Sig_value(id, Env.find_value (Pident id) newenv, Exported)
) (let_bound_idents_full defs),
newenv
| Pstr_primitive sdesc ->
let (desc, newenv) = Typedecl.transl_value_decl env loc sdesc in
Signature_names.check_value names desc.val_loc desc.val_id;
Tstr_primitive desc,
[Sig_value(desc.val_id, desc.val_val, Exported)],
newenv
| Pstr_type (rec_flag, sdecls) ->
let (decls, newenv) = Typedecl.transl_type_decl env rec_flag sdecls in
List.iter
Signature_names.(fun td -> check_type names td.typ_loc td.typ_id)
decls;
Tstr_type (rec_flag, decls),
map_rec_type_with_row_types ~rec_flag
(fun rs info -> Sig_type(info.typ_id, info.typ_type, rs, Exported))
decls [],
enrich_type_decls anchor decls env newenv
| Pstr_typext styext ->
let (tyext, newenv) =
Typedecl.transl_type_extension true env loc styext
in
let constructors = tyext.tyext_constructors in
List.iter
Signature_names.(fun ext -> check_typext names ext.ext_loc ext.ext_id)
constructors;
(Tstr_typext tyext,
map_ext
(fun es ext -> Sig_typext(ext.ext_id, ext.ext_type, es, Exported))
constructors [],
newenv)
| Pstr_exception sext ->
let (ext, newenv) = Typedecl.transl_type_exception env sext in
let constructor = ext.tyexn_constructor in
Signature_names.check_typext names constructor.ext_loc
constructor.ext_id;
Tstr_exception ext,
[Sig_typext(constructor.ext_id,
constructor.ext_type,
Text_exception,
Exported)],
newenv
| Pstr_module {pmb_name = name; pmb_expr = smodl; pmb_attributes = attrs;
pmb_loc;
} ->
let outer_scope = Ctype.get_current_level () in
let scope = Ctype.create_scope () in
let modl =
Builtin_attributes.warning_scope attrs
(fun () ->
type_module ~alias:true true funct_body
(anchor_submodule name.txt anchor) env smodl
)
in
let pres =
match modl.mod_type with
| Mty_alias _ -> Mp_absent
| _ -> Mp_present
in
let md_uid = Uid.mk ~current_unit:(Env.get_unit_name ()) in
let md =
{ md_type = enrich_module_type anchor name.txt modl.mod_type env;
md_attributes = attrs;
md_loc = pmb_loc;
md_uid;
}
in
(*prerr_endline (Ident.unique_toplevel_name id);*)
Mtype.lower_nongen outer_scope md.md_type;
let id, newenv, sg =
match name.txt with
| None -> None, env, []
| Some name ->
let id, e = Env.enter_module_declaration ~scope name pres md env in
Signature_names.check_module names pmb_loc id;
Some id, e,
[Sig_module(id, pres,
{md_type = modl.mod_type;
md_attributes = attrs;
md_loc = pmb_loc;
md_uid;
}, Trec_not, Exported)]
in
Tstr_module {mb_id=id; mb_name=name; mb_expr=modl;
mb_presence=pres; mb_attributes=attrs; mb_loc=pmb_loc; },
sg,
newenv
| Pstr_recmodule sbind ->
let sbind =
List.map
(function
| {pmb_name = name;
pmb_expr = {pmod_desc=Pmod_constraint(expr, typ)};
pmb_attributes = attrs;
pmb_loc = loc;
} ->
name, typ, expr, attrs, loc
| mb ->
raise (Error (mb.pmb_expr.pmod_loc, env,
Recursive_module_require_explicit_type))
)
sbind
in
let (decls, newenv) =
transl_recmodule_modtypes env
(List.map (fun (name, smty, _smodl, attrs, loc) ->
{pmd_name=name; pmd_type=smty;
pmd_attributes=attrs; pmd_loc=loc}) sbind
) in
List.iter
(fun (md, _) ->
Option.iter Signature_names.(check_module names md.md_loc) md.md_id)
decls;
let bindings1 =
List.map2
(fun ({md_id=id; md_type=mty}, uid) (name, _, smodl, attrs, loc) ->
let modl =
Builtin_attributes.warning_scope attrs
(fun () ->
type_module true funct_body (anchor_recmodule id)
newenv smodl
)
in
let mty' =
enrich_module_type anchor name.txt modl.mod_type newenv
in
(id, name, mty, modl, mty', attrs, loc, uid))
decls sbind in
let newenv = (* allow aliasing recursive modules from outside *)
List.fold_left
(fun env (md, uid) ->
match md.md_id with
| None -> env
| Some id ->
let mdecl =
{
md_type = md.md_type.mty_type;
md_attributes = md.md_attributes;
md_loc = md.md_loc;
md_uid = uid;
}
in
Env.add_module_declaration ~check:true
id Mp_present mdecl env
)
env decls
in
let bindings2 =
check_recmodule_inclusion newenv bindings1 in
let mbs =
List.filter_map (fun (mb, uid) ->
Option.map (fun id -> id, mb, uid) mb.mb_id
) bindings2
in
Tstr_recmodule (List.map fst bindings2),
map_rec (fun rs (id, mb, uid) ->
Sig_module(id, Mp_present, {
md_type=mb.mb_expr.mod_type;
md_attributes=mb.mb_attributes;
md_loc=mb.mb_loc;
md_uid = uid;
}, rs, Exported))
mbs [],
newenv
| Pstr_modtype pmtd ->
(* check that it is non-abstract *)
let newenv, mtd, sg = transl_modtype_decl names env pmtd in
Tstr_modtype mtd, [sg], newenv
| Pstr_open sod ->
let (od, sg, newenv) =
type_open_decl ~toplevel funct_body names env sod
in
Tstr_open od, sg, newenv
| Pstr_class cl ->
let (classes, new_env) = Typeclass.class_declarations env cl in
List.iter (fun cls ->
let open Typeclass in
let loc = cls.cls_id_loc.Location.loc in
Signature_names.check_class names loc cls.cls_id;
Signature_names.check_class_type names loc cls.cls_ty_id;
Signature_names.check_type names loc cls.cls_obj_id;
Signature_names.check_type names loc cls.cls_typesharp_id;
) classes;
Tstr_class
(List.map (fun cls ->
(cls.Typeclass.cls_info,
cls.Typeclass.cls_pub_methods)) classes),
List.flatten
(map_rec
(fun rs cls ->
let open Typeclass in
[Sig_class(cls.cls_id, cls.cls_decl, rs, Exported);
Sig_class_type(cls.cls_ty_id, cls.cls_ty_decl, rs, Exported);
Sig_type(cls.cls_obj_id, cls.cls_obj_abbr, rs, Exported);
Sig_type(cls.cls_typesharp_id, cls.cls_abbr, rs, Exported)])
classes []),
new_env
| Pstr_class_type cl ->
let (classes, new_env) = Typeclass.class_type_declarations env cl in
List.iter (fun decl ->
let open Typeclass in
let loc = decl.clsty_id_loc.Location.loc in
Signature_names.check_class_type names loc decl.clsty_ty_id;
Signature_names.check_type names loc decl.clsty_obj_id;
Signature_names.check_type names loc decl.clsty_typesharp_id;
) classes;
Tstr_class_type
(List.map (fun cl ->
(cl.Typeclass.clsty_ty_id,
cl.Typeclass.clsty_id_loc,
cl.Typeclass.clsty_info)) classes),
List.flatten
(map_rec
(fun rs decl ->
let open Typeclass in
[Sig_class_type(decl.clsty_ty_id, decl.clsty_ty_decl, rs,
Exported);
Sig_type(decl.clsty_obj_id, decl.clsty_obj_abbr, rs, Exported);
Sig_type(decl.clsty_typesharp_id, decl.clsty_abbr, rs,
Exported)
])
classes []),
new_env
| Pstr_include sincl ->
let smodl = sincl.pincl_mod in
let modl =
Builtin_attributes.warning_scope sincl.pincl_attributes
(fun () -> type_module true funct_body None env smodl)
in
let scope = Ctype.create_scope () in
(* Rename all identifiers bound by this signature to avoid clashes *)
let sg, new_env = Env.enter_signature ~scope
(extract_sig_open env smodl.pmod_loc modl.mod_type) env in
List.iter (Signature_names.check_sig_item names loc) sg;
let incl =
{ incl_mod = modl;
incl_type = sg;
incl_attributes = sincl.pincl_attributes;
incl_loc = sincl.pincl_loc;
}
in
Tstr_include incl, sg, new_env
| Pstr_extension (ext, _attrs) ->
raise (Error_forward (Builtin_attributes.error_of_extension ext))
| Pstr_attribute x ->
Builtin_attributes.warning_attribute x;
Tstr_attribute x, [], env
in
let rec type_struct env sstr =
match sstr with
| [] -> ([], [], env)
| pstr :: srem ->
let previous_saved_types = Cmt_format.get_saved_types () in
let desc, sg, new_env = type_str_item env pstr in
let str = { str_desc = desc; str_loc = pstr.pstr_loc; str_env = env } in
Cmt_format.set_saved_types (Cmt_format.Partial_structure_item str
:: previous_saved_types);
let (str_rem, sig_rem, final_env) = type_struct new_env srem in
(str :: str_rem, sg @ sig_rem, final_env)
in
let previous_saved_types = Cmt_format.get_saved_types () in
let run () =
let (items, sg, final_env) = type_struct env sstr in
let str = { str_items = items; str_type = sg; str_final_env = final_env } in
Cmt_format.set_saved_types
(Cmt_format.Partial_structure str :: previous_saved_types);
str, sg, names, final_env
in
if toplevel then run ()
else Builtin_attributes.warning_scope [] run
let type_toplevel_phrase env s =
Env.reset_required_globals ();
let (str, sg, to_remove_from_sg, env) =
type_structure ~toplevel:true false None env s in
(str, sg, to_remove_from_sg, env)
let type_module_alias = type_module ~alias:true true false None
let type_module = type_module true false None
let type_structure = type_structure false None
(* Normalize types in a signature *)
let rec normalize_modtype env = function
Mty_ident _
| Mty_alias _ -> ()
| Mty_signature sg -> normalize_signature env sg
| Mty_functor(_param, body) -> normalize_modtype env body
and normalize_signature env = List.iter (normalize_signature_item env)
and normalize_signature_item env = function
Sig_value(_id, desc, _) -> Ctype.normalize_type env desc.val_type
| Sig_module(_id, _, md, _, _) -> normalize_modtype env md.md_type
| _ -> ()
(* Extract the module type of a module expression *)
let type_module_type_of env smod =
let remove_aliases = has_remove_aliases_attribute smod.pmod_attributes in
let tmty =
match smod.pmod_desc with
| Pmod_ident lid -> (* turn off strengthening in this case *)
let path, md = Env.lookup_module ~loc:smod.pmod_loc lid.txt env in
{ mod_desc = Tmod_ident (path, lid);
mod_type = md.md_type;
mod_env = env;
mod_attributes = smod.pmod_attributes;
mod_loc = smod.pmod_loc }
| _ -> type_module env smod
in
let mty = Mtype.scrape_for_type_of ~remove_aliases env tmty.mod_type in
(* PR#5036: must not contain non-generalized type variables *)
if not (closed_modtype env mty) then
raise(Error(smod.pmod_loc, env, Non_generalizable_module mty));
tmty, mty
(* For Typecore *)
(* Graft a longident onto a path *)
let rec extend_path path =
fun lid ->
match lid with
| Lident name -> Pdot(path, name)
| Ldot(m, name) -> Pdot(extend_path path m, name)
| Lapply _ -> assert false
(* Lookup a type's longident within a signature *)
let lookup_type_in_sig sg =
let types, modules =
List.fold_left
(fun acc item ->
match item with
| Sig_type(id, _, _, _) ->
let types, modules = acc in
let types = String.Map.add (Ident.name id) id types in
types, modules
| Sig_module(id, _, _, _, _) ->
let types, modules = acc in
let modules = String.Map.add (Ident.name id) id modules in
types, modules
| _ -> acc)
(String.Map.empty, String.Map.empty) sg
in
let rec module_path = function
| Lident name -> Pident (String.Map.find name modules)
| Ldot(m, name) -> Pdot(module_path m, name)
| Lapply _ -> assert false
in
fun lid ->
match lid with
| Lident name -> Pident (String.Map.find name types)
| Ldot(m, name) -> Pdot(module_path m, name)
| Lapply _ -> assert false
let type_package env m p nl =
(* Same as Pexp_letmodule *)
(* remember original level *)
Ctype.begin_def ();
let context = Typetexp.narrow () in
let modl = type_module env m in
let scope = Ctype.create_scope () in
Typetexp.widen context;
let nl', tl', env =
match nl with
| [] -> [], [], env
| nl ->
let type_path, env =
match modl.mod_desc with
| Tmod_ident (mp,_)
| Tmod_constraint
({mod_desc=Tmod_ident (mp,_)}, _, Tmodtype_implicit, _) ->
(* We special case these because interactions between
strengthening of module types and packages can cause
spurious escape errors. See examples from PR#6982 in the
testsuite. This can be removed when such issues are
fixed. *)
extend_path mp, env
| _ ->
let sg = extract_sig_open env modl.mod_loc modl.mod_type in
let sg, env = Env.enter_signature ~scope sg env in
lookup_type_in_sig sg, env
in
let nl', tl' =
List.fold_right
(fun lid (nl, tl) ->
match type_path lid with
| exception Not_found -> (nl, tl)
| path -> begin
match Env.find_type path env with
| exception Not_found -> (nl, tl)
| decl ->
if decl.type_arity > 0 then begin
(nl, tl)
end else begin
let t = Btype.newgenty (Tconstr (path,[],ref Mnil)) in
(lid :: nl, t :: tl)
end
end)
nl ([], [])
in
nl', tl', env
in
(* go back to original level *)
Ctype.end_def ();
let mty =
if nl = [] then (Mty_ident p)
else modtype_of_package env modl.mod_loc p nl' tl'
in
List.iter2
(fun n ty ->
try Ctype.unify env ty (Ctype.newvar ())
with Ctype.Unify _ ->
raise (Error(modl.mod_loc, env, Scoping_pack (n,ty))))
nl' tl';
let modl = wrap_constraint env true modl mty Tmodtype_implicit in
(* Dropped exports should have produced an error above *)
assert (List.length nl = List.length tl');
modl, tl'
(* Fill in the forward declarations *)
let type_open_decl ?used_slot env od =
type_open_decl ?used_slot ?toplevel:None false (Signature_names.create ()) env
od
let type_open_descr ?used_slot env od =
type_open_descr ?used_slot ?toplevel:None env od
let () =
Typecore.type_module := type_module_alias;
Typetexp.transl_modtype_longident := transl_modtype_longident;
Typetexp.transl_modtype := transl_modtype;
Typecore.type_open := type_open_ ?toplevel:None;
Typecore.type_open_decl := type_open_decl;
Typecore.type_package := type_package;
Typeclass.type_open_descr := type_open_descr;
type_module_type_of_fwd := type_module_type_of
(* Typecheck an implementation file *)
let gen_annot outputprefix sourcefile annots =
Cmt2annot.gen_annot (Some (outputprefix ^ ".annot"))
~sourcefile:(Some sourcefile) ~use_summaries:false annots
let type_implementation sourcefile outputprefix modulename initial_env ast =
Cmt_format.clear ();
Misc.try_finally (fun () ->
Typecore.reset_delayed_checks ();
Env.reset_required_globals ();
if !Clflags.print_types then (* #7656 *)
Warnings.parse_options false "-32-34-37-38-60";
let (str, sg, names, finalenv) =
type_structure initial_env ast in
let simple_sg = Signature_names.simplify finalenv names sg in
if !Clflags.print_types then begin
Typecore.force_delayed_checks ();
Printtyp.wrap_printing_env ~error:false initial_env
(fun () -> fprintf std_formatter "%a@."
(Printtyp.printed_signature sourcefile) simple_sg
);
gen_annot outputprefix sourcefile (Cmt_format.Implementation str);
{ structure = str;
coercion = Tcoerce_none;
signature = simple_sg
} (* result is ignored by Compile.implementation *)
end else begin
let sourceintf =
Filename.remove_extension sourcefile ^ !Config.interface_suffix in
if Sys.file_exists sourceintf then begin
let intf_file =
try
Load_path.find_uncap (modulename ^ ".cmi")
with Not_found ->
raise(Error(Location.in_file sourcefile, Env.empty,
Interface_not_compiled sourceintf)) in
let dclsig = Env.read_signature modulename intf_file in
let coercion =
Includemod.compunit initial_env ~mark:Mark_positive
sourcefile sg intf_file dclsig
in
Typecore.force_delayed_checks ();
(* It is important to run these checks after the inclusion test above,
so that value declarations which are not used internally but
exported are not reported as being unused. *)
let annots = Cmt_format.Implementation str in
Cmt_format.save_cmt (outputprefix ^ ".cmt") modulename
annots (Some sourcefile) initial_env None;
gen_annot outputprefix sourcefile annots;
{ structure = str;
coercion;
signature = dclsig
}
end else begin
let coercion =
Includemod.compunit initial_env ~mark:Mark_positive
sourcefile sg "(inferred signature)" simple_sg
in
check_nongen_schemes finalenv simple_sg;
normalize_signature finalenv simple_sg;
Typecore.force_delayed_checks ();
(* See comment above. Here the target signature contains all
the value being exported. We can still capture unused
declarations like "let x = true;; let x = 1;;", because in this
case, the inferred signature contains only the last declaration. *)
if not !Clflags.dont_write_files then begin
let alerts = Builtin_attributes.alerts_of_str ast in
let cmi =
Env.save_signature ~alerts
simple_sg modulename (outputprefix ^ ".cmi")
in
let annots = Cmt_format.Implementation str in
Cmt_format.save_cmt (outputprefix ^ ".cmt") modulename
annots (Some sourcefile) initial_env (Some cmi);
gen_annot outputprefix sourcefile annots
end;
{ structure = str;
coercion;
signature = simple_sg
}
end
end
)
~exceptionally:(fun () ->
let annots =
Cmt_format.Partial_implementation
(Array.of_list (Cmt_format.get_saved_types ()))
in
Cmt_format.save_cmt (outputprefix ^ ".cmt") modulename
annots (Some sourcefile) initial_env None;
gen_annot outputprefix sourcefile annots
)
let save_signature modname tsg outputprefix source_file initial_env cmi =
Cmt_format.save_cmt (outputprefix ^ ".cmti") modname
(Cmt_format.Interface tsg) (Some source_file) initial_env (Some cmi)
let type_interface env ast =
transl_signature env ast
(* "Packaging" of several compilation units into one unit
having them as sub-modules. *)
let package_signatures units =
let units_with_ids =
List.map
(fun (name, sg) ->
let oldid = Ident.create_persistent name in
let newid = Ident.create_local name in
(oldid, newid, sg))
units
in
let subst =
List.fold_left
(fun acc (oldid, newid, _) ->
Subst.add_module oldid (Pident newid) acc)
Subst.identity units_with_ids
in
List.map
(fun (_, newid, sg) ->
(* This signature won't be used for anything, it'll just be saved in a cmi
and cmt. *)
let sg = Subst.signature Make_local subst sg in
let md =
{ md_type=Mty_signature sg;
md_attributes=[];
md_loc=Location.none;
md_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
}
in
Sig_module(newid, Mp_present, md, Trec_not, Exported))
units_with_ids
let package_units initial_env objfiles cmifile modulename =
(* Read the signatures of the units *)
let units =
List.map
(fun f ->
let pref = chop_extensions f in
let modname = String.capitalize_ascii(Filename.basename pref) in
let sg = Env.read_signature modname (pref ^ ".cmi") in
if Filename.check_suffix f ".cmi" &&
not(Mtype.no_code_needed_sig Env.initial_safe_string sg)
then raise(Error(Location.none, Env.empty,
Implementation_is_required f));
(modname, Env.read_signature modname (pref ^ ".cmi")))
objfiles in
(* Compute signature of packaged unit *)
Ident.reinit();
let sg = package_signatures units in
(* See if explicit interface is provided *)
let prefix = Filename.remove_extension cmifile in
let mlifile = prefix ^ !Config.interface_suffix in
if Sys.file_exists mlifile then begin
if not (Sys.file_exists cmifile) then begin
raise(Error(Location.in_file mlifile, Env.empty,
Interface_not_compiled mlifile))
end;
let dclsig = Env.read_signature modulename cmifile in
Cmt_format.save_cmt (prefix ^ ".cmt") modulename
(Cmt_format.Packed (sg, objfiles)) None initial_env None ;
Includemod.compunit initial_env ~mark:Mark_both
"(obtained by packing)" sg mlifile dclsig
end else begin
(* Determine imports *)
let unit_names = List.map fst units in
let imports =
List.filter
(fun (name, _crc) -> not (List.mem name unit_names))
(Env.imports()) in
(* Write packaged signature *)
if not !Clflags.dont_write_files then begin
let cmi =
Env.save_signature_with_imports ~alerts:Misc.Stdlib.String.Map.empty
sg modulename
(prefix ^ ".cmi") imports
in
Cmt_format.save_cmt (prefix ^ ".cmt") modulename
(Cmt_format.Packed (cmi.Cmi_format.cmi_sign, objfiles)) None initial_env
(Some cmi)
end;
Tcoerce_none
end
(* Error report *)
open Printtyp
let report_error ppf = function
Cannot_apply mty ->
fprintf ppf
"@[This module is not a functor; it has type@ %a@]" modtype mty
| Not_included errs ->
fprintf ppf
"@[<v>Signature mismatch:@ %a@]" Includemod.report_error errs
| Cannot_eliminate_dependency mty ->
fprintf ppf
"@[This functor has type@ %a@ \
The parameter cannot be eliminated in the result type.@ \
Please bind the argument to a module identifier.@]" modtype mty
| Signature_expected -> fprintf ppf "This module type is not a signature"
| Structure_expected mty ->
fprintf ppf
"@[This module is not a structure; it has type@ %a" modtype mty
| With_no_component lid ->
fprintf ppf
"@[The signature constrained by `with' has no component named %a@]"
longident lid
| With_mismatch(lid, explanation) ->
fprintf ppf
"@[<v>\
@[In this `with' constraint, the new definition of %a@ \
does not match its original definition@ \
in the constrained signature:@]@ \
%a@]"
longident lid Includemod.report_error explanation
| With_makes_applicative_functor_ill_typed(lid, path, explanation) ->
fprintf ppf
"@[<v>\
@[This `with' constraint on %a makes the applicative functor @ \
type %s ill-typed in the constrained signature:@]@ \
%a@]"
longident lid (Path.name path) Includemod.report_error explanation
| With_changes_module_alias(lid, id, path) ->
fprintf ppf
"@[<v>\
@[This `with' constraint on %a changes %s, which is aliased @ \
in the constrained signature (as %s)@].@]"
longident lid (Path.name path) (Ident.name id)
| With_cannot_remove_constrained_type ->
fprintf ppf
"@[<v>Destructive substitutions are not supported for constrained @ \
types (other than when replacing a type constructor with @ \
a type constructor with the same arguments).@]"
| Repeated_name(kind, name) ->
fprintf ppf
"@[Multiple definition of the %s name %s.@ \
Names must be unique in a given structure or signature.@]"
(Sig_component_kind.to_string kind) name
| Non_generalizable typ ->
fprintf ppf
"@[The type of this expression,@ %a,@ \
contains type variables that cannot be generalized@]" type_scheme typ
| Non_generalizable_class (id, desc) ->
fprintf ppf
"@[The type of this class,@ %a,@ \
contains type variables that cannot be generalized@]"
(class_declaration id) desc
| Non_generalizable_module mty ->
fprintf ppf
"@[The type of this module,@ %a,@ \
contains type variables that cannot be generalized@]" modtype mty
| Implementation_is_required intf_name ->
fprintf ppf
"@[The interface %a@ declares values, not just types.@ \
An implementation must be provided.@]"
Location.print_filename intf_name
| Interface_not_compiled intf_name ->
fprintf ppf
"@[Could not find the .cmi file for interface@ %a.@]"
Location.print_filename intf_name
| Not_allowed_in_functor_body ->
fprintf ppf
"@[This expression creates fresh types.@ %s@]"
"It is not allowed inside applicative functors."
| Not_a_packed_module ty ->
fprintf ppf
"This expression is not a packed module. It has type@ %a"
type_expr ty
| Incomplete_packed_module ty ->
fprintf ppf
"The type of this packed module contains variables:@ %a"
type_expr ty
| Scoping_pack (lid, ty) ->
fprintf ppf
"The type %a in this module cannot be exported.@ " longident lid;
fprintf ppf
"Its type contains local dependencies:@ %a" type_expr ty
| Recursive_module_require_explicit_type ->
fprintf ppf "Recursive modules require an explicit module type."
| Apply_generative ->
fprintf ppf "This is a generative functor. It can only be applied to ()"
| Cannot_scrape_alias p ->
fprintf ppf
"This is an alias for module %a, which is missing"
path p
| Cannot_scrape_package_type p ->
fprintf ppf
"The type of this packed module refers to %a, which is missing"
path p
| Badly_formed_signature (context, err) ->
fprintf ppf "@[In %s:@ %a@]" context Typedecl.report_error err
| Cannot_hide_id Illegal_shadowing
{ shadowed_item_kind; shadowed_item_id; shadowed_item_loc;
shadower_id; user_id; user_kind; user_loc } ->
let shadowed_item_kind= Sig_component_kind.to_string shadowed_item_kind in
fprintf ppf
"@[<v>Illegal shadowing of included %s %a by %a@ \
%a:@;<1 2>%s %a came from this include@ \
%a:@;<1 2>The %s %s has no valid type if %a is shadowed@]"
shadowed_item_kind Ident.print shadowed_item_id Ident.print shadower_id
Location.print_loc shadowed_item_loc
(String.capitalize_ascii shadowed_item_kind)
Ident.print shadowed_item_id
Location.print_loc user_loc
(Sig_component_kind.to_string user_kind) (Ident.name user_id)
Ident.print shadowed_item_id
| Cannot_hide_id Appears_in_signature
{ opened_item_kind; opened_item_id; user_id; user_kind; user_loc } ->
let opened_item_kind= Sig_component_kind.to_string opened_item_kind in
fprintf ppf
"@[<v>The %s %a introduced by this open appears in the signature@ \
%a:@;<1 2>The %s %s has no valid type if %a is hidden@]"
opened_item_kind Ident.print opened_item_id
Location.print_loc user_loc
(Sig_component_kind.to_string user_kind) (Ident.name user_id)
Ident.print opened_item_id
| Invalid_type_subst_rhs ->
fprintf ppf "Only type synonyms are allowed on the right of :="
let report_error env ppf err =
Printtyp.wrap_printing_env ~error:true env (fun () -> report_error ppf err)
let () =
Location.register_error_of_exn
(function
| Error (loc, env, err) ->
Some (Location.error_of_printer ~loc (report_error env) err)
| Error_forward err ->
Some err
| _ ->
None
)